1,049
Views
45
CrossRef citations to date
0
Altmetric
Review

Targeting the dopamine D3 receptor: an overview of drug design strategies

, , , &
Pages 641-664 | Received 12 Feb 2016, Accepted 29 Apr 2016, Published online: 30 May 2016

References

  • Rangel-Barajas C, Coronel I, Floran B. Dopamine receptors and neurodegeneration. Aging Dis. 2015;6:349–368. doi:10.14336/AD.2015.0330.
  • Levite M. Dopamine in the immune system: dopamine receptors in immune cells, potent effects, endogenous production and involvement in immune and neuropsychiatric diseases. In: Levite M, editor. Nerve-driven-immunity-neurotransmitters and neuropeptides in the immune system. Wien: Springer-Verlag; 2012. p. 1–45.
  • Beaulieu JM, Espinoza S, Gainetdinov RR. Dopamine receptors-IUPHR review 13. Brit J Pharmacol. 2015;172:1–23. doi:10.1111/bph.12906.
  • Youdim MBH, Edmondson D, Tipton KF. The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci. 2006;7:295–309. doi:10.1038/nrn1883.
  • Meiser J, Weindl D, Hiller K. Complexity of dopamine metabolism. Cell Comm Sign. 2013;11:34. doi:10.1186/1478-811X-11-34.
  • Chaudhry FA, Edwards RH, Fonnum F. Vesicular neurotransmitter transporters as targets for endogenous and exogenous toxic substances. Annu Rev Pharmacol Toxicol. 2008;48:277–301. doi:10.1146/annurev.pharmtox.46.120604.141146.
  • Zahniser NR, Sorkin A. Rapid regulation of the dopamine transporter: role in stimulant addiction? Neuropharmacology. 2004;47:80–91. doi:10.1016/j.neuropharm.2004.07.010.
  • Beaulieu J-M, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63:182–217. doi:10.1124/pr.110.002642.
  • Missale C, Nash SR, Robinson SW, et al. Dopamine receptors: from structure to function. Physiol Rev. 1998;78:189–225.
  • Mach RH, Tu Z, Xu J, et al. Endogenous dopamine (DA) competes with the binding of a radiolabeled D₃ receptor partial agonist in vivo: a positron emission tomography study. Synapse. 2011;65(8):724-732. doi:10.1002/syn.20891.
  • Hurley MJ, Jenner P. What has been learnt from study of dopamine receptors in Parkinson’s disease? Pharmacol Therap. 2006;111:715–728. doi:10.1016/j.pharmthera.2005.12.001.
  • Xu J, Vangveravong S, Li S, et al. Positron emission tomography imaging of dopamine D2 Receptors using a highly selective radiolabeled D2Receptor partial agonist. Neuroimage. 2013;71:168–174. doi:10.1016/j.neuroimage.2013.01.007.
  • Gross G, Drescher K. The role of dopamine D3 receptors in antipsychotic activity and cognitive functions. Handb Exp Pharmacol. 2012;213:167–210. doi:10.1007/978-3-642-25758-2_7.
  • Gurevich EV, Joyce JN. Distribution of dopamine D3 receptor expressing neurons in the human forebrain: comparison with D2Receptor expressing neurons. Neuropsychopharmacology. 1999;20:60–80. doi:10.1016/S0893-133X(98)00066-9.
  • Sun J, Xu J, Cairns NJ, et al. Dopamine D1, D2, D3 receptors, vesicular monoamine transporter type-2 (VMAT2) and dopamine transporter (DAT) densities in aged human brain. PLoS One. 2012;7(11):e49483.
  • Sun J, Cairns NJ, Perlmutter JS, et al. Regulation of dopamine D₃ receptor in the striatal regions and substantia nigra in diffuse lewy body disease. Neuroscience. 2013;248:112–126. doi:10.1016/j.neuroscience.2013.05.048
  • Prante O, Maschauer S, Banerjee A. Radioligands for the dopamine receptor subtypes. J Labelled Comp Radiopharm. 2013;56(3–4):130–148. doi:10.1002/jlcr.3000.
  • Wilson AA, McCormick P, Kapur S, et al. Radiosynthesis and evaluation of [11 C]-(+)4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol as a potential radiotracer for in vivo imaging of the dopamine D2 high-affinity state with positron emission tomography. J Med Chem. 2005;48:4153–4160. doi:10.1021/jm050155n.
  • Freedman SB, Patel S, Marwood R, et al. Expression and pharmacological characterization of the human D3 dopamine receptor. J Pharmacol Exp Ther. 1994;268:417–426.
  • Gallezot JD, Beaver JD, Gunn RN, et al. Affinity and selectivity of [11C]-(+)-PHNO for the D3 and D2Receptors in the rhesus monkey brain in vivo. Synapse. 2012;66:489–500. doi:10.1002/syn.21535.
  • Le Foll B, Wilson AA, Graff A, et al. Recent methods for measuring dopamine D3 receptor occupancy in vivo: importance for drug development. Front Pharmacol. 2014;5:161. doi:10.3389/fphar.2014.00161.
  • Searle G, Beaver JD, Comley RA, et al. Imaging dopamine D3 receptors in the human brain with positron emission tomography, [11C]PHNO, and a selective D3 receptor antagonist. Biol Psychiatry. 2010;68:392–399. doi:10.1016/j.biopsych.2010.04.038.
  • Tziortzi AC, Searle GE, Tzimopoulou S, et al. Imaging dopamine receptors in humans with [11C]-(+)-PHNO: dissection of D3 signal and anatomy. Neuroimage. 2011;54:264–277. doi:10.1016/j.neuroimage.2010.06.044.
  • Boeckler F, Gmeiner P. Dopamine D3 receptor ligands: recent advances in the control of subtype selectivity and intrinsic activity. Biochim Biophys Acta. 2007;1768:871–887. doi:10.1016/j.bbamem.2006.12.001.
  • Keck TM, Burzynski C, Shi L, et al. Beyond small-molecule SAR: using the dopamine D3 receptor crystal structure to guide drug design. Adv Pharmacol. 2014;69:267–300. doi:10.1016/B978-0-12-420118-7.00007-X.
  • Kassel S, Schwed JS, Stark H. Dopamine D3 receptor agonists as pharmacological tools. Eur Neuropsychopharmacol. 2015;25:1480–1499. doi:10.1016/j.euroneuro.2014.11.005.
  • Pich EM, Collo G. Pharmacological targeting of dopamine D3 receptors: possible clinical applications of selective drugs. Eur Neuropsychopharmacol. 2015;25:1437–1447. doi:10.1016/j.euroneuro.2015.07.012.
  • Sokoloff P, Giros B, Martres MP, et al. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature. 1990;347:146–151. doi:10.1038/347146a0.
  • MacKenzie RG, VanLeeuwen D, Pugsley TA, et al. Characterization of the human dopamine D3 receptor expressed in transfected cell lines. Eur J Pharmacol. 1994;266:79–85.
  • Robinson SW, Caron MG. Selective inhibition of adenylyl cyclase type V by the dopamine D3 receptor. Mol Pharmacol. 1997;52:508–514.
  • Jin M, Min C, Zheng M, et al. Multiple signaling routes involved in the regulation of adenylyl cyclase and extracellular regulated kinase by dopamine D2 and D3 receptors. Pharmacol Res. 2013;67:31–41. doi:10.1016/j.phrs.2012.09.012.
  • Collo G, Bono F, Cavalleri L, et al. Pre-synaptic dopamine D3 receptor mediates cocaine-induced structural plasticity in mesencephalic dopaminergic neurons via ERK and Akt pathways. J Neurochem. 2012;120:765–778. doi:10.1111/j.1471-4159.2011.07618.x.
  • Chien EY, Liu W, Zhao Q, et al. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science. 2010;330:1091–1095. doi:10.1126/science.1197410.
  • Blagg J, Allerton CM, Batchelor DV, et al. Design and synthesis of a functionally selective D3 agonist and its in vivo delivery via the intranasal route. Bioorg Med Chem Lett. 2007;17(24):6691–6696. doi:10.1016/j.bmcl.2007.10.059.
  • Newman AH, Beuming T, Banala AK, et al. Molecular determinants of selectivity and efficacy at the dopamine D3 receptor. J Med Chem. 2012;55:6689–6699. doi:10.1021/jm300482h.
  • Michino M, Donthamsetti P, Beuming T, et al. A single glycine in extracellular loop 1 is the critical determinant for pharmacological specificity of dopamine D2 and D3 receptors. Mol Pharmacol. 2013;84:854–864. doi:10.1124/mol.113.087833.
  • Wang Q, Mach RH, Luedtke RR, et al. Subtype selectivity of dopamine receptor ligands: insights from structure and ligand-based methods. J Chem Inf Model. 2010;50(11):1970–1985. doi:10.1021/ci1002747.
  • Biswas S, Zhang S, Fernandez F, et al. Further structure-activity relationships study of hybrid 7-([2-(4-Phenylpiperazin-1-yl)ethyl]propylamino)-5,6,7,8-tetrahydronaphtalen-2-ol analogues: identification of a high-affinity D3-preferring agonist with potent in vivo activity with long duration of action. J Med Chem. 2008;51:101–117. doi:10.1021/jm070860r.
  • Newman AH, Blaylock BL, Nader MA, et al. Medication discovery for addiction: translating the dopamine D3 receptor hypothesis. Biochem Pharmacol. 2012;84:882–890. doi:10.1016/j.bcp.2012.06.023.
  • Wilt TJ, MacDonald R, Ouellette J, et al. Pharmacologic therapy for primary restless legs syndrome: a systematic review and meta-analysis. JAMA Intern Med. 2013;173:496–505. doi:10.1001/jamainternmed.2013.3733.
  • Hatano T, Saiki S, Okuzumi A, et al. Identification of novel biomarkers for Parkinson’s disease by metabolomics technologies. J Neurol Neurosurg Psychiatry. 2016. Epub 2015 Mar 20. doi:10.1136/jnnp-2014-309676.
  • Connolly BS, Lang AE. Pharmacological treatment of Parkinson disease. A review. JAMA. 2014;311:1670–1683. doi:10.1001/jama.2014.3654.
  • LeWitt PA. Levodopa therapy for Parkinson’s disease: pharmacokinetics and pharmacodynamics. Mov Disorders. 2015;30:64–72. doi:10.1002/mds.26082.
  • Wijeyekoon R, Barker RA. Cell replacement therapy for Parkinson’s disease. Biochim Biophys Acta. 2009;1792:688–702. doi:10.1016/j.bbadis.2008.10.007.
  • Blandini F, Armentero M-T. Dopamine receptor agonists for Parkinson’s disease. Expert Opin Investig Drugs. 2014;23:387–410. doi:10.1517/13543784.2014.869209.
  • Joyce JN, Millan MJ. Dopamine D3 receptor agonists for protection and repair in Parkinson’s disease. Curr Opin Pharmacol. 2007;7:100–105. doi:10.1016/j.coph.2006.11.004.
  • Collo G, Zanetti S, Missale C, et al. Dopamine D3 receptor-preferring agonists increase dendrite arborization of mesencephalic dopaminergic neurons via extracellular signal-regulated kinase phosphorylation. Eur J Neurosci. 2008;28:1231–1240. doi:10.1111/j.1460-9568.2008.06423.x.
  • Wong A, Eloy JA, Couldwell WT, et al. Update on prolactinomas. Part 1: clinical manifestations and diagnostic challenges. J Clin Neurosci. 2015;22:1562–1567. doi:10.1016/j.jocn.2015.03.058.
  • Millan MJ, Maiofiss L, Cussac D, et al. Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. I. A multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human receptor subtypes. J Pharmacol Exp Therapeut. 2002;303:791–804. doi:10.1124/jpet.102.039867.
  • Antonini A, Barone P, Ceravolo R, et al. Role of pramipexole in the management of Parkinson’s disease. CNS Drugs. 2010;24:829–841. doi:10.2165/11585090-000000000-00000.
  • Schapira AH, Barone P, Hauser RA, et al. Extended-release pramipexole in advanced Parkinson disease: a randomized controlled trial. Neurology. 2011;77:767–774. doi:10.1212/WNL.0b013e31822affdb.
  • Frampton JE. Pramipexole extended-release: a review of its use in patients with Parkinson’s disease. Drugs. 2014;74:2175–2190. doi:10.1007/s40265-014-0322-5.
  • Stocchi F, Radicati FG, Torti M. Drug safety evaluation of ropinirole prolonged release. Expert Opin Drug Saf. 2014;13:383–389. doi:10.1517/14740338.2014.870152.
  • Carnicella S, Drui G, Boulet S, et al. Implication of dopamine D3 receptor activation in the reversion of Parkinson’s disease-related motivational deficits. Transl Psychiatry. 2014;4:e401.
  • Riddle LR, Kumar R, Griffin SA, et al. Evaluation of the D3 dopamine receptor selective agonist /partial agonist PG 01042 on L-Dopa dependent animal involuntary movements in rats. Neuropharmacology. 2011;60(2–3):284–294. doi:10.1016/j.neuropharm.2010.09.011.
  • Tatsioni A, Reichmann H, Konitsiotis S. Dopamine agonist monotherapy in Parkinson’s disease and potential risk factors for dyskinesia: a meta-analysis of levodopa-controlled trials. Eur J Neurol. 2014;21:433–440. doi:10.1111/ene.12318.
  • Searle GE, Beaver JD, Tziortzi A, et al. Mathematical modelling of [11C]-(+)-PHNO human competition studies. Neuroimage. 2013;68:119–132. doi:10.1016/j.neuroimage.2012.11.033.
  • Matuskey D, Gallezot JD, Pittman B, et al. Dopamine D3 receptor alterations in cocaine-dependent humans imaged with [11C]-(+)-PHNO. Drug Alcohol Depend. 2014;139:100–105. doi:10.1016/j.drugalcdep.2014.03.013.
  • Trenkwalder C, Winkelmann J, Inoue Y, et al. Restless legs syndrome-current therapies and management of augmentation. Nat Rev Neurol. 2015;11:434–445. doi:10.1038/nrneurol.2015.122.
  • Wood M, Dubois V, Scheller D, et al. Rotigotine is a potent agonist at dopamine D1Receptors as well as at dopamine D2 and D3 receptors. Br J Pharmacol. 2015;172(4):1124–1135. doi:10.1111/bph.12988.
  • Scheller D, Ullmer C, Berkels R, et al. The in vitro receptor profile of rotigotine: a new agent for the treatment of Parkinson’s disease. Naunyn Schmiedebergs Arch Pharmacol. 2009;379(1):73–86. doi:10.1007/s00210-008-0341-4.
  • Sachs GS, Greenberg WM, Starace A, et al. Cariprazine in the treatment of acute mania in bipolar I disorder: a double-blind, placebo-controlled, phase III trial. J Affect Disord. 2015;174:296–302. doi:10.1016/j.jad.2014.11.018.
  • Kiss B, Horvath A, Nemethy Z, et al. Cariprazine (RGH-188), a dopamine D3 receptor preferring, D3/D2 dopamine receptor antagonist-partial agonist antipsychotic candidate: in vitro and neurochemical profile. J Pharmacol Exp Therap. 2010;333:328–340. doi:10.1124/jpet.109.160432.
  • Kane JM, Zukin S, Wang Y, et al. Efficacy and safety of cariprazine in acute exacerbation of schizophrenia. J Clin Psychopharmacol. 2015;35:367–373. doi:10.1097/JCP.0000000000000346.
  • Citrome L. Cariprazine: chemistry, pharmacodynamics, pharmacokinetics, and metabolism, clinical efficacy, safety, and tolerability. Expert Opin Drug Metab Toxicol. 2013;9:193–206. doi:10.1517/17425255.2013.759211.
  • Redden L, Rendenbach-Mueller B, Abi-Saab WM, et al. A double-blind, randomized, placebo-controlled study of the dopamine D₃ receptor antagonist ABT-925 in patients with acute schizophrenia. J Clin Psychopharmacol. 2011;31:221–225. doi:10.1097/JCP.0b013e31820e4818.
  • Bhathena A, Wang Y, Kraft JB, et al. Association of dopamine-related genetic loci to dopamine D3 receptor antagonist ABT-925 clinical response. Transl Psychiatry. 2013;3:e245. doi:10.1038/tp.2013.22.
  • Mugnaini M, Iavarone L, Cavallini P, et al. Occupancy of brain dopamine D3 receptors and drug craving: a translational approach. Neuropsychopharmacology. 2013;38:302–312. doi:10.1038/npp.2012.171.
  • Micheli F, Arista L, Bonanomi G, et al. 1,2,4-triazolyl azabicyclo[3.1.0]hexanes: a new series of potent and selective dopamine D(3) receptor antagonists. J Med Chem. 2010;53:374–391. doi:10.1021/jm901319p.
  • Erritzoe D, Tziortzi A, Bargiela D, et al. In vivo imaging of cerebral dopamine D3 receptors in alcoholism. Neuropsychopharmacology. 2014;39:1703–1712. doi:10.1038/npp.2014.18.
  • Xi ZX, Spiller K, Gardner EL. Mechanism-based medication development for the treatment of nicotine dependence. Acta Pharmacol Sin. 2009;30:723–739. doi:10.1038/aps.2009.46.
  • Sánchez-Soto M, Bonifazi A, Cai NS, et al. Evidence for noncanonical neurotransmitter activation: norepinephrine as a dopamine D2-like receptor agonist. Mol Pharmacol. 2016;89(4):457–466. doi:10.1124/mol.115.101808.
  • Gerlach M, Double K, Arzberger T, et al. Dopamine receptor agonists in current clinical use: comparative dopamine receptor binding profiles defined in the human striatum. J Neural Transm (Vienna). 2003;110(10):1119–1127. doi:10.1007/s00702-003-0027-5.
  • Coldwell MC, Boyfield I, Brown AM, et al. Pharmacological characterization of extracellular acidification rate responses in human D2(long), D3 and D4.4 receptors expressed in Chinese hamster ovary cells. Br J Pharmacol. 1999;127(5):1135–1144. doi:10.1038/sj.bjp.0702657.
  • Scheideler MA, Martin J, Hohlweg R, et al. The preferential dopamine D3 receptor agonist cis-8-OH-PBZI induces limbic Fos expression in rat brain. Eur J Pharmacol. 1997;339(2–3):261–270.
  • Millan MJ, Girardon S, Monneyron S, et al. Discriminative stimulus properties of the dopamine D3 receptor agonists, PD128,907 and 7-OH-DPAT: a comparative characterization with novel ligands at D3 versus D2Receptors. Neuropharmacology. 2000;39(4):586–598.
  • Vanhauwe JF, Fraeyman N, Francken BJ, et al. Comparison of the ligand binding and signaling properties of human dopamine D(2) and D(3) receptors in Chinese hamster ovary cells. J Pharmacol Exp Ther. 1999;290(2):908–916.
  • van Vliet LA, Tepper PG, Dijkstra D, et al. Affinity for dopamine D2, D3, and D4 receptors of 2-aminotetralins. Relevance of D2 agonist binding for determination of receptor subtype selectivity. J Med Chem. 1996;39(21):4233–4237. doi:10.1021/jm960345l.
  • Patel J, Trout SJ, Palij P, et al. Biphasic inhibition of stimulated endogenous dopamine release by 7-OH-DPAT in slices of rat nucleus accumbens. Br J Pharmacol. 1995;115(3):421–426.
  • Luedtke RR, Mishra Y, Wang Q, et al. Comparison of the binding and functional properties of two structurally different D2 dopamine receptor subtype selective compounds. ACS Chem Neurosci. 2012;3(12):1050–1062. doi:10.1021/cn300142q.
  • Elsner J, Boeckler F, Heinemann FW, et al. Pharmacophore-guided drug discovery investigations leading to bioactive 5-aminotetrahydropyrazolopyridines. Implications for the binding mode of heterocyclic dopamine D3 receptor agonists. J Med Chem. 2005;48(18):5771–5779. doi:10.1021/jm0503805.
  • Peglion JL, Poitevin C, Mannoury La Cour C, et al. Modulations of the amide function of the preferential dopamine D3 agonist (R,R)-S32504: improvements of affinity and selectivity for D3 versus D2Receptors. Bioorg Med Chem Lett. 2009;19(8):2133–2138. doi:10.1016/j.bmcl.2009.03.015.
  • Burris KD, Filtz TM, Chumpradit S, et al. Characterization of [125I](R)-trans-7-hydroxy-2-[N-propyl-N-(3’-iodo-2’-propenyl)amino] tetralin binding to dopamine D3 receptors in rat olfactory tubercle. J Pharmacol Exp Ther. 1994;268(2):935–942.
  • Ghosh B, Antonio T, Reith ME, et al. Discovery of 4-(4-(2-((5-Hydroxy-1,2,3,4-tetrahydronaphthalen-2 yl)(propyl)amino)ethyl)piperazin-1-yl)quinolin-8-ol and its analogues as highly potent dopamine D2/D3 agonists and as iron chelator: in vivo activity indicates potential application in symptomatic and neuroprotective therapy for Parkinson’s disease. J Med Chem. 2010;53(5):2114–2125. doi:10.1021/jm901618d.
  • Lenz C, Haubmann C, Hübner H, et al. Fancy bioisosteres: synthesis and dopaminergic properties of the endiyne FAUC 88 as a novel non-aromatic D3 agonist. Bioorg Med Chem. 2005;13(1):185–191. doi:10.1016/j.bmc.2004.09.044.
  • Collins GT, Butler P, Wayman C, et al. Lack of abuse potential in a highly selective dopamine D3 agonist, PF-592,379, in drug self-administration and drug discrimination in rats. Behav Pharmacol. 2012;23(3):280–291. doi:10.1097/FBP.0b013e3283536d21.
  • Grundt P, Prevatt KM, Cao J, et al. Heterocyclic analogues of N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butyl)arylcarboxamides with functionalized linking chains as novel dopamine D3 receptor ligands: potential substance abuse therapeutic agents. J Med Chem. 2007;50(17):4135–4146. doi:10.1021/jm0704200.
  • Johnson M, Antonio T, Reith ME, et al. Structure-activity relationship study of N⁶-(2-(4-(1H-Indol-5-yl)piperazin-1-yl)ethyl)-N⁶-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine analogues: development of highly selective D3 dopamine receptor agonists along with a highly potent D2/D3 agonist and their pharmacological characterization. J Med Chem. 2012;55(12):5826–5840. doi:10.1021/jm300268s.
  • Leopoldo M, Lacivita E, Colabufo NA, et al. Synthesis and binding profile of constrained analogues of N-[4-(4-arylpiperazin-1-yl)butyl]-3-methoxybenzamides, a class of potent dopamine D3 receptor ligands. J Pharm Pharmacol. 2006;58(2):209–218. doi:10.1211/jpp.58.2.0008.
  • Chen J, Levant B, Wang S. High-affinity and selective dopamine D₃ receptor full agonists. Bioorg Med Chem Lett. 2012;22(17):5612–5617. doi:10.1016/j.bmcl.2012.07.003.
  • Chen J, Collins GT, Levant B, et al. A potent and highly selective dopamine D3 receptor full agonist. ACS Med Chem Lett. 2011;2(8):620–625. doi:10.1021/ml200100t.
  • Chen J, Jiang C, Levant B, et al. Pramipexole derivatives as potent and selective dopamine D(3) receptor agonists with improved human microsomal stability. ChemMedChem. 2014;9(12):2653–2660. doi:10.1002/cmdc.201402398.
  • Chu W, Tu Z, McElveen E, et al. Synthesis and in vitro binding of N-phenyl piperazine analogs as potential dopamine D3 receptor ligands. Bioorg Med Chem. 2005;13(1):77–87.
  • Xu J, Chu W, Tu Z, et al. [(3)H]4-(Dimethylamino)-N-[4-(4-(2-methoxyphenyl)piperazin- 1-yl)butyl]benzamide, a selective radioligand for dopamine D(3) receptors. I. in Vitro Characterization. Synapse. 2009;63(9):717–728.
  • Cheung TH, Loriaux AL, Weber SM, et al. Reduction of cocaine self-administration and D3 receptor-mediated behavior by two novel dopamine D3 receptor-selective partial agonists, OS-3-106 and WW-III-55. J Pharmacol Exp Ther. 2013;347(2):410–423. doi:10.1124/jpet.112.202911.
  • Bettinetti L, Schlotter K, Hübner H, et al. Interactive SAR studies: rational discovery of super-potent and highly selective dopamine D3 receptor antagonists and partial agonists. J Med Chem. 2002;45(21):4594–4597.
  • Chen J, Collins GT, Zhang J, et al. Design, synthesis, and evaluation of potent and selective ligands for the dopamine 3 (D3) receptor with a novel in vivo behavioral profile. J Med Chem. 2008;51(19):5905–5908. doi:10.1021/jm800471h.
  • Dörfler M, Tschammer N, Hamperl K, et al. Novel D3 selective dopaminergics incorporating enyne units as nonaromatic catechol bioisosteres: synthesis, bioactivity, and mutagenesis studies. J Med Chem. 2008;51(21):6829–6838. doi:10.1021/jm800895v.
  • Allen RP, Picchietti DL, Garcia-Borreguero D, et al. Restless legs syndrome/Willis-Ekbom disease diagnostic criteria: updated international restless legs syndrome study group (IRLSSG) consensus criteria-history, rationale, description, and significance. Sleep Med. 2014;15:860–873. doi:10.1016/j.sleep.2014.03.025.
  • Moore TJ, Glenmullen J, Mattison DR. Reports of pathological gambling, hypersexuality, and compulsive shopping associated with dopamine receptor agonist drugs. JAM Intern Med. 2014;174:1930–1933. doi:10.1001/jamainternmed.2014.5262.
  • Weintraub D, Nirenberg MJ. Impulse control and related disorders in Parkinson’s disease. Neurodegener Dis. 2013;11:63–71. doi:10.1159/000341996.
  • Smith KM, Xie SX, Weintraub D. Incident impulse control disorder symptoms and dopamine transporter imaging in Parkinson’s disease. Neurol Neurosurg Psychiatry. 2016. Epub 2015 Nov 3. doi:10.1136/jnnp-2015-311827.
  • Lieberman JA. Dopamine partial agonists: a new class of antipsychotics. CNS Drugs. 2004;18:251–267.
  • Czoty PW, Gage HD, Garg PK, et al. Effects of repeated treatment with the dopamine D2/D3 receptor partial agonist aripiprazole on striatal D2/D3 receptor availability in monkeys. Psychopharmacology. 2014;231:613–619. doi:10.1007/s00213-013-3274-7.
  • Boeckler F, Gmeiner P. The structural evolution of dopamine D3 receptor ligands: structure-activity relationships and selected neuropharmacological aspects. Pharmacol Ther. 2006;112:281–333. doi:10.1016/j.pharmthera.2006.04.007.
  • Heidbreder CA, Newman MH. Current perspectives on selective dopamine D3 receptor antagonist as pharmacotherapeutics for addictions and related disorders. Ann NY Acad Sci. 2010;1187:4–34. doi:10.1111/j.1749-6632.2009.05149.x.
  • Micheli F, Heidbreder C. Dopamine D3 receptor antagonists: a patent review (2007-2012). Expert Opin Ther Pat. 2013;23:363–381. doi:10.1517/13543776.2013.757593.
  • Micheli F. Recent advances in the development of dopamine D3 receptor antagonists: a medicinal chemistry perspective. ChemMedChem. 2011;6:1152–1162. doi:10.1002/cmdc.201000538.
  • Hidaka K, Tada S, Matsumoto M, et al. In vitro pharmacological profile of YM-43611, a novel D2-like receptor antagonist with high affinity and selectivity for dopamine D3 and D4 receptors. Br J Pharmacol. 1996;117(8):1625–1632.
  • Tang L, Todd RD, Heller A, et al. Pharmacological and functional characterization of D2, D3 and D4 dopamine receptors in fibroblast and dopaminergic cell lines. J Pharmacol Exp Ther. 1994;268(1):495–502.
  • Köhler C, Hall H, Ogren SO, et al. Specific in vitro and in vivo binding of 3H-raclopride. A potent substituted benzamide drug with high affinity for dopamine D2Receptors in the rat brain. Biochem Pharmacol. 1985;34(13):2251–2259.
  • Malmberg A, Jackson DM, Eriksson A, et al. Unique binding characteristics of antipsychotic agents interacting with human dopamine D2A, D2B, and D3 receptors. Mol Pharmacol. 1993;43(5):749–754.
  • Millan MJ, Audinot V, Melon C, et al. Evidence that dopamine D3 receptors participate in clozapine-induced hypothermia. Eur J Pharmacol. 1995;280(2):225–229.
  • Tadori Y, Forbes RA, McQuade RD, et al. Functional potencies of dopamine agonists and antagonists at human dopamine D₂ and D₃ receptors. Eur J Pharmacol. 2011;666(1–3):43–52. doi:10.1016/j.ejphar.2011.05.050.
  • Schoemaker H, Claustre Y, Fage D, et al. Neurochemical characteristics of amisulpride, an atypical dopamine D2/D3 receptor antagonist with both presynaptic and limbic selectivity. J Pharmacol Exp Ther. 1997;280(1):83–97.
  • Rangel-Barajas C, Malik M, Vangveravong S, et al. Pharmacological modulation of abnormal involuntary DOI-induced head twitch response in male DBA/2J mice: I. Effects of D2/D3 and D2 dopamine receptor selective compounds. Neuropharmacology. 2014;83:18–27. doi:10.1016/j.neuropharm.2014.03.003.
  • Nader MA, Green KL, Luedtke RR, et al. The effects of benzamide analogues on cocaine self-administration in rhesus monkeys. Psychopharmacology (Berl). 1999;147(2):143–152.
  • Audinot V, Newman-Tancredi A, Gobert A, et al. A comparative in vitro and in vivo pharmacological characterization of the novel dopamine D3 receptor antagonists (+)-S 14297, nafadotride, GR 103,691 and U 99194. J Pharmacol Exp Ther. 1998;287(1):187–197.
  • Sonesson C, Lin CH, Hansson L, et al. Substituted (S)-phenylpiperidines and rigid congeners as preferential dopamine autoreceptor antagonists: synthesis and structure-activity relationships. J Med Chem. 1994;37(17):2735–2753.
  • Sautel F, Griffon N, Sokoloff P, et al. Nafadotride, a potent preferential dopamine D3 receptor antagonist, activates locomotion in rodents. J Pharmacol Exp Ther. 1995;275(3):1239–1246.
  • Millan MJ, Mannoury la Cour C, Novi F, et al. S33138 [N-[4-[2-[(3aS,9bR)-8-cyano-1,3a,4,9b-tetrahydro[1]-benzopyrano[3,4-c]pyrrol-2(3H)-yl)-ethyl]phenylacetamide], a preferential dopamine D3 versus D2Receptor antagonist and potential antipsychotic agent: I. Receptor-binding profile and functional actions at G-protein-coupled receptors. J Pharmacol Exp Ther. 2008;324(2):587–599. doi:10.1124/jpet.107.126706.
  • Park WK, Jeong D, Yun CW, et al. Pharmacological actions of a novel and selective dopamine D3 receptor antagonist, KCH-1110. Pharmacol Res. 2003;48(6):615–622.
  • Kumar V, Banala AK, Garcia EG, et al. Chiral resolution and serendipitous fluorination reaction for the selective dopamine D3 receptor antagonist BAK2-66. ACS Med Chem Lett. 2014;5(6):647–651. doi:10.1021/ml500006v.
  • Reavill C, Taylor SG, Wood MD, et al. Pharmacological actions of a novel, high-affinity, and selective human dopamine D(3) receptor antagonist, SB-277011-A. J Pharmacol Exp Ther. 2000;294(3):1154–1165.
  • Kiss B, Laszlovszky I, Horváth A, et al. Subnanomolar dopamine D3 receptor antagonism coupled to moderate D2 affinity results in favourable antipsychotic-like activity in rodent models: I. neurochemical characterisation of RG-15. Arch Pharmacol. 2008;378(5):515–528. doi:10.1007/s00210-008-0308-5.
  • Boateng CA, Bakare OM, Zhan J, et al. High affinity dopamine D3 receptor (D3R)-selective antagonists attenuate heroin self-administration in wild-type but not D3R knockout mice. J Med Chem. 2015;58:6195–6213. doi:10.1021/acs.jmedchem.5b00776.
  • Dubuffet T, Newman-Tancredi A, Cussac D, et al. Novel benzopyrano[3,4-c]pyrrole derivatives as potent and selective dopamine D3 receptor antagonist. Bioorg Med Chem Lett. 1999;9(14):2059–2064.
  • Geneste H, Amberg W, Backfisch G, et al. Synthesis and SAR of highly potent and selective dopamine D3-receptor antagonists: variations on the 1H-pyrimidin-2-one theme. Bioorg Med Chem Lett. 2006;16(7):1934–1937. doi:10.1016/j.bmcl.2005.12.079.
  • Galaj E, Ananthan S, Saliba M, et al. The effects of the novel DA D3 receptor antagonist SR 21502 on cocaine reward, cocaine seeking and cocaine-induced locomotor activity in rats. Psychopharmacology. 2014;231:501–510. doi:10.1007/s00213-013-3254-y.
  • Sun X, Gou H-Y, Li F, et al. Y-QA31, a novel dopamine D3 receptor antagonist, exhibits antipsychotic-like properties in preclinical animal models of schizophrenia. Acta Pharmacol Sin. 2016;37(3):322–333. doi:10.1038/aps.2015.105.
  • Song R, Yang RF, Wu N, et al. YQA 14: a novel dopamine D3 receptor antagonist that inhibits cocaine self-administration in rats and mice, but not in D3R-knockout mice. Addict Biol. 2012;17:259–273. doi:10.1111/j.1369-1600.2011.00317.x.
  • Keck TM, John WS, Czoty PW, et al. Identifying medication targets for psychostimulant addiction: unravelling the dopamine D3 receptor hypothesis. J Med Chem. 2015;58:5361–5380. doi:10.1021/jm501512b.
  • Newman AH, Grundt P, Cyriac G, et al. N-(4-(4-(2,3-dichloro- or 2-methoxyphenyl)piperazin-1-yl)butyl)heterobiarylcarboxamides with functionalized linking chains as high affinity and enantioselective D3 receptor antagonists. J Med Chem. 2009;52:2559–2570. doi:10.1021/jm900095y.
  • Chen J, Levant B, Jiang C, et al. Tranylcypromine substituted cis-hydroxycyclobutylnaphthamides as potent and selective dopamine D₃ receptor antagonists. J Med Chem. 2014;57(11):4962–4968. doi:10.1021/jm401798r.
  • Newman AH, Grundt P, Nader MA. Dopamine D3 receptor partial agonists and antagonists as potential drug abuse therapeutic agents. J Med Chem. 2005;48:3663–3679. doi:10.1021/jm040190e.
  • Robarge MJ, Husbands SM, Kieltyka A, et al. Design and synthesis of [(2,3-dichlorophenyl)piperazin-1-yl]alkylfluorenylcarboxamides as novel ligands selective for the dopamine D3 receptor subtype. J Med Chem. 2001;44(19):3175–3186.
  • Yuan J, Chen X, Brodbeck R, et al. NGB 2904 and NGB 2849: two highly selective dopamine D3 receptor antagonists. Bioorg Med Chem Lett. 1998;8(19):2715–2718.
  • Zhang M, Ballard ME, Kohlhaas KL, et al. Effect of dopamine D3 antagonists on PPI in DBA/2J mice or PPI deficit induced by neonatal ventral hippocampal lesions in rats. Neuropsychopharmacology. 2006;31(7):1382–1392. doi:10.1038/sj.npp.1300985.
  • Carlsson J, Coleman RG, Setola V, et al. Ligand discovery from a dopamine D3 receptor homology model and crystal structure. Nat Chem Biol. 2011;7:769–778. doi:10.1038/nchembio.662.
  • Ananthan S, Saini SK, Zhou G, et al. Design, synthesis, and structure-activity relationship studies of a series of [4-(4-carboxamidobutyl)]-1-arylpiperazines: insights into structural features contributing to dopamine D3 versus D2Receptor subtype selectivity. J Med Chem. 2014;57:7042–7060. doi:10.1021/jm500801r.
  • Banala AK, Levy BA, Khatri SS, et al. N-(3-fluoro-4-(4-(2-methoxy or 2,3-dichlorophenyl)piperazine-1-yl)butyl)arylcarboxamides as selective dopamine D3 receptor ligands: critical role of the carboxamide linker for D3 receptor selectivity. J Med Chem. 2011;54:3581–3594. doi:10.1021/jm200288r.
  • Taylor M, Grundt P, Griffin SA, et al. Dopamine D3 receptor selective ligands with varying intrinsic efficacies at adenylyl cyclase inhibition and mitogenic signaling pathways. Synapse. 2010;64:251–266. doi:10.1002/syn.20725.
  • Song R, Bi G-H, Zhang H-Y, et al. Blockade of D3 receptors by YQA14 inhibits cocaine’s rewarding effects and relapse to drug-seeking behavior in rats. Neuropharmacology. 2014;77:398–405. doi:10.1016/j.neuropharm.2013.10.010.
  • Furman CA, Roof RA, Moritz AE, et al. Investigation of the binding and functional properties of extended length D3 dopamine receptor-selective antagonists. Eur Neuropsychopharmacol. 2015;25:1448–1461. doi:10.1016/j.euroneuro.2014.11.013.
  • Sokoloff P, Diaz J, Le Foll B, et al. The dopamine D3 receptor: a therapeutic target for the treatment of neuropsychiatric disorders. CNS Neurolog Disord Drug Targ. 2006;5:25–43. doi:10.2174/187152706784111551.
  • Gross G, Wicke K, Drescher KU. Dopamine D3 receptor antagonism- still a therapeutic option for the treatment of schizophrenia. Naunyn Schmiedeberg’s Arch Pharmacol. 2013;386:155–166. doi:10.1007/s00210-012-0806-3.
  • Millan MJ, Brocco M. Cognitive impairment in schizophrenia: a review of developmental and genetic models, and pro-cognitive profile of the optimised D(3) D(2) antagonist, S33138. Therapie. 2008;63:187–229. doi:10.2515/therapie:2008041.
  • Watson DJ, Loiseau F, Ingallinesi M, et al. Selective blockade of dopamine D3 receptors enhances while D2Receptor antagonism impairs social novelty discrimination and novel object recognition in rats: a key role for the prefrontal cortex. Neuropsychopharmacology. 2012;37:770–786. doi:10.1038/npp.2011.254.
  • Heidbreder C. Rationale in support of the use of selective dopamine D3 receptor antagonists for the pharmacotherapeutic management of substance use disorders. Naunyn Schmiedeberg’s Arch Pharmacol. 2013;386:167–176. doi:10.1007/s00210-012-0803-6.
  • Gilbert JG, Newman AH, Gardner EL, et al. Acute administration of SB-277011A, NGB 2904, or BP 897 inhibits cocaine cue-induced reinstatement of drug-seeking behavior in rats: role of dopamine D3 receptors. Synapse. 2005;57:17–28. doi:10.1002/syn.20152.
  • Khaled MA, Araki KF, Li B, et al. The selective dopamine D3 receptor antagonist SB 277011-A, but not the partial agonist BP 897, blocks cue-induced reinstatement of nicotine-seeking. Int J Neuropsychopharmacol. 2010;13:181–190. doi:10.1017/S1461145709991064.
  • Higley AE, Kiefer SW, Li X, et al. Dopamine D3 receptor antagonist SB-277011A inhibits methamphetamine self-administration and methamphetamine-induced reinstatement of drug-seeking in rats. Eur J Pharmacol. 2011;659:187–192. doi:10.1016/j.ejphar.2011.02.046.
  • D’Souza MS, Markou A. Neuronal mechanisms underlying development of nicotine dependence: implications for novel smoking-cessation treatments. Addict Sci Clin Pract. 2011;6:4–16.
  • De Biasi M, Dani JA. Reward, addiction, withdrawal to nicotine. Annu Rev Neurosci. 2011;34:105–130. doi:10.1146/annurev-neuro-061010-113734.
  • Le Foll B, Diaz J, Sokoloff P. Increased dopamine D3 receptor expression accompanying behavioural sensitization to nicotine in rats. Synapse. 2003;47:176–183. doi:10.1002/syn.10170.
  • Le Foll B, Schwartz JC, Sokoloff P. Disruption of nicotine conditioning by dopamine D3 receptor ligands. Mol Psychiatry. 2003;8:225–230. doi:10.1038/sj.mp.4001202.
  • Le Foll B, Sokoloff P, Stark H, et al. Dopamine D3 receptor ligands block nicotine-induced conditioned place preferences through a mechanism that does not involve discriminative-stimulus or antidepressant-like effects. Neuropsychopharmacology. 2005;30:720–730. doi:10.1038/sj.npp.1300622.
  • Khaled MA, Pushparaj A, Di Ciano P, et al. Dopamine D3 receptors in the basolateral amygdala and the lateral habenula modulate cue-induced reinstatement of nicotine seeking. Neuropsychopharmacology. 2014;9:3049–3058. doi:10.1038/npp.2014.158.
  • Rice OV, Patrick J, Schonhar CD, et al. The effects of the preferential dopamine D3 receptor antagonist S33138 on ethanol binge drinking in C57BL/6J mice. Synapse. 2012;66:975–978. doi:10.1002/syn.21575.
  • Leggio GM, Camillieri G, Platania CBM, et al. Dopamine D3 receptor is necessary for ethanol consumption: an approach with buspirone. Neuropsychopharmacology. 2014;39:2017–2028. doi:10.1038/npp.2014.51.
  • Thanos PK, Katana JM, Ashby CR Jr., et al. The selective dopamine D3 receptor antagonist SB-277011-A attenuates ethanol consumption in ethanol preferring (P) and non-preferring (NP) rats. Pharmacol Biochem Behav. 2005;81:190–197. doi:10.1016/j.pbb.2005.03.013.
  • Bahi A, Dreyer JL. Lentiviral vector-mediated dopamine D3 receptor modulation in the rat brain impairs alcohol intake and ethanol-induced conditioned place preference. Alcohol Clin Exp Res. 2014;38:2369–2376. doi:10.1111/acer.12503.
  • Le Foll B, Diaz J, Sokoloff P. A single cocaine exposure increases BDNF and D3 receptor expression: implications for drug-conditioning. Neuroreport. 2005;16:175–178.
  • Segal DM, Moraes CT, Mash DC. Up-regulation of D3 dopamine receptor mRNA in the nucleus accumbens of human cocaine fatalities. Brain Res Mol Brain Res. 1997;45:335–339.
  • Frankel PS, Alburges ME, Bush L, et al. Striatal and ventral pallidum dynorphin concentrations are markedly increased in human chronic cocaine users. Neuropharmacology. 2008;55:41–46. doi:10.1016/j.neuropharm.2008.04.019.
  • Guillin O, Diaz J, Carroll P, et al. BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature. 2001;411:86–89. doi:10.1038/35075076.
  • D’Sa C, Fox HC, Hong AK, et al. Increased serum brain-derived neurotrophic factor is predictive of cocaine relapse outcomes: a prospective study. Biol Psychiatry. 2011;70:706–711. doi:10.1016/j.biopsych.2011.05.013.
  • Czoty PW, Nader MA. Effects of dopamine D2/D3 receptor ligands on food-cocaine choice in socially housed male cynomolgus monkeys. J Pharmacol Exp Ther. 2013;344(2):329–338. doi:10.1124/jpet.112.201012.
  • Achat-Mendes C, Platt DM, Newman AH, et al. The dopamine D3 receptor partial agonist CJB 090 inhibits the discriminative stimulus but not the reinforcing or priming effects of cocaine in squirrel monkeys. Psychopharmacology (Berl). 2009;206(1):73–84. doi:10.1007/s00213-009-1581-9.
  • Cheung TH, Nolan BC, Hammerslag LR, et al. Phenylpiperazine derivatives with selectivity for dopamine D3 receptors modulate cocaine self-administration in rats. Neuropharmacology. 2012;63(8):1346–1359. doi:10.1016/j.neuropharm.2012.08.011.
  • Hachimine P, Seepersad N, Ananthan S, et al. The novel dopamine D3 receptor antagonist, SR21502, reduces cocaine conditioned place preference in rats. Neurosci Letters. 2014;569:137–141. doi:10.1016/j.neulet.2014.03.055.
  • Vorel SR, Ashby CR Jr, Paul M, et al. Dopamine D3 receptor antagonism inhibits cocaine-seeking and cocaine-enhanced brain reward in rats. J Neurosci. 2002;22:9595–9603.
  • Xi ZX, Gilbert J, Campos AC, et al. Blockade of mesolimbic dopamine D3 receptors inhibits stress-induced reinstatement of cocaine-seeking in rats. Psychopharmacology (Berl). 2004;176:57–65. doi:10.1007/s00213-004-1858-y.
  • Di Ciano P, Underwood RJ, Hagan JJ, et al. Attenuation of cue-controlled cocaine-seeking by a selective D3 dopamine receptor antagonist SB-277011-A. Neuropsychopharmacology. 2003;28:329–338. doi:10.1038/sj.npp.1300148.
  • Xi Z-X, Newman AH, Gilbert JG, et al. The novel dopamine D3 receptor antagonist NGB 2904 inhibits cocaine’s rewarding effects and cocaine-induced reinstatement of drug-seeking behavior in rats. Neuropsychopharmacology. 2006;31:1393–1405. doi:10.1038/sj.npp.1300912.
  • Xi Z-X, Li X, Li J, et al. Blockade of dopamine D3 receptors in the nucleus accumbens and central amygdala inhibits incubation of cocaine craving in rats. Addict Biol. 2013;18:665–677. doi:10.1111/j.1369-1600.2012.00486.x.
  • Appel NM, Li S-H, Holmes TH, et al. Dopamine D3 receptor antagonist (GSK598809) potentiates the hypertensive effects of cocaine in conscious, freely-moving dogs. J Pharmacol Exp Ther. 2015;354(3):484–492. doi:10.1124/jpet.115.224121.
  • Le Foll B, Collo G, Rabiner EA, et al. Dopamine D3 receptor ligands for drug addiction treatment: update on recent findings. Prog Brain Res. 2014;211:255–275. doi:10.1016/B978-0-444-63425-2.00011-8.
  • Rosenbaum DM, Rasmussen SGF, Kobilka BK. The structure and function of G-protein-coupled receptor. Nature. 2009;459:185–194. doi:10.1038/nature08057.
  • Venkatakrishnan AJ, Deupi X, Lebon G, et al. Molecular structures of G-protein-coupled receptors. Nature. 2013;494:185–194. doi:10.1038/nature11896.
  • Whorton MR, Bokoch MP, Rasmussen SG, et al. A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc Natl Acad Sci USA. 2007;104:7682–7687. doi:10.1073/pnas.0611448104.
  • Chabre M, Deterre P, Antonny B. The apparent cooperativity of some GPCRs does not necessarily imply dimerization. Trends Pharmacol Sci. 2009;30:182–187. doi:10.1016/j.tips.2009.01.003.
  • Casadó V, Cortés A, Mallol J, et al. GPCR homomers and heteromers: a better choice as targets for drug development than GPCR monomers? Pharmacol Ther. 2009;124:248–257. doi:10.1016/j.pharmthera.2009.07.005.
  • Milligan G. G protein-coupled receptor hetero-dimerization: contribution to pharmacology and function. Br J Pharmacol. 2009;158:5–14. doi:10.1111/j.1476-5381.2009.00169.x.
  • Ferré S, Baler R, Bouvier M, et al. Building a new conceptual framework for receptor heteromers. Nat Chem Biol. 2009;5:131–134. doi:10.1038/nchembio0309-131.
  • Ferré S, Navarro G, Casadó V, et al. G-protein coupled receptor heteromers as new targets for drug development. Prog Mol Biol Transl Sci. 2010;91:41–52. doi:10.1016/S1877-1173(10)91002-8.
  • Ferré S, Casadó V, Devi LA, et al. G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol Rev. 2014;66:413–434. doi:10.1124/pr.113.008052.
  • Albizu L, Cottet M, Kralikova M, et al. Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat Chem Biol. 2010;6:587–594. doi:10.1038/nchembio.396.
  • Ciruela F, Fernandez-Dueñas V, Llorente J, et al. G protein-coupled receptor oligomerization and brain integration: focus on adenosinergic transmission. Brain Res. 2012;1476:86–95. doi:10.1016/j.brainres.2012.04.056.
  • Miller LJ, Dong M, Harikumar KG. Ligand binding and activation of the secretin receptor, a prototypic family B G protein-coupled receptor. Br J Pharmacol. 2012;166:18–26. doi:10.1111/j.1476-5381.2011.01463.x.
  • Calebiro D, Rieken F, Wagner J, et al. Single-molecule analysis of fluorescently labeled G protein-coupled receptors reveals complexes with distinct dynamics and organization. Proc Natl Acad Sci USA. 2013;110:743–748. doi:10.1073/pnas.1205798110.
  • Herrick-Davis K, Grinde E, Cowan A, et al. Fluorescence correlation spectroscopy analysis of serotonin, adrenergic, muscarinic, and dopamine receptor dimerization: the oligomer number puzzle. Mol Pharmacol. 2013;84:630–642. doi:10.1124/mol.113.087072.
  • Maggio R, Aloisi G, Silvano E, et al. Heterodimerization of dopamine receptors: new insights into functional and therapeutic significance. Parkinsonism Relat Disord. 2009;15:52–57. doi:10.1016/S1353-8020(09)70826-0.
  • Milligan G. The role of dimerisation in the cellular trafficking of G-protein-coupled receptors. Curr Opin Pharmacol. 2010;10:23–29. doi:10.1016/j.coph.2009.09.010.
  • Orru M, Bakesova J, Brugarolas M, et al. Striatal pre- and postsynaptic profile of adenosine A2a receptor antagonists. PLoS One. 2011;6:e16088. doi:10.1371/journal.pone.0016088.
  • Smith NJ, Milligan G. Allostery at G protein-coupled receptor homo- and heteromers: uncharted pharmacological landscapes. Pharmacol Rev. 2010;62:701–725. doi:10.1124/pr.110.002667.
  • Casadó-Anguera V, Bonaventura J, Moreno E, et al. Evidence for the heterotetrameric structure of the adenosine A2A-dopamine D2Receptor complex. Biochem Soc Trans. 2016;44:595–600. doi:10.1042/BST20150276.
  • Casadó V, Ferrada C, Bonaventura J, et al. Useful pharmacological parameters for G-protein-coupled receptor homodimers obtained from competition experiments. Agonist-antagonist binding modulation. Biochem Pharmacol. 2009;78:1456–1463. doi:10.1016/j.bcp.2009.07.012.
  • Ferré S, Bonaventura J, Tomasi D, et al. Allosteric mechanism within the adenosine A2A-dopamine D2Receptor heterotetramer. Neuropharmacology. 2016. Epub 2015 Jun 4. doi:10.1016/j.neuropharm.2015.05.028.
  • Kenakin T, Miller LJ. Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev. 2010;62:265–304. doi:10.1124/pr.108.000992.
  • Nimchinsky EA, Hof PR, Janssen WGM, et al. Expression of dopamine D3 receptor dimers and tetramers in brain and in transfected cells. J Biol Chem. 1997;272:29229–29237.
  • Karpa KD, Lin R, Kabbani N, et al. The dopamine D3 receptor interacts with itself and the truncated D3 splice variant D3nf: D3-D3nf interaction causes mislocalization of D3 receptors. Mol Pharmacol. 2000;58(4):677–683.
  • Marsango S, Caltabiano G, Pou C, et al. Analysis of human dopamine D3 receptor quaternary structure. J Biol Chem. 2015;12:290(24):15146–15162. doi:10.1074/jbc.M114.630681
  • Pou C, Mannoury la Cour C, Stoddart LA, et al. Functional homomers and heteromers of dopamine D2L and D3 receptors co-exist at the cell surface. J Biol Chem. 2012;287:8864–8878. doi:10.1074/jbc.M111.326678.
  • Shonberg J, Draper-Joyce C, Mistry SN, et al. Structure-activity study of N-((trans)-4-(2-(7-cyano-3,4-dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)-1H-indole-2-carboxamide (SB269652), a bitopic ligand that acts as a negative allosteric modulator of the dopamine D2Receptor. J Med Chem. 2015;58(13):5287–5307. doi:10.1021/acs.jmedchem.5b00581.
  • Torvinen M, Marcellino D, Canals M, et al. Adenosine A2A receptor and dopamine D3 receptor interactions: evidence of functional A2A /D3 heteromeric complexes. Mol Pharmacol. 2005;67:400–407. doi:10.1124/mol.104.003376.
  • Scarselli M, Novi F, Schallmach E, et al. D2/D3 dopamine receptor heterodimers exhibit unique functional properties. J Biol Chem. 2001;276:30308–30314. doi:10.1074/jbc.M102297200.
  • Novi F, Millan MJ, Corsini GU, et al. Partial agonist actions of aripiprazole and the candidate antipsychotics S33592, bifeprunox, N-desmethylclozapine and preclamol at dopamine D(2L) receptors are modified by co-transfection of D3 receptors: potential role of heterodimer formation. J Neurochem. 2007;102:1410–1424. doi:10.1111/j.1471-4159.2007.04660.x.
  • Maggio R, Scarselli M, Novi F, et al. Potent activation of dopamine D3/D2 heterodimers by the antiparkinsonian agents, S32504, pramipexole and ropinirole. J Neurochem. 2003;87:631–641.
  • Maggio R, Scarselli M, Capannolo M, et al. Novel dimensions of D3 receptor function: focus on heterodimerisation, transactivation and allosteric modulation. Eur Neuropsychopharmacol. 2015;25:1470–1479. doi:10.1016/j.euroneuro.2014.09.016.
  • Marcellino D, Ferré S, Casadó V, et al. Identification of dopamine D1-D3 receptor heteromers. Indications for a role of synergistic D1-D3 receptor interactions in the striatum. J Biol Chem. 2008;283:26016–26025. doi:10.1074/jbc.M710349200.
  • Fiorentini C, Busi C, Gorruso E, et al. Reciprocal regulation of dopamine D1 and D3 receptor function and trafficking by heterodimerization. Mol Pharmacol. 2008;74:59–69. doi:10.1124/mol.107.043885.
  • Cruz-Trujillo R, Avalos-Fuentes A, Rangel-Barajas C, et al. D3 dopamine receptors interact with dopamine D1 but not D4 receptors in the GABAergic terminals of the SNr of the rat. Neuropharmacology. 2013;67:370–378. doi:10.1016/j.neuropharm.2012.11.032.
  • Guitart X, Navarro G, Moreno E, et al. Functional selectivity of allosteric interactions within G protein-coupled receptor oligomers: the dopamine D1-D3 receptor heterotetramer. Mol Pharmacol. 2014;86:417–429. doi:10.1124/mol.114.093096.
  • Solís O, Garcia-Montes JR, González-Granillo A, et al. Dopamine D3 receptor modulates l-DOPA-induced dyskinesia by targeting D1Receptor-mediated striatal signaling. Cereb Cortex. 2016; Epub 2015 Oct 18. doi:10.1093/cercor/bhv231.
  • Farré D, Muñoz AM, Moreno E, et al. Stronger dopamine D1-receptor-mediated neurotransmission in dyskinesia. Mol Neurobiol. 2015;52:1408–1420. doi:10.1007/s12035-014-8936-x.
  • Guo W, Urizar E, Kralikova M, et al. Dopamine D2Receptors form higher order oligomers at physiological expression levels. EMBO J. 2008;27:2293–2304. doi:10.1038/emboj.2008.153.
  • Han Y, Moreira IS, Urizar E, et al. Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation. Nat Chem Biol. 2009;5:688–695. doi:10.1038/nchembio.199.
  • Schmauss C, Haroutunian V, Davis KL, et al. Selective loss of dopamine D3-type receptor mRNA expression in parietal and motor cortices of patients with chronic schizophrenia. Proc Natl Acad Sci USA. 1993;19:8942–8946. doi:10.1073/pnas.90.19.8942.
  • Richtand NM, Liu Y, Ahlbrand R, et al. Dopaminergic regulation of dopamine D3 and D3nf receptor mRNA expression. Synapse. 2010;64(8):634–643. doi:10.1002/syn.20770.
  • Silvano E, Millan MJ, Mannoury la Cour C, et al. The Tetrahydroisoquinoline Derivative SB269,652 Is an Allosteric Antagonist at Dopamine D3 and D2Receptors. Mol Pharmacol. 2010;78:925–934.
  • Hettinger BD, Lee A, Linden J, et al. DL ultrastructural localization of adenosine A2A receptors suggests multiple cellular sites for modulation of GABAergic neurons in rat striatum. J Comp Neurol. 2001;431:331–346.
  • Schiffmann SN, Fisone G, Moresco R, et al. Adenosine A2A receptors and basal ganglia physiology. Prog Neurobiol. 2007;83:277–292. doi:10.1016/j.pneurobio.2007.05.001.
  • Cunha RA, Ribeiro JA. Purinergic modulation of [(3)H]GABA release from rat hippocampal nerve terminals. Neuropharmacology. 2000;39(7):1156–1167.
  • Cunha RA, Ferré S, Vaugeois JM, et al. Potential therapeutic interest of adenosine A2A receptors in psychiatric disorders. Curr Pharm Des. 2008;14:1512–1524.
  • Vidi P-A, Chen J, Irudayaraj JM, et al. Adenosine A(2A) receptors assemble into higher-order oligomers at the plasma membrane. FEBS Lett. 2008;582:3985–3990. doi:10.1016/j.febslet.2008.09.062.
  • Hillefors M, Hedlund PB, Von Euler G. Effects of adenosine A(2A) receptor stimulation in vivo on dopamine D3 receptor agonist binding in the rat brain. Biochem Pharmacol. 1999;58:1961–1964.
  • Canals M, Marcellino D, Fanelli F, et al. Adenosine A2A-dopamine D2Receptor-receptor heteromerization: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J Biol Chem. 2003;278:46741–46749. doi:10.1074/jbc.M306451200.
  • Maggio R, Millan MJ. Dopamine D2-D3 receptor heteromers: pharmacological properties and therapeutic significance. Curr Opin Pharmacol. 2010;10:100–107. doi:10.1016/j.coph.2009.10.001.
  • Fiorentini C, Savoia P, Bono F, et al. The D3 dopamine receptor: from structural interactions to function. Eur Neuropsychopharmacol. 2015;25:1462–1469. doi:10.1016/j.euroneuro.2014.11.021.
  • Ballesteros JA, Shi L, Javitch JA. Structural mimicry in G protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure-function analysis of rhodopsin-like receptors. Mol Pharmacol. 2001;60:1–19.
  • Gerfen CR. The rat nervous system. Amsterdam: Elsevier Academic Press; 2004.
  • Gerfen CR, Engber TM, Mahan LC, et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science. 1990;250:1429–1432.
  • Heidbreder C. Selective antagonism at dopamine D3 receptors as a target for drug addiction pharmacotherapy: a review of preclinical evidence. CNS Neurol Disord Drug Targets. 2008;7:410–421.
  • Ridray S, Griffon N, Mignon V, et al. Coexpression of dopamine D1 and D3 receptors in islands of Calleja and shell of nucleus accumbens of the rat: opposite and synergistic functional interactions. Eur J Neurosci. 1998;10:1676–1686.
  • Fiorentini C, Busi C, Spano P, et al. Dimerization of dopamine D1 and D3 receptors in the regulation of striatal function. Curr Opin Pharmacol. 2010;10:87–92. doi:10.1016/j.coph.2009.09.008.
  • Ferré S, Lluis C, Lanciego JL, et al. Prime time for G-protein-coupled receptor heteromers as therapeutic targets for CNS disorders: the dopamine D₁-D₃ receptor heteromer. CNS Neurol Disord Drug Targets. 2010;9:596–600.
  • Bordet R, Ridray S, Schwartz JC, et al. Involvement of the direct striatonigral pathway in levodopa-induced sensitization in 6-hydroxydopamine-lesioned rats. Eur J Neurosci. 2000;12:2117–2123.
  • Niccolini F, Rocchi L, Politis M. Molecular imaging of levodopa-induced dyskinesias. Cell Mol Life Sci. 2015;72:2107–2117. doi:10.1007/s00018-015-1854-x.
  • Staley JK, Mash DC. Adaptive increase in D3 dopamine receptors in the brain reward circuits of human cocaine fatalities. J Neurosci. 1996;16:6100–6106.
  • Santini E, Valjent E, Usiello A, et al. Critical involvement of cAMP/DARPP-32 and extracellular signal- regulated protein kinase signaling in L-DOPA-induced dyskinesia. J Neurosci. 2007;27:6995–7005. doi:10.1523/JNEUROSCI.3105-06.2007.
  • Westin JE, Vercammen L, Strome EM, et al. Spatio temporal pattern of striatal ERK1/2 phosphorylation in a rat model of L-DOPA-induced dyskinesia and the role of dopamine D1Receptors. Biol Psychiatry. 2007;62:800–810. doi:10.1016/j.biopsych.2006.11.032.
  • Fuxe K, Guidolin D, Agnati LF, et al. Dopamine heteroreceptor complexes as therapeutic targets in Parkinson’s disease. Expert Opin Ther Targets. 2015;19(3):377–398. doi:10.1517/14728222.2014.981529.
  • Franco R, Casadó-Anguera V, Muñoz A, et al. Hints on the lateralization of dopamine binding to D1Receptors in rat striatum. Mol Neurobiol. 2016. Epub 2015 Oct 9. doi:10.1007/s12035-015-9468-8.
  • Flagel SB, Clark JJ, Robinson TE, et al. A selective role for dopamine in stimulus-reward learning. Nature. 2011;4(69):53–57. doi:10.1038/nature09588.
  • Weber B, Schlicker E, Sokoloff P, et al. Identification of the dopamine autoreceptor in the guinea-pig retina as D(2) receptor using novel subtype-selective antagonists. Br J Pharmacol. 2001;133(8):1243–1248. doi:10.1038/sj.bjp.0704192.
  • Bezard E, Ferry S, Mach U, et al. Attenuation of levodopa-induced dyskinesia by normalizing dopamine D3 receptor function. Nat Med. 2003;9:762–767. doi:10.1038/nm875.
  • Millan MJ, Gobert A, Newman-Tancredi A, et al. S33084, a novel, potent, selective, and competitive antagonist at dopamine D(3)-receptors: I. Receptorial, electrophysiological and neurochemical profile compared with GR218,231 and L741,626. J Pharmacol Exp Ther. 2000;293(3):1048–1062.
  • Park WK, Jeong D, Cho H, et al. KKHA-761, a potent D3 receptor antagonist with high 5-HT1A receptor affinity, exhibits antipsychotic properties in animal models of schizophrenia. Pharmacol Biochem Behav. 2005;82(2):361–372. doi:10.1016/j.pbb.2005.09.006.
  • Macdonald GJ, Branch CL, Hadley MS, et al. Design and synthesis of trans-3-(2 (4-((3-(3-(5-methyl-1,2,4oxadiazolyl))phenyl)carboxamido)cyclohexyl)ehthl)-7 methylsulfonyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SB-414796): a potent and selective dopamine D3 receptor antagonist. J Med Chem. 2003;46:4952–4964. doi:10.1021/jm030817d.
  • Micheli F, Bonanomi G, Blaney FE, et al. 1,2,4-triazol-3-yl-thiopropyl-tetrahydrobenzazepines: a series of potent and selective dopamine D(3) receptor antagonists. J Med Chem. 2007;50(21):5076–5089. doi:10.1021/jm0705612.
  • Lenz C, Boeckler F, Hübner H, et al. Analogues of FAUC 73 revealing new insights into the structural requirements of nonaromatic dopamine D3 receptor agonists. Bioorg Med Chem. 2004;12(1):113–117.
  • Grundt P, Carlson EE, Cao J, et al. Novel heterocyclic trans olefin analogues of N-{4-[4-(2,3-dichlorophenyl)piperazin-1-yl]butyl}arylcarboxamides as selective probes with high affinity for the dopamine D3 receptor. J Med Chem. 2005;48:839–848. doi:10.1021/jm049465g.
  • Hackling AE, Stark H. Dopamine D3 receptor ligands with antagonist properties. ChemBioChem. 2002;3:946–961. doi:10.1002/1439-7633(20021004)3:10<946::AID-CBIC946>3.0.CO;2-5.
  • Heidbreder CA, Andreoli M, Marcon C, et al. Evidence for the role of dopamine D3 receptors in oral operant alcohol self-administration and reinstatement of alcohol-seeking behavior in mice. Addict Biol. 2007;12:35–50. doi:10.1111/j.1369-1600.2007.00051.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.