99
Views
0
CrossRef citations to date
0
Altmetric
Review

Solution NMR studies on Helicobacter pylori proteins for antibiotic target discovery

&
Pages 681-693 | Received 09 Mar 2016, Accepted 10 May 2016, Published online: 27 May 2016

References

  • Safavi M, Sabourian R, Foroumadi A. Treatment of Helicobacter pylori infection: current and future insights. World J Clin Cases. 2016;4:5–19. doi:10.12998/wjcc.v4.i1.5.
  • Lv ZF, Wang FC, Zheng HL, et al. Meta-analysis: is combination of tetracycline and amoxicillin suitable for Helicobacter pylori infection? World J Gastroenterol. 2015;21:2522–2533. doi:10.3748/wjg.v21.i8.2522.
  • Buzas GM. Metabolic consequences of Helicobacter pylori infection and eradication. World J Gastroenterol. 2014;20:5226–5234. doi:10.3748/wjg.v20.i18.5226.
  • Ben Chaabane N, Al-Adhba HS. Ciprofloxacin-containing versus clarithromycin-containing sequential therapy for Helicobacter pylori eradication: a randomized trial. Indian J Gastroenterol. 2015;34:68–72. doi:10.1007/s12664-015-0535-x.
  • Scaccianoce G, Hassan C, Panarese A, et al. Helicobacter pylori eradication with either 7-day or 10-day triple therapies, and with a 10-day sequential regimen. Can J Gastroenterol. 2006;20:113–117.
  • Olokoba AB, Obateru OA, Bojuwoye MO. Helicobacter pylori eradication therapy: a review of current trends. Niger Med J. 2013;54:1–4. doi:10.4103/0300-1652.108884.
  • Malfertheiner P, Megraud F, O’Morain CA, et al. Management of Helicobacter pylori infection–the Maastricht IV/Florence consensus report. Gut. 2012;61:646–664. doi:10.1136/gutjnl-2012-302084.
  • Yang JC, Lu CW, Lin CJ. Treatment of Helicobacter pylori infection: current status and future concepts. World J Gastroenterol. 2014;20:5283–5293. doi:10.3748/wjg.v20.i18.5283.
  • Thung I, Aramin H, Vavinskaya V, et al. Review article: the global emergence of Helicobacter pylori antibiotic resistance. Aliment Pharmacol Ther. 2016;43:514–533. doi:10.1111/apt.13497.
  • Tomb JF, White O, Kerlavage AR, et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature. 1997;388:539–547. doi:10.1038/41483.
  • Alm RA, Ling LS, Moir DT, et al. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature. 1999;397:176–180. doi:10.1038/16495.
  • Sivashankari S, Shanmughavel P. Functional annotation of hypothetical proteins - a review. Bioinformation. 2006;1:335–338.
  • Luo H, Lin Y, Gao F, et al. DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements. Nucleic Acids Res. 2014;42:D574–80. doi:10.1093/nar/gkt1131.
  • Salama NR, Shepherd B, Falkow S. Global transposon mutagenesis and essential gene analysis of Helicobacter pylori. J Bacteriol. 2004;186:7926–7935. doi:10.1128/JB.186.23.7926-7935.2004.
  • Putsep K, Branden CI, Boman HG, et al. Antibacterial peptide from H. pylori. Nature. 1999;398:671–672. doi:10.1038/19439.
  • Lee KH, Lee DG, Park Y, et al. Interactions between the plasma membrane and the antimicrobial peptide HP (2-20) and its analogues derived from Helicobacter pylori. Biochem J. 2006;394:105–114. doi:10.1042/BJ20051574.
  • Lee JK, Gopal R, Park SC, et al. A proline-hinge alters the characteristics of the amphipathic alpha-helical AMPs. PLoS One. 2013;8:e67597. doi:10.1371/journal.pone.0067597.
  • Linke D. Detergents: an overview. Methods Enzymol. 2009;463:603–617. doi:10.1016/S0076-6879(09)63034-2.
  • Sanders CR, Sonnichsen F. Solution NMR of membrane proteins: practice and challenges. Magn Reson Chem. 2006;44:1008–1012. Spec No:S24-40. doi:10.1002/mrc.1888.
  • Porcelli F, Ramamoorthy A, Barany G, et al. On the role of NMR spectroscopy for characterization of antimicrobial peptides. Methods Mol Biol. 2013;1063:159–180. doi:10.1007/978-1-62703-583-5_9.
  • Porcelli F, Buck-Koehntop BA, Thennarasu S, et al. Structures of the dimeric and monomeric variants of magainin antimicrobial peptides (MSI-78 and MSI-594) in micelles and bilayers, determined by NMR spectroscopy. Biochemistry. 2006;45:5793–5799. doi:10.1021/bi0601813.
  • Porcelli F, Verardi R, Shi L, et al. NMR structure of the cathelicidin-derived human antimicrobial peptide LL-37 in dodecylphosphocholine micelles. Biochemistry. 2008;47:5565–5572. doi:10.1021/bi702036s.
  • Porcelli F, Buck B, Lee DK, et al. Structure and orientation of pardaxin determined by NMR experiments in model membranes. J Biol Chem. 2004;279:45815–45823. doi:10.1074/jbc.M405454200.
  • Durr UH, Gildenberg M, Ramamoorthy A. The magic of bicelles lights up membrane protein structure. Chem Rev. 2012;112:6054–6074. doi:10.1021/cr300061w.
  • Diller A, Loudet C, Aussenac F, et al. Bicelles: a natural ‘molecular goniometer’ for structural, dynamical and topological studies of molecules in membranes. Biochimie. 2009;91:744–751. doi:10.1016/j.biochi.2009.02.003.
  • Hagn F, Etzkorn M, Raschle T, et al. Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc. 2013;135:1919–1925. doi:10.1021/ja310901f.
  • Raschle T, Hiller S, Yu TY, et al. Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer nanodiscs. J Am Chem Soc. 2009;131:17777–17779. doi:10.1021/ja907918r.
  • Zhang M, Huang R, Ackermann R, et al. Reconstitution of the Cytb5 -CytP450 complex in nanodiscs for structural studies using NMR spectroscopy. Angew Chem Int Ed Engl. 2016;55:4497–4499. doi:10.1002/anie.201600073.
  • Wang X, Mu Z, Li Y, et al. Smaller nanodiscs are suitable for studying protein lipid interactions by solution NMR. Protein J. 2015;34:205–211. doi:10.1007/s10930-015-9613-2.
  • Borin BN, Krezel AM. Structure of HP0564 from Helicobacter pylori identifies it as a new transcriptional regulator. Proteins. 2008;73:265–268. doi:10.1002/prot.22159.
  • Popescu A, Karpay A, Israel DA, et al. Helicobacter pylori protein HP0222 belongs to Arc/MetJ family of transcriptional regulators. Proteins. 2005;59:303–311. doi:10.1002/prot.20406.
  • Chen C, Ke J, Zhou XE, et al. Structural basis for molecular recognition of folic acid by folate receptors. Nature. 2013;500:486–489. doi:10.1038/nature12327.
  • Breg JN, Van Opheusden JH, Burgering MJ, et al. Structure of Arc repressor in solution: evidence for a family of beta-sheet DNA-binding proteins. Nature. 1990;346:586–589. doi:10.1038/346586a0.
  • Raumann BE, Rould MA, Pabo CO, et al. DNA recognition by beta-sheets in the Arc repressor-operator crystal structure. Nature. 1994;367:754–757. doi:10.1038/367754a0.
  • Hong E, Lee HM, Ko H, et al. Structure of an atypical orphan response regulator protein supports a new phosphorylation-independent regulatory mechanism. J Biol Chem. 2007;282:20667–20675. doi:10.1074/jbc.M609104200.
  • Gupta SS, Borin BN, Cover TL, et al. Structural analysis of the DNA-binding domain of the Helicobacter pylori response regulator ArsR. J Biol Chem. 2009;284:6536–6545. doi:10.1074/jbc.M804592200.
  • Lee KY, Lee KY, Kim JH, et al. Structure-based functional identification of Helicobacter pylori HP0268 as a nuclease with both DNA nicking and RNase activities. Nucleic Acids Res. 2015;43:5194–5207. doi:10.1093/nar/gkv348.
  • Fukui K, Kosaka H, Kuramitsu S, et al. Nuclease activity of the MutS homologue MutS2 from thermus thermophilus is confined to the Smr domain. Nucleic Acids Res. 2007;35:850–860. doi:10.1093/nar/gkl735.
  • Han KD, Park SJ, Jang SB, et al. Solution structure of conserved hypothetical protein HP0894 from Helicobacter pylori. Proteins. 2005;61:1114–1116. doi:10.1002/prot.20691.
  • Takagi H, Kakuta Y, Okada T, et al. Crystal structure of archaeal toxin-antitoxin RelE-RelB complex with implications for toxin activity and antitoxin effects. Nat Struct Mol Biol. 2005;12:327–331. doi:10.1038/nsmb911.
  • Han KD, Park SJ, Jang SB, et al. Solution structure of conserved hypothetical protein HP0892 from Helicobacter pylori. Proteins. 2008;70:599–602. doi:10.1002/prot.21701.
  • Jang SB, Ma C, Lee JY, et al. NMR solution structure of HP0827 (O25501_HELPY) from Helicobacter pylori: model of the possible RNA-binding site. J Biochem. 2009;146:667–674. doi:10.1093/jb/mvp105.
  • Kim JH, Park SJ, Lee KY, et al. Solution structure of hypothetical protein HP1423 (Y1423_HELPY) reveals the presence of alphaL motif related to RNA binding. Proteins. 2009;75:252–257. doi:10.1002/prot.22335.
  • Lee KY, Kim JH, Lee KY, et al. Structural characterization of HP1264 reveals a novel fold for the flavin mononucleotide binding protein. Biochemistry. 2013;52:1583–1593. doi:10.1021/bi301714a.
  • Borin BN, Tang W, Krezel AM. Helicobacter pylori RNA polymerase alpha-subunit C-terminal domain shows features unique to varepsilon-proteobacteria and binds NikR/DNA complexes. Protein Sci. 2014;23:454–463. doi:10.1002/pro.2427.
  • Park SJ, Jung YS, Kim JS, et al. Structural insight into the distinct properties of copper transport by the Helicobacter pylori CopP protein. Proteins. 2008;71:1007–1019. doi:10.1002/prot.21957.
  • Xia W, Li H, Sze KH, et al. Structure of a nickel chaperone, HypA, from Helicobacter pylori reveals two distinct metal binding sites. J Am Chem Soc. 2009;131:10031–10040. doi:10.1021/ja900543y.
  • Weininger U, Haupt C, Schweimer K, et al. NMR solution structure of SlyD from Escherichia coli: spatial separation of prolyl isomerase and chaperone function. J Mol Biol. 2009;387:295–305. doi:10.1016/j.jmb.2009.01.034.
  • Martinez-Hackert E, Hendrickson WA. Structural analysis of protein folding by the long-chain archaeal chaperone FKBP26. J Mol Biol. 2011;407:450–464. doi:10.1016/j.jmb.2011.01.027.
  • Orengo CA, Pearl FM, Thornton JM. The CATH domain structure database. Methods Biochem Anal. 2003;44:249–271.
  • Westley J. Thiosulfate: cyanide sulfurtransferase (rhodanese). Methods Enzymol. 1981;77:285–291.
  • Acuner Ozbabacan SE, Engin HB, Gursoy A, et al. Transient protein-protein interactions. Protein Eng Des Sel. 2011;24:635–648. doi:10.1093/protein/gzr025.
  • Han KD, Matsuura A, Ahn HC, et al. Functional identification of toxin-antitoxin molecules from Helicobacter pylori 26695 and structural elucidation of the molecular interactions. J Biol Chem. 2011;286:4842–4853. doi:10.1074/jbc.M109.097840.
  • Zhang X, Tang H, Ye C, et al. Structure-based drug design: NMR-based approach for ligand-protein interactions. Drug Discov Today Technol. 2006;3:241–245. doi:10.1016/j.ddtec.2006.09.002.
  • Sykes BD. Determination of the conformations of bound peptides using NMR-transferred nOe techniques. Curr Opin Biotechnol. 1993;4:392–396.
  • Wagstaff JL, Taylor SL, Howard MJ. Recent developments and applications of saturation transfer difference nuclear magnetic resonance (STD NMR) spectroscopy. Mol Biosyst. 2013;9:571–577. doi:10.1039/c2mb25395j.
  • Campos-Olivas R. NMR screening and hit validation in fragment based drug discovery. Curr Top Med Chem. 2011;11:43–67.
  • Bhunia A, Bhattacharjya S, Chatterjee S. Applications of saturation transfer difference NMR in biological systems. Drug Discov Today. 2012;17:505–513. doi:10.1016/j.drudis.2011.12.016.
  • Krishna NR, Jayalakshmi V. Quantitative analysis of STD-NMR spectra of reversibly forming ligand-receptor complexes. Top Curr Chem. 2008;273:15–54. doi:10.1007/128_2007_144.
  • Jayalakshmi V, Rama Krishna N. CORCEMA refinement of the bound ligand conformation within the protein binding pocket in reversibly forming weak complexes using STD-NMR intensities. J Magn Reson. 2004;168:36–45. doi:10.1016/j.jmr.2004.01.017.
  • Dalvit C, Fogliatto G, Stewart A, et al. WaterLOGSY as a method for primary NMR screening: practical aspects and range of applicability. J Biomol NMR. 2001;21:349–359.
  • Sanchez-Sixto C, Prazeres VF, Castedo L, et al. Competitive inhibitors of Helicobacter pylori type II dehydroquinase: synthesis, biological evaluation, and NMR studies. ChemMedChem. 2008;3:756–770. doi:10.1002/cmdc.200700307.
  • Levin DH, Racker E. Condensation of arabinose 5-phosphate and phosphorylenol pyruvate by 2-keto-3-deoxy-8-phosphooctonic acid synthetase. J Biol Chem. 1959;234:2532–2539.
  • Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002;71:635–700. doi:10.1146/annurev.biochem.71.110601.135414.
  • Raetz CR, Reynolds CM, Trent MS, et al. Lipid A modification systems in gram-negative bacteria. Annu Rev Biochem. 2007;76:295–329. doi:10.1146/annurev.biochem.76.010307.145803.
  • Cho S, Im H, Lee KY, et al. Identification of novel scaffolds for potential anti-Helicobacter pylori agents based on the crystal structure of H. pylori 3-deoxy-d-manno-octulosonate 8-phosphate synthase (HpKDO8PS). Eur J Med Chem. 2016;108:188–202. doi:10.1016/j.ejmech.2015.11.036.
  • Xia W, Li H, Yang X, et al. Metallo-GTPase HypB from Helicobacter pylori and its interaction with nickel chaperone protein HypA. J Biol Chem. 2012;287:6753–6763. doi:10.1074/jbc.M111.287581.
  • Han KD, Ahn DH, Lee SA, et al. Identification of chromosomal HP0892-HP0893 toxin-antitoxin proteins in Helicobacter pylori and structural elucidation of their protein-protein interaction. J Biol Chem. 2013;288:6004–6013. doi:10.1074/jbc.M111.322784.
  • Ghose R, Huang K, Prestegard JH. Measurement of cross correlation between dipolar coupling and chemical shift anisotropy in the spin relaxation of 13C, 15N-labeled proteins. J Magn Reson. 1998;135:487–499. doi:10.1006/jmre.1998.1602.
  • Lee D, Hilty C, Wider G, et al. Effective rotational correlation times of proteins from NMR relaxation interference. J Magn Reson. 2006;178:72–76. doi:10.1016/j.jmr.2005.08.014.
  • Pervushin K, Riek R, Wider G, et al. Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A. 1997;94:12366–12371.
  • Kleckner IR, Foster MP. An introduction to NMR-based approaches for measuring protein dynamics. Biochim Biophys Acta. 2011;1814:942–968. doi:10.1016/j.bbapap.2010.10.012.
  • Ishima R. CPMG relaxation dispersion. Methods Mol Biol. 2014;1084:29–49. doi:10.1007/978-1-62703-658-0_2.
  • Jeong KW, Ko H, Lee SA, et al. Backbone dynamics of an atypical orphan response regulator protein, Helicobacter pylori 1043. Mol Cells. 2013;35:158–165. doi:10.1007/s10059-013-2303-z.
  • Schoenhofen IC, McNally DJ, Vinogradov E, et al. Functional characterization of dehydratase/aminotransferase pairs from Helicobacter and Campylobacter: enzymes distinguishing the pseudaminic acid and bacillosamine biosynthetic pathways. J Biol Chem. 2006;281:723–732. doi:10.1074/jbc.M511021200.
  • Logan SM, Altman E, Mykytczuk O, et al. Novel biosynthetic functions of lipopolysaccharide rfaJ homologs from Helicobacter pylori. Glycobiology. 2005;15:721–733. doi:10.1093/glycob/cwi057.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.