270
Views
26
CrossRef citations to date
0
Altmetric
Review

Have artificial neural networks met expectations in drug discovery as implemented in QSAR framework?

&
Pages 627-639 | Received 02 Mar 2015, Accepted 03 May 2016, Published online: 30 May 2016

References

  • Sams-Dodd F. Drug discovery: selecting the optimal approach. Drug Disc Today. 2006;11:465–472.
  • Mandal S, Moudgil M, Mandal SK. Rational drug design. E J Pharmacology. 2009 25;625(1–3):90–100.
  • Katritzky A, Kuanar M, Slavov S, et al. Quantitative correlations of physical and chemical properties with chemical structure; utility for prediction. Chem Rev. 2010;110(10):5714–5789.
  • Katritzky AR, Dobchev DA, Karelson M. Physical, chemical, and technological property correlation with chemical structure: the potential of QSPR. Zeitschrift Naturforsch B. 2006;61(4):373–384.
  • Sharma OP, Saini NK, Gupta V, et al. Evolutionary history of QSAR: a review. J Natur Cons. 2011;1(4):266–272.
  • Tropsha A. Best practices for QSAR model development, validation, and exploitation. Mol Inf. 2010;29:476–488.
  • Hansch C, Leo A. In exploring QSAR: fundamentals and applications in chemistry and biology. Washington (DC): American Chemical Society; 1995.
  • Dearden J. The history and development of quantitative structure-activity relationships. Ijqspr. 2016;1(1):1–44.
  • Roy K, Kar S, Das R. Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment. Amsterdam: Academic Press; 2015.
  • McKinney J, Richard A, Waller C, et al. The practice of SAR in toxicology. Toxicol Sci. 2000;56:8–17.
  • Sternberg M, Muggleton S. Structure activity relationships and pharmacophore discovery using inductive logic programming. QSAR Comb Sci. 2003;22:510–518.
  • Nikolova N, Jaworska J. Approaches to measure chemical similarity: a review. QSAR Combi Sci. 2003;22:1006–1012.
  • Grepin C, Pernelle C. High-throughput screening. Drug Disc Today. 2000;5(5):212–214.
  • Mayr LM, Bojanic D. Novel trends in high-throughput screening. Cur Opin Pharmacol. 2009;9(5):580–588.
  • Engelbrecht AP. Computational intelligence: an introduction. New York, NY: Wiley; 2003.
  • Konar A. Computational intelligence; principles, techniques and applications. Berlin: Springer; 2005.
  • Dobchev DA, Pillai GG, Karelson M. In silico machine learning methods in drug development. Curr Top Med Chem. 2014;14(16):1913–1922.
  • Devillers J. Neural networks in QSAR and drug design. London: Academic Press; 1996.
  • Lobanov V. Using artificial neural networks to drive virtual screening of combinatorial libraries. Drug Disc Today. 2004;2(4):149–156.
  • McCutloch WS, Pttts W. A logical calculus of the ideas imminent in nervous activity. Bull Math Biophys. 1943;5:115–133.
  • Haykin S. Neural networks: a comprehensive foundation. London: Pearson; 1999.
  • Hassoun MH. Fundamentals of artificial neural networks. Cambridge (MA): A Bradford Book, MIT Press; 2003.
  • Fausett L. Fundamentals of neural networks: architectures, algorithms, and applications. Prentice-Hall (NJ); 1994.
  • Lucic B, Trinajstic N. Multivariate regression outperforms several robust architectures of neural networks in QSAR modeling. J Chem Inf Comput Sci. 1999;39:121–132.
  • Baskin II, Palyulin VA, Zefirov NS. Neural networks in building QSAR models. Methods Mol Biol. 2008;458:137–158.
  • Tetko IV, Livingstone DJ, Luik AI. Neural network studies. 1. Comparison of overfitting and overtraining. J Chem Inf Comput Sci. 1995;35:826–833.
  • Burden F, Winkler D. Bayesian regularization of neural networks. Methods Mol Biol. 2008;458:25–44.
  • Livingstone DJ, Manallack DT. Statistics using neural networks: chance effects. J Med Chem. 1993;36:1295–1297.
  • Burden F, Winkler D. An optimal self-pruning neural network and nonlinear descriptor selection in QSAR. QSAR Combi Sci. 2009;28(10):1092–1097.
  • Manallack D, Livingstone DJ. Artificial neural networks: application and chance effects for QSAR data analysis. Med Chem Res. 1992;2:181–190.
  • Munteanu C, Aguiar-Pulido V, Freire A, et al. Graph-based processing of macromolecular information. Curr Bioinformatics. 2015;10(5):606–631.
  • Guha R, Jurs PC. Interpreting computational neural network QSAR models: a measure of descriptor importance. J Chem Inf Model. 2005;45(3):800–806.
  • Borišek J, Drgan V, Minovski N. Mechanistic interpretation of artificial neural network-based QSAR model for prediction of cathepsin K inhibition potency. J Chemometrics. 2014;28:272–281.
  • Ojha P, Roy K. Comparative QSARs for antimalarial endochins: importance of descriptor-thinning and noise reduction prior to feature selection. Chemom Intell Lab Sys. 2011;109:146–161.
  • Karelson M, Lobanov VS, Katritzky AR. Quantum-chemical descriptors in QSAR/QSPR studies. Chem Rev. 1996;96:1027–1043.
  • Karelson M. Molecular descriptors in QSAR/QSPR. New York, NY: Wiley-Interscience; 2000.
  • Todeschini R, Consonni V. Handbook of molecular descriptors. Weinheim: Wiley-VCH, Verlag GmbH; 2008.
  • Nikolova N, Jaworska J. Approaches to measure chemical similarity – a review. QSAR Comb Sci. 2003;22:1006–1026.
  • Dobchev D, Tulp I, Karelson G, et al. Subchronic oral and inhalation toxicities: a challenging attempt for modeling and prediction. Mol Informatics. 2013;32:793–01.
  • Agatonovic-Kustrin S, Beresford R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J Pharm Biomed. 2000;22(5):717–727.
  • PubChem [Internet]. [Cited 2016 May 16]. Available from: https://pubchem.ncbi.nlm.nih.gov/.
  • Xie X-Q. Exploiting PubChem for virtual screening. Expert Opin Drug Discov. 2010;5(12):1205–1220.
  • CheMbl database [Internet]. [ cited 2016 May 16]. Available from: https://www.ebi.ac.uk/chembldb/.
  • Matlab package [Internet]. [ cited 2016 May 16]. Available from: http://www.mathworks.com.
  • Mathematica package. [ cited 2016 May 16]. Available from: https://www.wolfram.com/mathematica/.
  • Statistica software [Internet]. [ cited 2016 May 16]. Available from: www.statsoft.com.
  • Neuralware software [Internet]. [ cited 2016 May 16]. Available from: http://neuralware.com/.
  • RRegrs package [Internet]. [ cited 2016 May 16]. Available from: https://github.com/enanomapper/RRegrs/.
  • Tsiliki G, Munteanu C, Seoane J, et al. RRegrs: an R package for computer-aided model selection with multiple regression models. J Chemoinformatics. 2015;7(1):1–16.
  • Virtual computational chemistry lab [Internet]. [ cited 2016 May 16]. Available from: http://www.vcclab.org.
  • Tetko IV, Gasteiger J, Todeschini R, et al. Virtual computational chemistry laboratory - design and description. J Comput Aid Mol Des. 2005;19:453–463.
  • NL-MIND-BEST service [Internet]. [ cited 2016 May 16]. Available from: http://bio-aims.udc.es/NL-MIND-BEST.php.
  • Zupan J, Gasteiger J. Neural networks in chemistry and drug design. Weinheim: Wiley-VCH; 1999.
  • Lu WJ, Chen YL, Ma WP, et al. QSAR study of neuraminidase inhibitors based on heuristic method and radial basis function network. Eur J Med Chem. 2008;43:569–576.
  • Gharagheizi F. QSPR analysis for intrinsic viscosity of polymer solutions by means of GA-MLR and RBFNN. Comput Mater Sci. 2007;40:159–167.
  • Kohonen T. Self-organizing maps. 3rd ed. Berlin: Springer; 2000.
  • Du K-L. Clustering: a neural network approach. Neural Net. 2010;23:89–107.
  • Neal RM. Bayesian learning for neural networks. New York, NY: Lecture notes in statistics, Springer; 1996.
  • Winkler DA, Burden FR. Application of neural networks to large dataset QSAR, virtual screening, and library design. In: English LB, editor. Combinatorial library. Methods in molecular biology. Clifton (NY): Springer Protocols; 2002.
  • Bishop CM. Neural networks for pattern recognition. Oxford: Clarendon Press; 2005.
  • Niculescu SP. Artificial neural networks and genetic algorithms in QSAR. J Mol Struc. 2003;622(1–2):71–83.
  • Ramsundar B, Kearnes S, Riley P, et al. Massively multitask networks for drug discovery. arXiv:1502.02072 [stat.ML].
  • Speck-Planche A, Kleandrova V, Cordeiro M. Chemoinformatics for rational discovery of safe antibacterial drugs: simultaneous predictions of biological activity against streptococci and toxicological profiles in laboratory animals. Bioorg Med Chem. 2013;21(10):2727–2732.
  • Myint K, Wang LR, Tong Q, et al. Molecular fingerprint-based artificial neural networks QSAR (FANN-QSAR) for ligand biological activity predictions. Mol Pharmaceutics. 2012;9:2912–2923.
  • NCI database [Internet]. [ cited 2016 May 16]. Available from: http://dctd.cancer.gov/ResearchResources/default.htm.
  • Sardari S, Kohanzad H, Ghavami G. Artificial neural network modeling of antimycobacterial chemical space to introduce efficient descriptors employed for drug design. Chemom Intel Lab Sys. 2014;130:151–158.
  • Eric S, Kalinic M, Popovic A, et al. Prediction of aqueous solubility of drug-like molecules using a novel algorithm for automatic adjustment of relative importance of descriptors implemented in counter-propagation artificial neural networks. Int J Pharm. 2012;437(1–2):232–241.
  • Mueller R, Dawson ES, Meiler J, et al. Discovery of 2-(2-benzoxazoyl amino)-4-aryl-5-cyanopyrimidine as negative allosteric modulators (NAMs) of metabotropic glutamate receptor 5 (mGlu5): from an artificial neural network virtual screen to an in vivo tool compound. Chemom Med Chem. 2012;7:406–414.
  • Patra JC, Chua BH. Artificial neural network-based drug design for diabetes mellitus using flavonoids. J Comput Chem. 2011;32(4):555–567.
  • Patra JC, Singh O. Artificial neural networks-based approach to design ARIs using QSAR for diabetes mellitus. J Comput Chem. 2009;30:2494–2508.
  • Dobchev DA, Mager I, Tulp I, et al. Prediction of cell-penetrating peptides using artificial neural networks. Cur Comp-Aided Drug Des. 2010;6:79–89.
  • Polak S, Wisniowska B, Ahamadi M, et al. Prediction of the hERG potassium channel inhibition potential with use of the artificial neural networks. Adv Intel Soft Comput. 2010;75:91–99.
  • Guerra A, Paez JA, Campillo NE. Artificial neural networks in ADMET modeling: prediction of blood-brain barrier permeation. QSAR Combi Sci. 2007;27(5):586–594.
  • Khatri N, Lather V, Madan A. Diverse classification models for anti-hepatitis C virus activity of thiourea derivatives. Chemom Intel Lab Sys. 2015;140:13–21.
  • Lancashire L, Rees RC, Ball G. Identification of gene transcript signatures predictive for estrogen receptor and lymph node status using a stepwise forward selection artificial neural network modeling approach. Art Intel Med. 2008;43:99–111.
  • Katritzky AR, Dobchev DA, Fara D, et al. Skin permeation rate as a function of chemical structure. J Med Chem. 2006;49(11):3305–3314.
  • Katritzky AR, Wang ZQ, Slavov S, et al. Synthesis and bioassay of novel mosquito repellents predicted from chemical structure. Proc Natl Acad Sci. 2008;105:7359–7364.
  • González-Díaz H, Herrera-Ibatá DM, Duardo-Sánchez A, et al. ANN multiscale model of anti-HIV drugs activity vs AIDS prevalence in the US at county level based on information indices of molecular graphs and social networks. J Chem Inf Model. 2014;54(3):744–755.
  • Guner O. History and evolution of the pharmacophore concept in computer-aided drug design. Curr Top Med Chem. 2002;2(12):1321–1332.
  • Dror O, Shulman-Peleg A, Nussinov R, et al. Predicting molecular interactions in silico: I. A guide to pharmacophore identification and its applications to drug design. Curr Med Chem. 2004;11(1):71–90.
  • Cramer RD, DePriest SA, Patterson DE, et al. In: Kubinyi H, editor. The developing practice of comparative molecular field analysis, in 3D QSAR in drug design: theory, methods and applications. Netherlands: ESCOM; 1993. p. 443–485.
  • Klebe G, Abraham U, Mietzner T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem. 1994;37:4130–4146.
  • Akamatsu M. Current state and perspectives of 3D-QSAR. Curr Top Med Chem. 2002;2(12):1381–1394.
  • Debnath AK. Application of 3D-QSAR techniques in anti-HIV-1 drug design-an overview. Curr Pharm Des. 2005;11(24):3091–3110.
  • Kontogiorgis CA, Papaioannou P, Hadjipavlou-Litina DJ. Matrix metalloproteinase inhibitors: a review on pharmacophore mapping and (Q)SARs results. Curr Med Chem. 2005;12(3):339–355.
  • Nicolotti O, Altomare C, Pellegrini-Calace M, et al. Neuronal nicotinic acetylcholine receptor agonists: pharmacophores, evolutionary QSAR and 3D-QSAR models. Curr Top Med Chem. 2004;4(3):335–360.
  • Nayyar A, Malde A, Jain R, et al. 3D-QSAR study of ring substituted quinoline class of anti-tuberculosis agents. Bioorg Med Chem. 2006;14(3):847–856.
  • Matter H, Kotsonis P. Biology and chemistry of the inhibition of nitric oxide synthases by pteridine-derivatives as therapeutic agents. Med Res Rev. 2004;24(5):662–684.
  • Li W, Tang Y, Zheng YL, et al. Molecular modeling and 3D-QSAR studies of indolomorphinan derivatives as kappa opioid antagonists. Bioorg Med Chem. 2006;14(3):601–610.
  • Flower DR, McSparron H, Blythe MJ, et al. Computational vaccinology: quantitative approaches. Novartis Found Symp. 2003;254:102–120.
  • Bordas B, Komives T, Lopata A. Ligand-based computer-aided pesticide design. A review of applications of the CoMFA and CoMSIA methodologies. Pest Manag Sci. 2003;59(4):393–400.
  • Schneider G. Neural networks are useful tools for drug design. Neural Net. 2000;13:15–16.
  • Hecht-Nielsen R. Counterpropagation networks. Appl Opt. 1987;26(23):4979–4983.
  • Shin M, Jang D, Nam H, et al. Predicting the absorption potential of chemical compounds through a deep learning approach. IEEE/ACM Trans Comput Bio Bioinf. 2016;PP(99):1–1.
  • ScienceDirect indexing [Internet]. [ cited 2016 May 16]. Available from: http://www.sciencedirect.com/.
  • Manallack D, Livingstone D. Neural networks in drug discovery: have they lived up to their promise? Eur J Med Chem. 1999;34:195−208.
  • Dragon software [Internet]. [ cited 2016 May 16]. Available from: http://www.talete.mi.it/products/dragon_description.htm.
  • CODESA-PRO software [Internet]. [ cited 2016 May 16]. Available from: http://codessa-pro.com/.
  • Guha R. Chemical informatics functionality in R. J Stat Soft. 2007;6:4–18.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.