671
Views
37
CrossRef citations to date
0
Altmetric
Review

Hybrid antibiotics – clinical progress and novel designs

&
Pages 665-680 | Received 24 Feb 2016, Accepted 05 May 2016, Published online: 31 May 2016

References

  • Ash C. Antibiotic resistance: the new apocalypse? Trends Microbiol. 1996;4:371–372.
  • Grindrod K. How the threat of antibiotic apocalypse helped a pharmacist find her voice. Can Pharm J. 2013;146:151–154. doi:10.1177/1715163513486864.
  • Waksman SA. What is an antibiotic or antibiotic substance? Mycologia. 1947;39:565–569. doi:10.2307/3755196.
  • Czaplewski L, Bax R, Clokie M, et al. Alternatives to antibiotics — a pipeline portfolio review. Lancet Infect Dis. 2016;16(2):239–251. doi:10.1016/S1473-3099(15)00466-1.
  • Mandal SM, Roy A, Ghosh AK, et al. Challenges and future prospects of antibiotic therapy: from peptides to phages utilization. Front Pharmacol. 2014;5(105):1–12. doi:10.3389/fphar.2014.00105.
  • Holmes AH, Moore LSP, Sundsfjord A, et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet. 2016;387(10014):176–187. doi:10.1016/S0140-6736(15)00473-0.
  • Ho J, Tambyah PA, Paterson DL. Multiresistant Gram-negative infections: a global perspective. Curr Opin Infect Dis. 2010;23:546–553. doi:10.1097/QCO.0b013e32833f0d3e.
  • Furtado GH, Nicolau DP. Overview perspective of bacterial resistance. Expert Opin Ther Pat. 2010;20:1273–1276. doi:10.1517/13543776.2010.507193.
  • Lewis K. Platforms for antibiotic discovery. Nat Rev Drug Discov. 2013;12:371–387. doi:10.1038/nrd3975.
  • Kinch MS, Patridge E, Plummer M, et al. An analysis of FDA-approved drugs for infectious disease: antibacterial agents. Drug Discov Today. 2014;19:1283–1287. doi:10.1016/j.drudis.2014.07.005.
  • Livermore DM. Has the era of untreatable infections arrived? J Antimicrob Chemother. 2009;64:i29–i36. doi:10.1093/jac/dkp255.
  • Woods RJ, Read AF. Clinical management of resistance evolution in a bacterial infection: a case study. Evol Med Public Heal. 2015;2015:281–288. doi:10.1093/emph/eov025.
  • Silver LL. Challenges of antibacterial discovery. Clin Microbiol Rev. 2011;24:71–109. doi:10.1128/CMR.00030-10.
  • Drawz SM, Papp-Wallace KM, Bonomo RA. New β-lactamase inhibitors: a therapeutic renaissance in an MDR world. Antimicrob Agents Chemother. 2014;58:1835–1846. doi:10.1128/AAC.02045-12.
  • Kourtesi C, Ball AR, Huang -Y-Y, et al. Microbial efflux systems and inhibitors: approaches to drug discovery and the challenge of clinical implementation. Open Microbiol J. 2013;7:34–52. doi:10.2174/1874285801307010034.
  • Górska A, Sloderbach A, Marszałł MP. Siderophore-drug complexes: potential medicinal applications of the “Trojan horse” strategy. Trends Pharmacol Sci. 2014;35:442–449. doi:10.1016/j.tips.2014.06.007.
  • Worthington RJ, Melander C. Combination approaches to combat multi-drug resistant bacteria. Trends Biotechnol. 2013;31:177–184. doi:10.1016/j.tibtech.2012.12.006.
  • Doern CD. When does 2 plus 2 equal 5? A review of antimicrobial synergy testing. J Clin Microbiol. 2014;52:4124–4128. doi:10.1128/JCM.00749-14.
  • Cottarel G, Wierzbowski J. Combination drugs, an emerging option for antibacterial therapy. Trends Biotechnol. 2007;25:547–555. doi:10.1016/j.tibtech.2007.09.004.
  • Tamma PD, Cosgrove SE, Maragakis LL. Combination therapy for treatment of infections with gram-negative bacteria. Clin Microbiol Rev. 2012;25:450–470. doi:10.1128/CMR.05041-11.
  • Chait R, Craney A, Kishony R. Antibiotic interactions that select against resistance. Nature. 2007;446:668–671. doi:10.1038/nature05685.
  • Michel J-B, Yeh PJ, Chait R, et al. Drug interactions modulate the potential for evolution of resistance. Proc Natl Acad Sci U S A. 2008;105:14918–14923. doi:10.1073/pnas.0800944105.
  • Yeh PJ, Hegreness MJ, Aiden AP, et al. Drug interactions and the evolution of antibiotic resistance. Nat Rev Microbiol. 2009;7:460–466. doi:10.1038/nrmicro2133.
  • Pokrovskaya V, Baasov T. Dual-acting hybrid antibiotics: a promising strategy to combat bacterial resistance. Expert Opin Drug Discov. 2010;5:883–902. doi:10.1517/17460441.2010.508069.
  • Bansal Y, Silakari O. Multifunctional compounds: smart molecules for multifactorial diseases. Eur J Med Chem. 2014;76:31–42. doi:10.1016/j.ejmech.2014.01.060.
  • Berbachyn M. Recent advances in the discovery of hybrid antibacterial agents. Annu Rep Med Chem. 2008;43:281–290.
  • Tevyashova AN, Olsufyeva EN, Preobrazhenskaya MN. Design of dual action antibiotics as an approach to search for new promising drugs. Russ Chem Rev. 2015;84:61–97. doi:10.1070/RCR4448.
  • Locher HH, Seiler P, Chen X, et al. In vitro and in vivo antibacterial evaluation of Cadazolid, a new antibiotic for treatment of clostridium difficile infections. Antimicrob Agents Chemother. 2014;58:892–900. doi:10.1128/AAC.02045-12.
  • Actelion Pharmaceuticals. Clinical study to compare the efficacy and safety of Cadazolid versus Vancomycin in subjects with clostridium difficile-associated diarrhea. Clinical Trials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000. NLM identifier: NCT01987895. [cited 2016 Jan 17]. Available from: https://clinicaltrials.gov/show/NCT01987895
  • Tsutsumi LS, Owusu YB, Hurdle JG, et al. Progress in the discovery of treatments for C. difficile infection : a clinical and medicinal chemistry review. Curr Top Med Chem. 2014;14:152–175.
  • Jarrad AM, Karoli T, Blaskovich MAT, et al. Clostridium difficile drug pipeline: challenges in discovery and development of new agents. J Med Chem. 2015;58:5164–5185. doi:10.1021/jm5016846.
  • Locher HH, Caspers P, Bruyère T, et al. Investigations of the mode of action and resistance development of cadazolid, a new antibiotic for treatment of Clostridium difficile infections. Antimicrob Agents Chemother. 2014;58:901–908. doi:10.1128/AAC.02045-12.
  • Baldoni D, Gutierrez M, Timmer W, et al. Cadazolid, a novel antibiotic with potent activity against Clostridium difficile: safety, tolerability and pharmacokinetics in healthy subjects following single and multiple oral doses. J Antimicrob Chemother. 2014;69:706–714. doi:10.1093/jac/dkt401.
  • Louie T, Nord CE, Talbot GH, et al. Multicenter, double-blind, randomized, phase 2 study evaluating the novel antibiotic Cadazolid in patients with clostridium difficile infection. Antimicrob Agents Chemother. 2015;59:6266–6273. doi:10.1128/AAC.00504-15.
  • Gerding DN, Hecht DW, Louie T, et al. Susceptibility of Clostridium difficile isolates from a Phase 2 clinical trial of cadazolid and vancomycin in C. difficile infection. J Antimicrob Chemother. 2016;71:213–219. doi:10.1093/jac/dkv300.
  • Odds FC. Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother. 2003;52:1. doi:10.1093/jac/dkg486.
  • Actelion Pharmaceuticals. Study to investigate the pharmacokinetics and safety of Cadazolid in patients with clostridium difficile infection. Clinical Trials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000. NLM identifier: NCT02053181. [cited 2016 Jan 17]. Available from: https://clinicaltrials.gov/show/NCT02053181
  • Actelion Pharmaceuticals. ACT-179811 in patients with clostridium difficile infection. Clinical Trials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000. NLM identifier: NCT01222702. [cited 2016 Jan 17]. Available from: https://clinicaltrials.gov/show/NCT01222702
  • Blais J, Lewis SR, Krause KM, et al. Antistaphylococcal activity of TD-1792, a multivalent glycopeptide-cephalosporin antibiotic. Antimicrob Agents Chemother. 2012;56:1584–1587. doi:10.1128/AAC.06446-11.
  • Theravance Biopharma Antibiotics, Inc. TD-1792 in Gram-positive complicated skin and skin structure infection. Clinical Trials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000. NLM identifier: NCT00442832. [cited 2016 Jan 17]. Available from: https://clinicaltrials.gov/show/NCT00442832
  • Stryjewski ME, Potgieter PD, Li Y-P, et al. TD-1792 versus vancomycin for treatment of complicated skin and skin structure infections. Antimicrob Agents Chemother. 2012;56:5476–5483. doi:10.1128/AAC.06446-11.
  • Infectious disease programs, Theravance Biopharma website. 2016. [cited 2016 Jan 17]. Available from: http://www.theravance.com/bacterial
  • Tyrrell KL, Citron DM, Warren YA, et al. In vitro activity of TD-1792, a multivalent glycopeptide-cephalosporin antibiotic, against 377 strains of anaerobic bacteria and 34 strains of Corynebacterium species. Antimicrob Agents Chemother. 2012;56:2194–2197. doi:10.1128/AAC.06446-11.
  • Hegde SS, Okusanya OO, Skinner R, et al. Pharmacodynamics of TD-1792, a novel glycopeptide-cephalosporin heterodimer antibiotic used against gram-positive bacteria, in a neutropenic murine thigh model. Antimicrob Agents Chemother. 2012;56:1578–1583. doi:10.1128/AAC.06446-11.
  • Sader HS, Rhomberg PR, Farrell DJ, et al. Poster: Antimicrobial activity of TD-1607 tested against contemporary (2010-2012) methicillin-resistant staphylococcus aureus (MRSA) strains. Washington (DC): ICAAC; 2014.
  • Theravance Biopharma Antibiotics, Inc. TD-1607 SAD study in healthy subjects. Clinical Trials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000. NLM identifier: NCT01791049. [cited 2016 Jan 17]. Available from: https://clinicaltrials.gov/show/NCT01791049
  • Theravance Biopharma Antibiotics, Inc. TD-1607 MAD study in healthy subjects. Clinical Trials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000. NLM identifier: NCT01949103. [cited 2016 Jan 17]. Available from: https://clinicaltrials.gov/show/NCT01949103
  • Doyle TB, Bonventre EJ, Du Q, et al. Poster: In vitro studies of the efficacy of CBR-2092, a novel rifamycin-quinolone hybrid antibiotic, in killing staphylococcal cells in biofilms. Chicago (ILL): ICAAC; 2007.
  • Robertson GT, Bonventre EJ, Doyle TB, et al. In vitro evaluation of CBR-2092, a novel rifamycin-quinolone hybrid antibiotic: studies of the mode of action in Staphylococcus aureus. Antimicrob Agents Chemother. 2008;52:2313–2323. doi:10.1128/AAC.01649-07.
  • Floss HG, Yu T-W. Rifamycin mode of action, resistance, and biosynthesis. Chem Rev. 2005;105:621–632. doi:10.1021/cr030112j.
  • Robertson GT, Bonventre EJ, Doyle TB, et al. In vitro evaluation of CBR-2092, a novel rifamycin-quinolone hybrid antibiotic: microbiology profiling studies with staphylococci and streptococci. Antimicrob Agents Chemother. 2008;52:2324–2334. doi:10.1128/AAC.01651-07.
  • Cumbre announcement on completion of Phase I for CBR-2092. 2007. [cited 2016 Feb 14]. Available from: http://www.prnewswire.com/news-releases/cumbre-announces-new-financing-58476467.html
  • R & D, Tenor Therapeutics website. 2016. [cited 2016 Feb 14]. Available from: http://www.tennorx.com
  • Schubert S, Dalhoff A. Poster: low propensity for development of resistance to MCB3681, the active moiety of oxaquin (MCB3837), in gram-positive bacteria with vancomycin-, linezolid-, methicillin- and/or ciprofloxacin resistances. San Francisco (CA): ICAAC; 2006.
  • Rashid M-U, Dalhoff A, Weintraub A, et al. In vitro activity of MCB3681 against Clostridium difficile strains. Anaerobe. 2014;28:216–219. doi:10.1016/j.anaerobe.2014.07.001.
  • Rashid M-U, Dalhoff A, Backstrom T, et al. Ecological impact of MCB3837 on the normal human microbiota. Int J Antimicrob Agents. 2014;44:125–130. doi:10.1016/j.ijantimicag.2014.03.016.
  • Dalhoff A, Rashid M-U, Kapsner T, et al. Analysis of effects of MCB3681, the antibacterially active substance of prodrug MCB3837, on human resident microflora as proof of principle. Clin Microbiol Infect. 2015;21:767.e1–e767.e4. doi:10.1016/j.cmi.2015.05.025.
  • MCB3681 novel hybrid antibacterial, Morphochem AG website. 2016. [cited 2016 Feb 14]. Available from: http://www.morphochem.de
  • Gorityala BK, Guchhait G, Fernando DM, et al. Adjuvants based on hybrid antibiotics overcome resistance in pseudomonas aeruginosa and enhance fluoroquinolone efficacy. Angew Chemie Int Ed. 2016;55:555–559. doi:10.1002/anie.201508330.
  • Wang X-D, Wei W, Wang P-F, et al. Novel 3-arylfuran-2(5H)-one-fluoroquinolone hybrid: design, synthesis and evaluation as antibacterial agent. Bioorg Med Chem. 2014;22:3620–3628. doi:10.1016/j.bmc.2014.05.018.
  • Plech T, Wujec M, Siwek A, et al. Synthesis and antimicrobial activity of thiosemicarbazides, s-triazoles and their Mannich bases bearing 3-chlorophenyl moiety. Eur J Med Chem. 2011;46:241–248. doi:10.1016/j.ejmech.2010.11.010.
  • Plech T, Wujec M, Kosikowska U, et al. Synthesis and in vitro activity of 1,2,4-triazole-ciprofloxacin hybrids against drug-susceptible and drug-resistant bacteria. Eur J Med Chem. 2013;60:128–134. doi:10.1016/j.ejmech.2012.11.040.
  • Plech T, Kaproń B, Paneth A, et al. Determination of the primary molecular target of 1,2,4-Triazole-ciprofloxacin hybrids. Molecules. 2015;20:6254–6272. doi:10.3390/molecules20046254.
  • Plech T, Kaproń B, Paneth A, et al. Search for factors affecting antibacterial activity and toxicity of 1,2,4-triazole-ciprofloxacin hybrids. Eur J Med Chem. 2015;97:94–103. doi:10.1016/j.ejmech.2015.04.058.
  • Ngo SC, Zimhony O, Woo JC, et al. Inhibition of isolated Mycobacterium tuberculosis fatty acid synthase I by pyrazinamide analogs. Antimicrob Agents Chemother. 2007;51:2430–2435. doi:10.1128/AAC.01458-06.
  • Markad SD, Kaur P, Kishore Reddy BK, et al. Novel lead generation of an anti-tuberculosis agent active against non-replicating mycobacteria: exploring hybridization of pyrazinamide with multiple fragments. Med Chem Res. 2015;24:2986–2992. doi:10.1007/s00044-015-1352-6.
  • Ross AG, Benton BM, Chin D, et al. Synthesis of ciprofloxacin dimers for evaluation of bacterial permeability in atypical chemical space. Bioorg Med Chem Lett. 2015;25:3468–3475. doi:10.1016/j.bmcl.2015.07.010.
  • Panda SS, Liaqat S, Girgis AS, et al. Novel antibacterial active quinolone–fluoroquinolone conjugates and 2D-QSAR studies. Bioorg Med Chem Lett. 2015;25:3816–3821. doi:10.1016/j.bmcl.2015.07.077.
  • Actelion Pharmaceuticals Ltd. Quinolone Derivatives. WO2014178008A1. 2014.
  • Cui S-F, Peng L-P, Zhang H-Z, et al. Novel hybrids of metronidazole and quinolones: synthesis, bioactive evaluation, cytotoxicity, preliminary antimicrobial mechanism and effect of metal ions on their transportation by human serum albumin. Eur J Med Chem. 2014;86:318–334. doi:10.1016/j.ejmech.2014.08.063.
  • Pavlovic D, Mutak S. Discovery of 4ʹ’-ether linked azithromycin-quinolone hybrid series: influence of the central linker on the antibacterial activity. ACS Med Chem Lett. 2011;2:331–336. doi:10.1021/ml100253p.
  • Findlay B, Zhanel GG, Schweizer F. Neomycin-phenolic conjugates: polycationic amphiphiles with broad-spectrum antibacterial activity, low hemolytic activity and weak serum protein binding. Bioorg Med Chem Lett. 2012;22:1499–1503. doi:10.1016/j.bmcl.2012.01.025.
  • Hanessian S, Maianti JP, Matias RD, et al. Hybrid aminoglycoside antibiotics via tsuji palladium-catalyzed allylic deoxygenation. Org Lett. 2011;13:6476–6479. doi:10.1021/ol2026153.
  • Maianti JP, Hanessian S. Structural hybridization of three aminoglycoside antibiotics yields a potent broad-spectrum bactericide that eludes bacterial resistance enzymes. Med Chem Commun. 2016;7:170–176. doi:10.1039/C5MD00429B.
  • Rakesh, Bruhn DF, Scherman MS, et al. Synthesis and evaluation of pretomanid (PA-824) oxazolidinone hybrids. Bioorg Med Chem Lett. 2016;26:388–391. doi:10.1016/j.bmcl.2016.03.080.
  • Yakushiji F, Miyamoto Y, Kunoh Y, et al. Novel hybrid-type antimicrobial agents targeting the switch region of bacterial RNA polymerase. ACS Med Chem Lett. 2013;4:220–224. doi:10.1021/ml4003138.
  • Yakushiji F, Hayashi Y. Antibacterial agents containing hybrid molecule of myxopyronins and holothin and pharmaceutical compositions containing them. JP 2012201669. 2012.
  • Sucheck SJ, Wong AL, Koeller KM, et al. Design of bifunctional antibiotics that target bacterial rRNA and inhibit resistance-causing enzymes. J Am Chem Soc. 2000;122:5230–5231. doi:10.1021/ja000575w.
  • Berkov-Zrihen Y, Green KD, Labby KJ, et al. Synthesis and evaluation of hetero- and homodimers of ribosome-targeting antibiotics: antimicrobial activity, in vitro inhibition of translation, and drug resistance. J Med Chem. 2013;56:5613–5625. doi:10.1021/jm400707f.
  • Printsevskaya SS, Reznikova MI, Korolev AM, et al. Synthesis and study of antibacterial activities of antibacterial glycopeptide antibiotics conjugated with benzoxaboroles. Future Med Chem. 2013;5:641–652. doi:10.4155/fmc.13.16.
  • Chen L, Yang D, Pan Z, et al. Synthesis and antimicrobial activity of the hybrid molecules between sulfonamides and active antimicrobial pleuromutilin derivative. Chem Biol Drug Des. 2015;86:239–245. doi:10.1111/cbdd.12561.
  • Silvers MA, Robertson GT, Taylor CM, et al. Design, synthesis, and antibacterial properties of dual-ligand inhibitors of acetyl-coa carboxylase. J Med Chem. 2014;57:8947–8959. doi:10.1021/jm401509e.
  • Zhou F-W, Lei H-S, Fan L, et al. Design, synthesis, and biological evaluation of dihydroartemisinin-fluoroquinolone conjugates as a novel type of potential antitubercular agents. Bioorg Med Chem Lett. 2014;24:1912–1917. doi:10.1016/j.bmcl.2014.03.010.
  • Wang Y, Damu GLV, Lv JS, et al. Design, synthesis and evaluation of clinafloxacin triazole hybrids as a new type of antibacterial and antifungal agents. Bioorganic Med Chem Lett. 2012;22:5363–5366. doi:10.1016/j.bmcl.2012.07.064.
  • Gu X-L, Liu H-B, Jia Q-H, et al. Design and synthesis of novel miconazole-based ciprofloxacin hybrids as potential antimicrobial agents. Monatshefte für Chemie Chem Mon. 2015;146:713–720. doi:10.1007/s00706-014-1364-9.
  • Xiao Z-P, Wang X-D, Wang P-F, et al. Design, synthesis, and evaluation of novel fluoroquinolone-flavonoid hybrids as potent antibiotics against drug-resistant microorganisms. Eur J Med Chem. 2014;80:92–100. doi:10.1016/j.ejmech.2014.04.037.
  • Tomkiewicz D, Casadei G, Larkins-Ford J, et al. Berberine-INF55 (5-nitro-2-phenylindole) hybrid antimicrobials: effects of varying the relative orientation of the berberine and INF55 components. Antimicrob Agents Chemother. 2010;54:3219–3224. doi:10.1128/AAC.01715-09.
  • Zheng T, Nolan EM. Enterobactin-mediated delivery of β-lactam antibiotics enhances antibacterial activity against pathogenic Escherichia coli. J Am Chem Soc. 2014;136:9677–9691. doi:10.1021/ja503911p.
  • Wencewicz TA, Miller MJ. Biscatecholate–monohydroxamate mixed ligand siderophore–carbacephalosporin conjugates are selective sideromycin antibiotics that target acinetobacter baumannii. J Med Chem. 2013;56:4044–4052. doi:10.1021/jm400265k.
  • Page MGP, Dantier C, Desarbre E. In vitro properties of BAL30072, a novel siderophore sulfactam with activity against multiresistant Gram-negative Bacilli. Antimicrob Agents Chemother. 2010;54:2291–2302. doi:10.1128/AAC.01525-09.
  • Van Delden C, Page MGP, Köhler T. Involvement of Fe uptake systems and AmpC β-lactamase in susceptibility to the siderophore monosulfactam BAL30072 in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013;57:2095–2102. doi:10.1128/AAC.02474-12.
  • BAL30072, Basilea Pharmaceutica website. 2016. [cited 2016 Feb 24] Available from: http://www.basilea.com/Portfolio/BAL30072

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.