1,188
Views
80
CrossRef citations to date
0
Altmetric
Review

Using reverse docking for target identification and its applications for drug discovery

, &
Pages 707-715 | Received 16 Mar 2016, Accepted 13 May 2016, Published online: 01 Jun 2016

References

  • Lindsay MA. Finding new drug targets in the 21st century. Drug Discov Today. 2005 Dec;10(23–24):1683–1687. doi:10.1016/S1359-6446(05)03670-6.
  • Schenone M, Dančík V, Wagner BK, et al. Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol. 2013 Apr;9(4):232–240. doi:10.1038/nchembio.1199.
  • Bleicher KH, Böhm H-J, Müller K, et al. Hit and lead generation: beyond high-throughput screening. Nat Rev Drug Discov. 2003 May;2(5):369–378. doi:10.1038/nrd1086.
  • Kim S, Thiessen PA, Bolton EE, et al. PubChem substance and compound databases. Nucleic Acids Res. 2016 Jan 4;44(D1):D1202–D1213.
  • Davies M, Nowotka M, Papadatos G, et al. ChEMBL web services: streamlining access to drug discovery data and utilities. Nucleic Acids Res. 2015 Jul;43(W1):W612–W620. doi:10.1093/nar/gkv352.
  • Klebe G. Virtual ligand screening: strategies, perspectives and limitations. Drug Discov Today. 2006 Jul;11(13–14):580–594. doi:10.1016/j.drudis.2006.05.012.
  • Lee M, Kim D. Large-scale reverse docking profiles and their applications. BMC Bioinform. 2012 Dec;13(Suppl 17):S6.
  • PDB (Protein Data Bank). Available from: http://www.rcsb.org/pdb.
  • UniProt (Universal Protein Resource). Available from: http://www.uniprot.org/.
  • TTD (Therapeutic Target Database). Available from: http://bidd.nus.edu.sg/group/cjttd/.
  • sc-PDB. Available from: http://bioinfo-pharma.u-strasbg.fr/scPDB/.
  • PDTD (Protein Drug Target Database). Available from: http://www.dddc.ac.cn/pdtd/.
  • TargetDB. Available from: http://targetdb.pdb.org/.
  • DART (Drug Adverse Reaction Target). Available from: http://bidd.nus.edu.sg/group/drt/dart.asp.
  • DITOP (Drug-Induced Toxicity Related Proteins). Available from: http://bioinf.xmu.edu.cn:8080/databases/DITOP/index.html.
  • SD (Cambridge Structural Database). Available from: http://www.ccdc.cam.ac.uk/.
  • DrugBank. Available from: http://www.drugbank.ca.
  • PubChem. Available from: http://pubchem.ncbi.nlm.nih.gov.
  • ChEMBL. Available from: https://www.ebi.ac.uk/chembldb/index.php.
  • ZINC. Available from: http://zinc.docking.org.
  • Astex diverse set. Available from: http://www.ccdc.cam.ac.uk.
  • Chen YZ, Ung CY. Prediction of potential toxicity and side effect protein targets of a small molecule by a ligand-protein inverse docking approach. J Mol Graph Model. 2001;20(3):199–218.
  • Chen YZ, Zhi DG. Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins. 2001 May 1;43(2):217–226.
  • Kuntz ID, Blaney JM, Oatley SJ, et al. A geometric approach to macromolecule-ligand interactions. J Mol Biol. 1982 Oct 25;161(2):269–288.
  • Desaphy J, Bret G, Rognan D, et al. sc-PDB: a 3D-database of ligandable binding sites–10 years on. Nucleic Acids Res. 2015 Jan;43(Database issue):D399–D404. doi:10.1093/nar/gku928.
  • UniProt C. The universal protein resource (UniProt) in 2010. Nucleic Acids Res. 2010 Jan;38(Database issue):D142–D148. doi:10.1093/nar/gkp846.
  • Gao Z, Li H, Zhang H, et al. PDTD: a web-accessible protein database for drug target identification. BMC Bioinform. 2008;9:104. doi:10.1186/1471-2105-9-104.
  • Wang W, Zhou X, He WL, et al. The interprotein scoring noises in glide docking scores. Proteins: Struct Funct Bioinform. 2012 Jan;80(1):169–183. doi:10.1002/prot.v80.1.
  • Halgren T. New method for fast and accurate binding-site identification and analysis. Chem Biol Drug Des. 2007 Feb;69(2):146–148. doi:10.1111/jpp.2007.69.issue-2.
  • Hartshorn MJ, Verdonk ML, Chessari G, et al. Diverse, high-quality test set for the validation of protein-ligand docking performance. J Med Chem. 2007 Feb 22;50(4):726–741.
  • Schmidtke P, Le Guilloux V, Maupetit J, et al. fpocket: online tools for protein ensemble pocket detection and tracking. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W582–W589.
  • Yang H, Qin C, Li YH, et al. Therapeutic target database update 2016: enriched resource for bench to clinical drug target and targeted pathway information. Nucleic Acids Res. 2016 Jan 4;44(D1):D1069–D1074.
  • Li G-B, Yang -L-L, Xu Y, et al. A combined molecular docking-based and pharmacophore-based target prediction strategy with a probabilistic fusion method for target ranking. J Mol Graph Model. 2013 Jul;44:278–285.
  • Verdonk ML, Cole JC, Hartshorn MJ, et al. Improved protein-ligand docking using GOLD. Proteins: Struct Funct Bioinform. 2003 Sep 1;52(4):609–623.
  • Yang L, Chen J, He L. Harvesting candidate genes responsible for serious adverse drug reactions from a chemical-protein interactome. PLoS Comput Biol. 2009 Jul;5(7):e1000441. doi:10.1371/journal.pcbi.1000509.
  • Zhang J-X, Huang W-J, Zeng J-H, et al. DITOP: drug-induced toxicity related protein database. Bioinformatics. 2007 Jul 1;23(13):1710–1712.
  • Kämper A, Apostolakis J, Rarey M, et al. Fully automated flexible docking of ligands into flexible synthetic receptors using forward and inverse docking strategies. J Chem Inf Model. 2006 Mar–Apr;46(2):903–911. doi:10.1021/ci050467z.
  • Rarey M, Kramer B, Lengauer T, et al. A fast flexible docking method using an incremental construction algorithm. J Mol Biol. 1996 Aug 23;261(3):470–489.
  • Friesner RA, Banks JL, Murphy RB, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004 Mar 25;47(7):1739–1749.
  • Yuriev E, Holien J, Ramsland PA. Improvements, trends, and new ideas in molecular docking: 2012-2013 in review. J Mol Recognit. 2015 Oct;28(10):581–604. doi:10.1002/jmr.2471.
  • Paul N, Kellenberger E, Bret G, et al. Recovering the true targets of specific ligands by virtual screening of the protein data bank. Proteins. 2004 Mar 1;54(4):671–680.
  • Muller P, Lena G, Boilard E, et al. In silico-guided target identification of a scaffold-focused library: 1,3,5-triazepan-2,6-diones as novel phospholipase A2 inhibitors. J Med Chem. 2006 Nov 16;49(23):6768–6778.
  • Li HL, Gao ZT, Kang L, et al. TarFisDock: a web server for identifying drug targets with docking approach. Nucleic Acids Res. 2006 Jul 1;34:W219–W224. doi:10.1093/nar/gkl114.
  • Santiago DN, Pevzner Y, Durand AA, et al. Virtual target screening: validation using kinase inhibitors. J Chem Inf Model. 2012 Aug 27;52(8):2192–2203.
  • Tang Y, Zhu W, Chen K, et al. New technologies in computer-aided drug design: toward target identification and new chemical entity discovery. Drug Discov Today Technol. 2006;3(3):307–313. doi:10.1016/j.ddtec.2006.09.004.
  • TarFisDock (Target Fishing Dock). Available from: http://www.dddc.ac.cn/tarfisdock.
  • idTarget. Available from: http://idtarget.rcas.sinica.edu.tw.
  • ACTP (Autophagic Compound Target Prediction). Available from: http://actp.liu-lab.com.
  • Wang J-C, Chu P-Y, Chen C-M, et al. idTarget: a web server for identifying protein targets of small chemical molecules with robust scoring functions and a divide-and-conquer docking approach. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W393–W399. doi:10.1093/nar/gks496.
  • Schomburg KT, Bietz S, Briem H, et al. Facing the challenges of structure-based target prediction by inverse virtual screening. J Chem Inf Model. 2014 Jun 23;54(6):1676–1686.
  • Vasseur R, Steffenel LA, Vigouroux X, et al. AMIDE - automatic molecular inverse docking engine for large-scale protein targets identification. Int J Adv Life Sci. 2014;6:325–337.
  • Xie T, Zhang L, Zhang S, et al. ACTP: A webserver for predicting potential targets and relevant pathways of autophagy-modulating compounds. Oncotarget. 2016 7(9):10015–10022.
  • Kellenberger E, Foata N, Rognan D. Ranking targets in structure-based virtual screening of three-dimensional protein libraries: methods and problems. J Chem Inf Model. 2008 May;48(5):1014–1025. doi:10.1021/ci800023x.
  • Ye L, He Y, Ye H, et al. Pathway-pathway network-based study of the therapeutic mechanisms by which salvianolic acid B regulates cardiovascular diseases. Chin Sci Bull. 2012 May;57(14):1672–1679. doi:10.1007/s11434-012-5142-y.
  • Zhang Z, Miao L, Lv C, et al. Wentilactone B induces G2/M phase arrest and apoptosis via the Ras/Raf/MAPK signaling pathway in human hepatoma SMMC-7721 cells. Cell Death Dis. 2013 Jun;4:e657.
  • Zhao J, Yang PY, Li F, et al. Therapeutic effects of astragaloside IV on myocardial injuries: multi-target identification and network analysis. Plos One. 2012 Sep 17;7(9):e44938.
  • Yue Q-X, Cao Z-W, Guan S-H, et al. Proteomics characterization of the cytotoxicity mechanism of ganoderic acid D and computer-automated estimation of the possible drug target network. Mol Cell Proteomics. 2008 May;7(5):949–961. doi:10.1074/mcp.M700259-MCP200.
  • Lv CT, Qin WX, Zhu TH, et al. Ophiobolin O isolated from Aspergillus ustus induces G1 arrest of MCF-7 cells through interaction with AKT/GSK3β/cyclin D1 signaling. Mar Drugs. 2015 Jan;13(1):431–443. doi:10.3390/md13010431.
  • Chen X, Zhou H, Liu YB, et al. Database of traditional Chinese medicine and its application to studies of mechanism and to prescription validation. Br J Pharmacol. 2006 Dec;149(8):1092–1103. doi:10.1038/sj.bjp.0706945.
  • Ma C, Tang KL, Liu Q, et al. Calmodulin as a potential target by which berberine induces cell cycle arrest in human hepatoma Bel7402 cells. Chem Biol Drug Des. 2013 Jun;81(6):775–783. doi:10.1111/cbdd.12124.
  • Lu B, Zhao J, Xu L, et al. Identification of molecular target proteins in berberine-treated cervix adenocarcinoma HeLa cells by proteomic and bioinformatic analyses. Phytother Res. 2012 May;26(5):646–656.
  • Feng LX, Jing CJ, Tang KL, et al. Clarifying the signal network of salvianolic acid B using proteomic assay and bioinformatic analysis. Proteomics. 2011 Apr;11(8):1473–1485.
  • Ji ZL, Wang Y, Yu L, et al. In silico search of putative adverse drug reaction related proteins as a potential tool for facilitating drug adverse effect prediction. Toxicol Lett. 2006 Jul 1;164(2):104–112.
  • Ma C, Kang H, Liu Q, et al. Insight into potential toxicity mechanisms of melamine: an in silico study. Toxicology. 2011 May 10;283(2–3):96–100.
  • Wang ZY, Kang H, Ji LL, et al. Proteomic characterization of the possible molecular targets of pyrrolizidine alkaloid isoline-induced hepatotoxicity. Environ Toxicol Phar. 2012 Sep;34(2):608–617.
  • Lu BA, Hu MM, Liu KX, et al. Cytotoxicity of berberine on human cervical carcinoma HeLa cells through mitochondria, death receptor and MAPK pathways, and in-silico drug-target prediction. Toxicol in Vitro. 2010 Sep;24(6):1482–1490.
  • Zhang SD, Lu WQ, Liu XF, et al. Fast and effective identification of the bioactive compounds and their targets from medicinal plants via computational chemical biology approach. Medchemcomm. 2011 Jun;2(6):471–477.
  • Cai JH, Han C, Hu TC, et al. Peptide deformylase is a potential target for anti-Helicobacter pylori drugs: reverse docking, enzymatic assay, and X-ray crystallography validation. Protein Sci. 2006 Sep;15(9):2071–2081.
  • Akbar R, Yam WK. Interaction of ganoderic acid on HIV related target: molecular docking studies. Bioinformation. 2011;7(8):413–417.
  • Lu P, Hontecillas R, Horne WT, et al. Computational modeling-based discovery of novel classes of anti-inflammatory drugs that target lanthionine synthetase C-like protein 2. PLoS One. 2012;7(4):e34643.
  • Eric S, Ke S, Barata T, et al. Target fishing and docking studies of the novel derivatives of aryl-aminopyridines with potential anticancer activity. Bioorg Med Chem. 2012 Sep 1;20(17):5220–5228.
  • Olivero-Verbel J, Cabarcas-Montalvo M, Ortega-Zuniga C. Theoretical targets for TCDD: a bioinformatics approach. Chemosphere. 2010 Aug;80(10):1160–1166.
  • Kozielewicz P, Paradowska K, Eric S, et al. Insights into mechanism of anticancer activity of pentacyclic oxindole alkaloids of Uncaria tomentosa by means of a computational reverse virtual screening and molecular docking approach. Monatsh Chem. 2014 Jul;145(7):1201–1211.
  • Jeong CH, Bode AM, Pugliese A, et al. [6]-Gingerol suppresses colon cancer growth by targeting leukotriene A4 hydrolase. Cancer Res. 2009 Jul 1;69(13):5584–5591.
  • Maldonado-Rojas W, Olivero-Verbel J, Ortega-Zuniga C. Searching of protein targets for alpha lipoic acid. J Brazil Chem Soc. 2011;22(12):2250–2259.
  • Liu XY, Yang XQ, Chen XM, et al. Expression profiling identifies bezafibrate as potential therapeutic drug for lung adenocarcinoma. J Cancer. 2015;6(12):1214–1221.
  • Zhang YW, Guo YS, Bao XQ, et al. Bicyclol promotes toll-like 2 receptor recruiting inosine 5ʹ-monophosphate dehydrogenase II to exert its anti-inflammatory effect. J Asian Nat Prod Res. 2016;8:1–11.
  • Bhattacharjee B, Vijayasarathy S, Karunakar P, et al. Comparative reverse screening approach to identify potential anti-neoplastic targets of saffron functional components and binding mode. APJCP. 2012;13(11):5605–5611.
  • Kumar SP, Parmar VR, Jasrai YT, et al. Prediction of protein targets of kinetin using in silico and in vitro methods: a case study on spinach seed germination mechanism. J Chem Biol. 2015 Jul;8(3):95–105.
  • Savita Deshmukh SBM, Savadatti V. Identification of potential anti-tumorigenic targets for rosemary components using dual reverse screening approaches. IJPBS. 2013;3(1):399–408.
  • Zheng R, Chen TS, Lu T. A comparative reverse docking strategy to identify potential antineoplastic targets of tea functional components and binding mode. Int J Mol Sci. 2011;12(8):5200–5212.
  • Iyer P, Bolla J, Kumar V, et al. In silico identification of targets for a novel scaffold, 2-thiazolylimino-5-benzylidin-thiazolidin-4-one. Mol Divers. 2015 Nov;19(4):855–870.
  • Luo H, Chen J, Shi L, et al. DRAR-CPI: a server for identifying drug repositioning potential and adverse drug reactions via the chemical-protein interactome. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W492–W498.
  • Liu X, Ouyang S, Yu B, et al. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W609–W614.
  • Li WH, Cui T, Hu LH, et al. Cyclic diguanylate monophosphate directly binds to human siderocalin and inhibits its antibacterial activity. Nat Commun. 2015 Sep;6, article number 8330.
  • Shengjun Fan QG, Pan Z, Xin L, et al. Clarifying off-target effects for torcetrapib using network pharmacology and reverse docking approach. BMC Syst Biol. 2012;6, article number 152.
  • Stefan Zahler ST, Totzke F, Kubbutat M, et al. Inverse in silico screening for identification of kinase inhibitor targets. Chem Biol. 2007;14(11):1207–1214.
  • Tietze S, Apostolakis J. GlamDock: development and validation of a new docking tool on several thousand protein-ligand complexes. J Chem Inf Model. 2007 Jul–Aug;47(4):1657–1672.
  • Song Y, Chen W, Kang D, et al. ‘Old friends in new guise’: exploiting privileged structures for scaffold re-evolution/refining. Comb Chem High Throughput Screen. 2014;17(6):536–553.
  • Rognan D. Structure-based approaches to target fishing and ligand profiling. Mol Inform. 2010 Mar;29(3):176–187.
  • Zhao Y, Sanner MF. FLIPDock: docking flexible ligands into flexible receptors. Proteins. 2007 Aug 15;68(3):726–737.
  • Ravindranath PA, Forli S, Goodsell DS, et al. AutoDockFR: advances in protein-ligand docking with explicitly specified binding site flexibility. PLoS Comput Biol. 2015;11(12):e1004586.
  • Huang N, Shoichet BK, Irwin JJ. Benchmarking sets for molecular docking. J Med Chem. 2006 Nov 16;49(23):6789–6801.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.