518
Views
9
CrossRef citations to date
0
Altmetric
Review

The development of biomarkers to reduce attrition rate in drug discovery focused on oncology and central nervous system

, &
Pages 939-956 | Received 20 Sep 2015, Accepted 22 Jul 2016, Published online: 03 Aug 2016

References

  • Scannell JW, Blanckley A, Boldon H, et al. Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov. 2012;11:191–200. doi:10.1038/nrd3681.
  • Jacob WF, Kwak YH. In search of innovative techniques to evaluate pharmaceutical R&D projects. Technovation. 2003;23:291–296. doi:10.1016/S0166-4972(01)00116-X.
  • Dolle RE. Historical overview of chemical library design. Methods Mol Biol. 2011;685:3–25.
  • Mayr LM, Fuerst P. The future of high-throughput screening. J Biomol Screen. 2008;13:443–448. doi:10.1177/1087057108319644.
  • Ferreira LG, Dos Santos RN, Oliva G, et al. Molecular docking and structure-based drug design strategies. Molecules. 2015;20:13384–13421. doi:10.3390/molecules200713384.
  • Tralau-Stewart CJ, Wyatt CA, Kleyn DE, et al. Drug discovery: new models for industry-academic partnerships. Drug Discov Today. 2009;14:95–101. doi:10.1016/j.drudis.2008.10.003.
  • Ghadimi BM, Jo P. Cancer gene profiling for response prediction. Methods Mol Biol. 2016;1381:163–179. doi:10.1007/978-1-4939-3204-7_9.
  • Pammolli F, Magazzini L, Riccaboni M. The productivity crisis in pharmaceutical R&D. Nat Rev Drug Discov. 2011;10:428–438. doi:10.1038/nrd3405.
  • Booth B, Zemmel R. Prospects for productivity. Nat Rev Drug Discov. 2004;3:451–456. doi:10.1038/nrd1384.
  • David E, Tramontin T, Zemmel R. Pharmaceutical R&D: the road to positive returns. Nat Rev Drug Discov. 2009;8:609–610. doi:10.1038/nrd2948.
  • Basavaraj S, Betageri GV. Can formulation and drug delivery reduce attrition during drug discovery and development—review of feasibility, benefits and challenges. Acta Pharmaceutica Sinica B. 2014;4:3–17. doi:10.1016/j.apsb.2013.12.003.
  • DiMasi JA, Feldman L, Seckler A, et al. Trends in risks associated with new drug development: success rates for investigational drugs. Clin Pharmacol Ther. 2010;87:272–277. doi:10.1038/clpt.2009.295.
  • DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ. 2003;22:151–185. doi:10.1016/S0167-6296(02)00126-1.
  • Bakhtiar R. Biomarkers in drug discovery and development. J Pharmacol Toxicol Methods. 2008;57:85–91. doi:10.1016/j.vascn.2007.10.002.
  • Hay M, Thomas DW, Craighead JL, et al. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014;32:40–51. doi:10.1038/nbt.2786.
  • Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3(8):711–715. doi:10.1038/nrd1470.
  • Moreno L, Pearson AD. How can attrition rates be reduced in cancer drug discovery? Expert Opin Drug Discov. 2013;8:363–368. doi:10.1517/17460441.2013.768984.
  • Al-Lazikani B, Banerji U, Workman P. Combinatorial drug therapy for cancer in the post-genomic era. Nat Biotechnol. 2012;30:679–692. doi:10.1038/nbt.2284.
  • Orloff J, Douglas F, Pinheiro J, et al. The future of drug development: advancing clinical trial design. Nat Rev Drug Discov. 2009;8:949–957. doi:10.1038/nrd3025.
  • Lacombe D, Liu Y. The future of clinical research in oncology: where are we heading to? Chin Clin Oncol. 2013;2:9–16. doi:10.3978/j.issn.2304-3865.2012.11.14.
  • Wong CC, Cheng KW, Rigas B. Preclinical predictors of anticancer drug efficacy: critical assessment with emphasis on whether nanomolar potency should be required of candidate agents. J Pharmacol Exp Ther. 2012;341:572–578. doi:10.1124/jpet.112.191957.
  • Hutchinson L, Kirk R. High drug attrition rates–where are we going wrong? Nat Rev Clin Oncol. 2011;8:189–190. doi:10.1038/nrclinonc.2011.34.
  • Williams R. Discontinued drugs in 2010: oncology drugs. Expert Opin Investig Drugs. 2011;20:1479–1496. doi:10.1517/13543784.2011.623697.
  • Williams R. Discontinued drugs in 2011: oncology drugs. Expert Opin Investig Drugs. 2013;22:9–34. doi:10.1517/13543784.2013.739605.
  • Williams R. Discontinued drugs in 2012: oncology drugs. Expert Opin Investig Drugs. 2013;22:1627–1644. doi:10.1517/13543784.2013.847088.
  • Williams R. Discontinued in 2013: oncology drugs. Expert Opin Investig Drugs. 2015;24:95–110. doi:10.1517/13543784.2015.971154.
  • Rubin EH, Gilliland DG. Drug development and clinical trials–the path to an approved cancer drug. Nat Rev Clin Oncol. 2012;9:215–222. doi:10.1038/nrclinonc.2012.22.
  • Olesen J, Gustavsson A, Svensson M, et al. The economic cost of brain disorders in Europe. Eur J Neurol. 2012;19:155–162. doi:10.1111/j.1468-1331.2011.03590.x.
  • Pangalos MN, Schechter LE, Hurko O. Drug development for CNS disorders: strategies for balancing risk and reducing attrition. Nat Rev Drug Discov. 2007;6:521–532. doi:10.1038/nrd2094.
  • Sneader WE. Drug discovery: a history. West Sussex: John Wiley & Sons, Inc; 2005.
  • López-Muñoz F, Baumeister AA, Hawkins MF, et al. The role of serendipity in the discovery of the clinical effects of psychotropic drugs: beyond of the myth. Actas Esp Psiquiatr. 2012;40:34–42.
  • Chin YW, Balunas MJ, Chai HB, et al. Drug discovery from natural sources. Aaps J. 2006;8:239–253. doi:10.1007/BF02854894.
  • Howes MJR, Houghton PJ. Ethnobotanical treatment strategies against Alzheimer’s disease. Curr Alzheimer Res. 2012;9:67–85.
  • Li Y, Lefever MR, Muthu D, et al. Opioid glycopeptide analgesics derived from endogenous enkephalins and endorphins. Future Med Chem. 2012;4:205–226. doi:10.4155/fmc.11.195.
  • Tufts Center for the Study of Drug Development. Longer clinical times are extending time to market for new drugs in US. Tufts CSDD Impact Report. 2005;7:1–4
  • Arrowsmith J, Miller P. Trial watch: phase II and phase III attrition rates 2011–2012. Nature Rev Drug Discov. 2013;12(8):569. doi:10.1038/nrd4090.
  • Abbott NJ. Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis. 2013;36(3):437–449. doi:10.1007/s10545-013-9608-0.
  • Walker I, Newell H. Do molecularly targeted agents in oncology have reduced attrition rates? Nat Rev Drug Discov. 2009;8(1):15–16. doi:10.1038/nrd2758.
  • Denayer T, Stöhr T, Roy MV. Animal models in translational medicine: validation and prediction. New Horiz Transl Med. 2014;2:5–11. doi:10.1016/j.nhtm.2014.08.001.
  • Anderson DC, Kodukula K. Biomarkers in pharmacology and drug discovery. Biochem Pharmacol. 2014;87(1):172–188. doi:10.1016/j.bcp.2013.08.026.
  • Roberds SL, Anderson J, Basi G, et al. BACE knockout mice are healthydespite lacking the primary β-secretase activity in brain: implicationsfor Alzheimer’s disease therapeutics. Hum Mol Genet. 2001;10:1317–1324.
  • Hornig CR, Busse O, Buettner T, et al. CT contrast enhancement on brainscans and blood–CSF barrier disturbances in cerebralischemic infarction. Stroke. 1985;16:268–273.
  • Papadopoulos CM, Tsai SY, Cheatwood JL, et al. Dendritic plasticity in theadult rat following middle cerebral artery occlusion and Nogo-a neutralization. Cereb Cortex. 2006;16:529–536. doi:10.1093/cercor/bhi132.
  • Frank RT, Aboody KS, Najbauer J. Strategies for enhancing antibody delivery to the brain. Biochim Biophys Acta. 2011;1816:191–198. doi:10.1016/j.bbcan.2011.07.002.
  • Lajoie JM, Shusta EV. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu Rev Pharmacol Toxicol. 2015;55:613–631. doi:10.1146/annurev-pharmtox-010814-124852.
  • Pardridge WM. Blood-brain barrier drug delivery of IgG fusion proteins with a transferrin receptor monoclonal antibody. Expert Opin Drug Deliv. 2015;12:207–222. doi:10.1517/17425247.2014.952627.
  • McGonigle P. Animal models of CNS disorders. Biochem Pharmacol. 2014;87:140–149. doi:10.1016/j.bcp.2013.06.016.
  • McGonigle P, Ruggeri B. Animal models of human disease: challenges in enabling translation. Biochem Pharmacol. 2014;87:162–171. doi:10.1016/j.bcp.2013.08.006.
  • Bloom FE, Reilly JF, Redwine JM, et al. Mouse models of humanneuro degenerative disorders: requirements formedication development. Arch Neurol. 2005;62:185–187. doi:10.1001/archneur.62.2.185.
  • Ferri CP, Prince M, Brayne C, et al. Global prevalence of dementia: a Delphi consensus study. The Lancet. 2005;366:2112–2117. doi:10.1016/S0140-6736(05)67889-0.
  • Olson H, Betton G, Robinson D, et al. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol. 2000;32:56–67. doi:10.1006/rtph.2000.1399.
  • Dawson DA, Wadsworth G, Palmer AM. Acomparative assessment of the efficacy and side effect liability of neuroprotective compounds in experimental stroke. Brain Res. 2001;892:344–350.
  • Blennow K. Biomarkers in Alzheimer’s disease drug development. Nat Med. 2010;16(11):1218–1222. doi:10.1038/nm.2221.
  • Petersen RC, Thomas RG, Grundman M. Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med. 2005;352(23):2379–2388. doi:10.1056/NEJMoa050151.
  • Breitfeld P, Groves E, Learn C Tomorrow’s path to improved early-phase oncology drug development. White Paper 2015, [cited 2015 Sep 5]. Available from: http://www.quintiles.com/library/white-papers/tomorrows-path-to-improved-earlyphase-oncology-drug-development.
  • Drucker E, Krapfenbauer K. Pitfalls and limitations in translation from biomarker discovery to clinical utility in predictive and personalised medicine. EPMA J. 2013;4(1):7–17. doi:10.1186/1878-5085-4-7.
  • Report to the president on propelling innovation in drug discovery, development, and evaluation. Executive office of the president president’s council of advisors on science and technology, 2012 [cited 2015 Nov 22]. Available from: https://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-fda-final.pdf
  • Cook D, Brown D, Alexander R, et al. Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat Rev Drug Discov. 2014;13(6):419–431. doi:10.1038/nrd4309.
  • Bustin SA. The reproducibility of biomedical research: sleepers awake. Biomol Detect Quantif. 2014;2:35–42. doi:10.1016/j.bdq.2015.01.002.
  • Poste G. Bring on the biomarkers. Nature. 2011;469:156–157. doi:10.1038/469156a.
  • Ennulat D, Adler S. Recent successes in the identification, development, and qualification of translational biomarkers: the next generation of kidney injury biomarkers. Toxicol Pathol. 2015;43:62–69. doi:10.1177/0192623314554840.
  • Guidance for industry and FDA staff: qualification process for drug development tools, US Food and Drug Administration, 2015 [cited 2016 May 13]. Available from: http://www.fda.gov/cder/guidance/index.htm
  • Sawyers CL. The cancer biomarker problem. Nature. 2008;452:548–552. doi:10.1038/nature06913.
  • Buyse M, Michiels S, Sargent DJ, et al. Integrating biomarkers in clinical trials. Expert Rev Mol Diagn. 2011;11:171–182. doi:10.1586/erm.10.120.
  • Patel S, Ahmed S. Emerging field of metabolomics: big promise for cancer biomarker identification and drug discovery. J Pharm Biomed Anal. 2015;107:63–74. doi:10.1016/j.jpba.2014.12.020.
  • Saito K, Moriyasu F, Sugimoto K, et al. Diagnostic efficacy of gadoxetic acid-enhanced MRI for hepatocellular carcinoma and dysplastic nodule. World J Gastroenterol. 2011;17:3503–3509. doi:10.3748/wjg.v17.i30.3503.
  • Nathan P, Vinayan A. Imaging techniques as predictive and prognostic biomarkers in renal cell carcinoma. Ther Adv Med Oncol. 2013;5:119–131. doi:10.1177/1758834012463624.
  • Moffat BA, Chenevert TL, Lawrence TS, et al. Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci USA. 2005;102:5524–5529. doi:10.1073/pnas.0501532102.
  • Heidari P, Deng F, Esfahani SA, et al. Pharmacodynamic imaging guides dosing of a selective estrogen receptor degrader. Clin Cancer Res. 2015;21:1340–1347. doi:10.1158/1078-0432.CCR-14-1178.
  • Le Large TY, Meijer LL, Mato Prado M, et al. Circulating microRNAs as diagnostic biomarkers for pancreatic cancer. Expert Rev Mol Diagn. 2015;15:1525–1529. doi:10.1586/14737159.2015.1112273.
  • Borgquist S, Zhou W, Jirström K, et al. The prognostic role of HER2 expression in ductal breast carcinoma in situ (DCIS); a population-based cohort study. BMC Cancer. 2015;15:1–10. doi:10.1186/1471-2407-15-1.
  • Fukuoka M, Wu YL, Thongprasert S, et al. Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). J Clin Oncol. 2011;29:2866–2874. doi:10.1200/JCO.2010.33.4235.
  • Wang LH, Pfister TD, Parchment RE, et al. Monitoring drug-induced gammaH2AX as a pharmacodynamic biomarker in individual circulating tumor cells. Clin Cancer Res. 2010;16:1073–1084. doi:10.1158/1078-0432.CCR-09-2799.
  • Spehl TS, Frings L, Hellwig S, et al. Role of semiquantitative assessment of regional binding potential in 123I-FP-CIT SPECT for the differentiation of frontotemporal dementia, dementia with Lewy bodies, and Alzheimer’s dementia. Clin Nucl Med. 2015;40:27–33. doi:10.1097/RLU.0000000000000554.
  • Coleman MR, Davis MH, Rodd JM, et al. Towards the routine use of brain imaging to aid the clinical diagnosis of disorders of consciousness. Brain. 2009;132:2541–2552. doi:10.1093/brain/awp183.
  • Block W, Träber F, von Widdern O, et al. Proton MR spectroscopy of the hippocampus at 3 T in patients with unipolar major depressive disorder: correlates and predictors of treatment response. Int J Neuropsychopharmacol. 2009;12:415–422. doi:10.1017/S1461145708009516.
  • Stefanova E, Wall A, Almkvist O, et al. Longitudinal PET evaluation of cerebral glucose metabolism in rivastigmine treated patients with mild Alzheimer’s disease. J Neural Transm. 2006;113:205–218. doi:10.1007/s00702-005-0312-6.
  • Bousiges O, Cretin B, Lavaux T, et al. Diagnostic value of cerebrospinal fluid biomarkers (Phospho-Ta9181, total-Tau, Aβ42, and Aβ40) in prodromal stage of Alzheimer’s disease and dementia with lewy bodies. J Alzheimer’s Dis. 2016;5:1–5.
  • Kvartsberg H, Duits FH, Ingelsson M, et al. Cerebrospinal fluid levels of the synaptic protein neurogranin correlates with cognitive decline in prodromal Alzheimer’s disease. Alzheimer’s & Dementia. 2015;11:1180–1190. doi:10.1016/j.jalz.2014.10.009.
  • Gilman S, Koller M, Black RS, et al. Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial. Neurology. 2005;64:1553–1562. doi:10.1212/01.WNL.0000159740.16984.3C.
  • Farlow M, Arnold SE, van Dyck CH, et al. Safety and biomarker effects of solanezumab in patients with Alzheimer’s disease. Alzheimer’s & Dementia. 2012;8:261–271. doi:10.1016/j.jalz.2011.09.224.
  • Lang P, Yeow K, Nichols A, et al. Cellular imaging in drug discovery. Nat Rev Drug Discov. 2006;5:343–356. doi:10.1038/nrd2008.
  • Riley RJ, Kenna JG. Cellular models for ADMET predictions and evaluation of drug–drug interactions. Curr Opin Drug Discov Dev. 2004;7:86–99.
  • Willmann JK, Bruggen N, Dinkelborg LM, et al. Molecular imaging in drug development. Nat Rev Drug Discov. 2008;7:592–607. doi:10.1038/nrd2290.
  • Joo I, Lee JM. Recent advances in the imaging diagnosis of hepatocellular carcinoma: value of gadoxetic acid-enhanced MRI. Liver Cancer. 2016;5:67–87. doi:10.1159/000367750.
  • Morgan B. Opportunities and pitfalls of cancer imaging in clinical trials. Nat Rev Clin Oncol. 2011;8:517–527. doi:10.1038/nrclinonc.2011.62.
  • Sinkus R, Van Beers BE, Vilgrain V, et al., Apparent diffusion coefficient from magnetic resonance imaging as a biomarker in oncology drug development. Eur J Cancer. 48(4): 425–431. 2012. 10.1016/j.ejca.2011.11.034.
  • Guo Y, Gao YG, An NY, et al. Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging. 2002;16:172–178. doi:10.1002/jmri.10140.
  • Squillaci E, Manenti G, Cova M, et al. Correlation of diffusion-weighted MR imaging with cellularity of renal tumours. Anticancer Res. 2004;24:4175–4179.
  • Sugahara T, Korogi Y, Kochi M, et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging. 1999;9:53–60.
  • Hamstra DA, Rehemtulla A, Ross BD. Diffusion magnetic resonance imaging: a biomarker for treatment response in oncology. J Clin Oncol. 2007;25:4104–4109. doi:10.1200/JCO.2007.11.9610.
  • Theilmann RJ, Borders R, Trouard TP, et al. Changes in water mobility measured by diffusion MRI predict response of metastatic breast cancer to chemotherapy. Neoplasia. 2004;6:831–837. doi:10.1593/neo.03343.
  • Yang L, Son JB, Ma J, et al. MO-F-CAMPUS-I-05: quantitative ADC measurement of esophageal cancer before and after chemoradiation. Med Phys. 2015;42:3579. doi:10.1118/1.4925471.
  • Xu QG, Xian JF. Role of quantitative magnetic resonance imaging parameters in the evaluation of treatment response in malignant tumors. Chin Med J (Engl). 2015;128:1128–1133. doi:10.4103/0366-6999.155127.
  • Crippa F, Agresti R, Sandri M, et al. 18F-FLT PET/CT as an imaging tool for early prediction of pathological response in patients with locally advanced breast cancer treated with neoadjuvant chemotherapy: a pilot study. Eur J Nucl Med Mol Imaging. 2015;42:818–830. doi:10.1007/s00259-015-2995-8.
  • Shakir A, Aksoy D, Mlynash M, et al. Prognostic value of quantitative diffusion-weighted MRI in patients with traumatic brain injury. J Neuroimaging. 2016;26:103–108. doi:10.1111/jon.12286.
  • Gainor JF, Longo DL, Chabner BA. Pharmacodynamic biomarkers: falling short of the mark? Clin Cancer Res. 2014;20:2587–2594. doi:10.1158/1078-0432.CCR-13-3132.
  • Lefebvre-Lacœuille C, Lacœuille F, Rousseau C, et al. 16α-[18 F]-fluoro-17ß-oestradiol ([18 F] FES): a biomarker for imaging oestrogen receptor expression with positron emission tomography (PET). Médecine Nucléaire. 2015;39:64–70. doi:10.1016/j.mednuc.2015.02.005.
  • Gillis NK, Innocenti F. Evidence required to demonstrate clinical utility of pharmacogenetic testing: the debate continues. Clin Pharmacol Ther. 2014;96:655–657. doi:10.1038/clpt.2014.185.
  • Arrowsmith CH, Bountra C, Fish PV, et al. Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov. 2012;11:384–400. doi:10.1038/nrd3674.
  • Mishra PJ. MicroRNAs as promising biomarkers in cancer diagnostics. Biomark Res. 2014;2:19. doi:10.1186/2050-7771-2-19.
  • Macha MA, Seshacharyulu P, Krishn SR, et al. MicroRNAs (miRNAs) as biomarker(s) for prognosis and diagnosis of gastrointestinal (GI) cancers. Curr Pharm Des. 2014;20:5287–5297.
  • Ulivi P, Zoli W. miRNAs as non-invasive biomarkers for lung cancer diagnosis. Molecules. 2014;19:8220–8237. doi:10.3390/molecules19068220.
  • Wang Y, Gu J, Roth JA, et al. Pathway-based serum microRNA profiling and survival in patients with advanced stage non–small cell lung cancer. Cancer Res. 2013;73:4801–4809. doi:10.1158/0008-5472.CAN-12-3273.
  • Teisseyre A, Gąsiorowska J, Michalak K. Voltage-gated potassium channels Kv1. 3-potentially new molecular target in cancer diagnostics and therapy. Adv Clin Exp Med. 2014;24:517–524. doi:10.17219/acem/22339.
  • Hirsch FR, Varella-Garcia M, Bunn PA Jr, et al. Molecular predictors of outcome with gefitinib in a phase III placebo-controlled study in advanced non-small-cell lung cancer. J Clin Oncol. 2006;24:5034–5042. doi:10.1200/JCO.2006.06.3958.
  • Goossens N, Nakagawa S, Sun X, et al. Cancer biomarker discovery and validation. Transl Cancer Res. 2015;4:256–269. doi:10.3978/j.issn.2218-676X.2015.06.04.
  • Yeh IT. Measuring HER-2 in breast cancer. immunohistochemistry, FISH, or ELISA? Am J Clin Pathol. 2002;117:26–35.
  • Carney WP. The emerging role of monitoring serum HER2/neu oncoprotein levels in women with metastatic breast cancer. Lab Med. 2003;34:58–64. doi:10.1309/TY6M-DWB0-G2BU-6D5F.
  • Cameron D, Casey M, Press M, et al. A phase III randomized comparison of lapatinib plus capecitabine versus capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses. Breast Cancer Res Treat. 2008;112(3):533–543. doi:10.1007/s10549-007-9885-0.
  • Tchou J, Lam L, Li YR, et al. Monitoring serum HER2 levels in breast cancer patients. Springer Plus. 2015;22(4):237. doi:10.1186/s40064-015-1015-6.
  • Carney WP, Bernhardt D, Jasani B. Circulating HER2 extracellular domain: a specific and quantitative biomarker of prognostic value in all breast cancer patients? Biomark Cancer. 2013;5:31–39. doi:10.4137/BIC.S12389.
  • Ingold Heppner B, Behrens HM, Balschun K, et al. HER2/neu testing in primary colorectal carcinoma. Br J Cancer. 2014;111:1977–1984. doi:10.1038/bjc.2014.483.
  • Schwab CL, English DP, Roque DM, et al. Neratinib shows efficacy in the treatment of HER2/neu amplified uterine serous carcinoma in vitro and in vivo. Gynecol Oncol. 2014;135:142–148. doi:10.1016/j.ygyno.2014.08.006.
  • Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350:2129–2139. doi:10.1056/NEJMoa040938.
  • Paez JG, Jänne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304:1497–1500. doi:10.1126/science.1099314.
  • John T, Liu G, Tsao MS. Overview of molecular testing in non-small-cell lung cancer: mutational analysis, gene copy number, protein expression and other biomarkers of EGFR for the prediction of response to tyrosine kinase inhibitors. Oncogene. 2009;28:14–23. doi:10.1038/onc.2009.197.
  • Douillard JY, Shepherd FA, Hirsh V, et al. Molecular predictors of outcome with gefitinib and docetaxel in previously treated non-small-cell lung cancer: data from the randomized phase III INTEREST trial. J Clin Oncol. 2010;28:744–752. doi:10.1200/JCO.2009.24.3030.
  • Zhu CQ, da Cunha Santos G, Ding K, et al. Role of KRAS and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canada Clinical Trials Group Study BR.21. J Clin Oncol. 2008;26:4268–4275. doi:10.1200/JCO.2007.14.8924.
  • Hirsch FR, Varella-Garcia M, Bunn PA Jr, et al. Role of KRAS and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canada clinical trials group study BR.21. J Clin Oncol. 2008;26:4268–4275. doi:10.1200/JCO.2007.14.8924.
  • Hirsch FR, Varella-Garcia M, Cappuzzo F. Predictive value of EGFR and HER2 overexpression in advanced non-small-cell lung cancer. Oncogene. 2009;28:S32–7. doi:10.1038/onc.2009.199.
  • Ludwig JA, Weinstein JN. Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer. 2005;5:845–856. doi:10.1038/nrc1739.
  • Hirsch FR, Herbst RS, Olsen C, et al. Increased EGFR gene copy number detected by fluorescent in situ hybridization predicts outcome in non-small-cell lung cancer patients treated with cetuximab and chemotherapy. J Clin Oncol. 2008;26:3351–3357. doi:10.1200/JCO.2007.14.0111.
  • Jia J, Cui Y, Lu M, et al. The relation of EGFR expression by immunohistochemical staining and clinical response of combination treatment of nimotuzumab and chemotherapy in esophageal squamous cell carcinoma. Clin Transl Oncol. 2016;18:592–598. doi:10.1007/s12094-015-1406-8.
  • Coate LE, John T, Tsao MS, et al. Molecular predictive and prognostic markers in non-small-cell lung cancer. Lancet Oncol. 2009;10:1001–1010. doi:10.1016/S1470-2045(09)70155-X.
  • Tian Y, Ma Z, Chen Z, et al. Clinicopathological and prognostic value of Ki-67 expression in bladder cancer: a systematic review and meta-analysis. PLoS ONE. 2016;11. doi:10.1371/journal.pone.015889.
  • Bauer S, Joensuu H. Emerging agents for the treatment of advanced, imatinib-resistant gastrointestinal stromal tumors: current status and future directions. Drugs. 2015;75:1323–1334. doi:10.1007/s40265-015-0440-8.
  • Gao J, Dang Y, Sun N, et al. C-KIT mutations were closely associated with the response to Imatinib in Chinese advanced gastrointestinal stromal tumor patients. Med Oncol. 2012;29:3039–3045. doi:10.1007/s12032-012-0308-7.
  • Zhang SY, Zhang SQ, Nagaraju GP, et al. Biomarkers for personalized medicine in GI cancers. Mol Aspects Med. 2015;45:14–27. doi:10.1016/j.mam.2015.06.002.
  • Devriese LA, Voest EE, Beijnen JH, et al. Circulating tumor cells as pharmacodynamic biomarker in early clinical oncological trials. Cancer Treat Rev. 2011;37:579–589. doi:10.1016/j.ctrv.2011.04.006.
  • Yap TA, Lorente D, Omlin A, et al. Circulating tumor cells: a multifunctional biomarker. Clin Cancer Res. 2014;20:2553–2568. doi:10.1158/1078-0432.CCR-13-2664.
  • Lee RJ, Saylor PJ, Michaelson MD, et al. A dose-ranging study of cabozantinib in men with castration-resistant prostate cancer and bone metastases. Clin Cancer Res. 2013;19:3088–3094. doi:10.1158/1078-0432.CCR-13-0319.
  • Highlights of prescribing information. FDA Public Health Advisory. Washington, DC; [cited 2016 May 13]. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/202008s000lbl.pdf
  • Highlights of prescribing information. FDA Public Health Advisory. Washington, DC; [cited 2016 May 13]. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/203137s000lbl.pdf
  • Highlights of prescribing information. FDA Public Health Advisory. Washington, DC; [cited 2016 May 13. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/204677s000lbl.pdf)
  • Chandler DJ. Something’s got to give: psychiatric disease on the rise and novel drug development on the decline. Drug Discov Today. 2013;18:202–206. doi:10.1016/j.drudis.2012.08.003.
  • Borsook D, Becerra L, Hargreaves RJ. A role for fMRI in CNS drug development. Nat Rev Drug Discov. 2006;5:411–424. doi:10.1038/nrd2027.
  • Hargreaves RJ. The role of molecular imaging in drug discovery and development. Clin Pharmacol Ther. 2008;83:349–353. doi:10.1038/sj.clpt.6100467.
  • Wise RG, Tracey I. The role of fMRI in drug discovery. J Magn Reson Imaging. 2006;23:862–876. doi:10.1002/jmri.20584.
  • Dubin MJ, Mao X, Banerjee S, et al. Elevated prefrontal cortex GABA in patients with major depressive disorder after TMS treatment measured with proton magnetic resonance spectroscopy. ‎J Psychiatry Neurosci. 2016;41:1–9. doi:10.1503/jpn.150223.
  • Reivich M, Kuhl D, Wolf A, et al. The [18F] fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res. 1979;44:127–137.
  • Mega MS, Dinov ID, Porter V, et al. Metabolic patterns associated with the clinical response to galantamine therapy: a fludeoxyglucose F 18 positron emission tomographic study. Arch Neurol. 2005;62:721–728. doi:10.1001/archneur.62.5.721.
  • Kramer MS, Cutler N, Feighner J, et al. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science. 1998;281:1640–1645.
  • Fagan AM. CSF biomarkers of Alzheimer’s disease: impact on disease concept, diagnosis, and clinical trial design. Adv Geriatr. 2014;2014:1–14. doi:10.1155/2014/302712.
  • Handels RL, Joore MA, Vos SJ, et al. Added prognostic value of cerebrospinal fluid biomarkers in predicting decline in memory clinic patients in a prospective cohort. J Alzheimer’s Dis. 2016;52:875–885. doi:10.3233/JAD-151120.
  • Fjell AM, Walhovd KB, Fennema-Notestine C, et al. Alzheimer’s disease neuroimaging initiative. CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer’s disease. J Neurosci. 2010;30:2088–2101. doi:10.1523/JNEUROSCI.3785-09.2010.
  • Tarawneh R, D’Angelo G, Crimmins D, et al. Diagnostic and prognostic utility of the synaptic marker neurogranin in Alzheimer disease. JAMA Neurology. 2016;73:561–571. doi:10.1001/jamaneurol.2016.0086.
  • DeKosky ST, Golde T. Cerebrospinal biomarkers in Alzheimer disease—potential roles as markers of prognosis and neuroplasticity. JAMA Neurology. 2016;73:508–510. doi:10.1001/jamaneurol.2016.0090.
  • Lovestone S, Davis DR, Webster MT, et al. Lithium reduces tau phosphorylation: effects in living cells and in neurons at therapeutic concentrations. Biol Psychiatry. 1999;45:995–1003. doi:10.1016/S0006-3223(98)00183-8.
  • Takahashi M, Yasutake K, Tomizawa K. Lithium inhibits neurite growth and tau protein kinase I/glycogen synthase kinase-3b-dependent phosphorylation of juvenile tau in cultured hippocampal neurons. J Neurochem. 1999;73:2073–2083.
  • Hampel H, Ewers M, Bürger K, et al. Lithium trial in Alzheimer’s disease: a randomized, single-blind, placebo-controlled, multicenter 10-week study. J Clin Psychiatry. 2009;70:922–931.
  • Hesse C, Rosengren L, Andreasen N, et al. Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke. Neurosci Lett. 2001;297:187–190.
  • Zetterberg H, Hietala MA, Jonsson M, et al. Neurochemical aftermath of amateur boxing. Arch Neurol. 2006;63:1277–1280. doi:10.1001/archneur.63.9.1277.
  • Holmes C, Boche D, Wilkinson D, et al. Long-term effects of Aβ42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. The Lancet. 2008;372:216–223. doi:10.1016/S0140-6736(08)61075-2.
  • Hampel H, Frank R, Broich K, et al. Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov. 2010;9:560–574. doi:10.1038/nrd3115.
  • Lanz TA, Hosley JD, Adams WJ, et al. Studies of Aβ pharmacodynamics in the brain, cerebrospinal fluid, and plasma in young (plaque-free) Tg2576 mice using the γ-secretase inhibitor N2-[(2S)-2-(3, 5-difluorophenyl)-2-hydroxyethanoyl]-N1-[(7S)-5-methyl-6-oxo-6, 7-dihydro-5H-dibenzo [b, d] azepin-7-yl]-L-alaninamide (LY-411575). J Pharmacol Exp Ther. 2004;309:49–55. doi:10.1124/jpet.103.060715.
  • Mayeux R, Schupf N. Blood-based biomarkers for Alzheimer’s disease: plasma Aβ40 and Aβ42, and genetic variants. Neurobiol Aging. 2011;32:1–14. doi:10.1016/j.neurobiolaging.2010.09.008.
  • Goossens N, Nakagawa S, Sun X, et al. Cancer biomarker discovery and validation. Transl Cancer Res. 2015;4:256–269. doi:10.3978/j.issn.2218-676X.2015.06.04.
  • Chau CH, Rixe O, McLeod H, et al. Validation of analytic methods for biomarkers used in drug development. Clin Cancer Res. 2008;14:5967–5976. doi:10.1158/1078-0432.CCR-07-4535.
  • Mandrekar SJ, Sargent DJ. Predictive biomarker validation in practice: lessons from real trials. Clin Trials. 2010;7:567–573. doi:10.1177/1740774510368574.
  • Mandrekar SJ, Sargent DJ. Clinical trial designs for predictive biomarker validation: one size does not fit all. J Biopharm Stat. 2009;19:530–542. doi:10.1080/10543400902802458.
  • Dietel M, Ellis IO, Höfler H, et al. Comparison of automated silver enhanced in situ hybridisation (SISH) and fluorescence ISH (FISH) for the validation of HER2 gene status in breast carcinoma according to the guidelines of the American Society of Clinical Oncology and the College of American Pathologists. Virchows Archiv. 2007;451:19–25. doi:10.1007/s00428-007-0424-5.
  • Rüschoff J, Dietel M, Baretton G, et al. HER2 diagnostics in gastric cancer—guideline validation and development of standardized immunohistochemical testing. Virchows Archiv. 2010;457:299–307. doi:10.1007/s00428-010-0952-2.
  • Woodcock J. The prospects for “personalized medicine” in drug development and drug therapy. Clin Pharmacol Ther. 2007;81:164–169. doi:10.1038/sj.clpt.6100063.
  • Batrla R, Jordan BWM. Personalized health care beyond oncology: new indications for immunoassay-based companion diagnostics. Ann N Y Acad Sci. 2015;1346:71–80. doi:10.1111/nyas.12754.
  • Novelli G, Ciccacci C, Borgiani P, et al. Genetic tests and genomic biomarkers: regulation, qualification and validation. Clin Cases Miner Bone Metab. 2008;5:149–154.
  • Wilkinson GR. Drug metabolism and variability among patients in drug response. N Engl J Med. 2005;352:2211–2221. doi:10.1056/NEJMra032424.
  • Jain KK. Drug metabolism and variability among patients in drug response. N Engl J Med. 2005;352:2211–2221. doi:10.1056/NEJMra032424.
  • Cavalier E. General and personalized approach of biomarkers. Rev Med Liege. 2015;70:257–261.
  • Sandercock PA. Does personalized medicine exist and can you test it in a clinical trial? Int J Stroke. 2015;10:994–999. doi:10.1111/ijs.12597.
  • Fujiwara Y, Minami H. An overview of the recent progress in irinotecan pharmacogenetics. Pharmacogenomics. 2010;11:391–406. doi:10.2217/pgs.10.19.
  • Sasseville VG, Mansfield KG, Brees DJ, et al. Safety biomarkers in preclinical development: translational potential. Vet Pathol. 2014;51:281–291. doi:10.1177/0300985813505117.
  • Waring MJ, Arrowsmith J, Leach AR, et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov. 2015;14:475–486. doi:10.1038/nrd4609.
  • Parker JL, Lushina N, Bal PS, et al. Impact of biomarkers on clinical trial risk in breast cancer. Breast Cancer Res Treat. 2012;136:179–185. doi:10.1007/s10549-012-2247-6.
  • Saeidnia S, Abdollahi M. Toxicological and pharmacological concerns on oxidative stress and related diseases. Toxicol Appl Pharmacol. 2013;273:442–455. doi:10.1016/j.taap.2013.09.031.
  • Saeidnia S, Abdollahi M. Antioxidants: friends or foe in prevention or treatment of cancer: the debate of the century. Toxicol Appl Pharmacol. 2013;271:49–63. doi:10.1016/j.taap.2013.05.004.
  • Jafari S, Abdollahi M, Saeidnia S. Personalized medicine: a confluence of traditional and contemporary medicine. Altern Ther Health Med. 2014;20:31–40.
  • Falconi A, Lopes G, Parker JL. Biomarkers and receptor targeted therapies reduce clinical trial risk in non-small-cell lung cancer. J Thorac Oncol. 2014;9:163–169. doi:10.1097/JTO.0000000000000075.
  • Stephenson D, Hu MT, Romero K, et al. Precompetitive data sharing as a catalyst to address unmet needs in parkinson’s disease1. J Parkinsons Dis. 2015;5:581–594. doi:10.3233/JPD-150570.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.