703
Views
17
CrossRef citations to date
0
Altmetric
Review

Using high-content screening technology for studying drug-induced hepatotoxicity in preclinical studies

, &
Pages 201-211 | Received 25 Sep 2016, Accepted 09 Dec 2016, Published online: 21 Dec 2016

References

  • Bjornsson ES. Drug-induced liver injury: an overview over the most critical compounds. Arch Toxicol. 2015;89(3):327–334. DOI:10.1007/s00204-015-1456-2
  • Gomez-Lechon MJ, Tolosa L, Donato MT. Metabolic activation and drug-induced liver injury: in vitro approaches for the safety risk assessment of new drugs. J Appl Toxicol. 2016;36(6):752–768. DOI:10.1002/jat.3277
  • Lewis DF, Ioannides C, Parke DV. Cytochromes p450 and species differences in xenobiotic metabolism and activation of carcinogen. Environ Health Perspect. 1998;106(10):633–641.
  • Park BK, Laverty H, Srivastava A, et al. Drug bioactivation and protein adduct formation in the pathogenesis of drug-induced toxicity. Chem Biol Interact. 2011;192(1–2):30–36. DOI:10.1016/j.cbi.2010.09.011
  • Donato MT, Jover R, Gomez-Lechon MJ. Hepatic cell lines for drug hepatotoxicity testing: limitations and strategies to upgrade their metabolic competence by gene engineering. Curr Drug Metab. 2013;14(9):946–968.
  • Godoy P, Hewitt NJ, Albrecht U, et al. Recent advances in 2d and 3d in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and adme. Arch Toxicol. 2013;87(8):1315–1530. DOI:10.1007/s00204-013-1078-5
  • Gomez-Lechon MJ, Tolosa L, Conde I, et al. Competency of different cell models to predict human hepatotoxic drugs. Expert Opin Drug Metab Toxicol. 2014;10(11):1553–1568. DOI:10.1517/17425255.2014.967680
  • Xu JJ, Diaz D, O’Brien PJ. Applications of cytotoxicity assays and pre-lethal mechanistic assays for assessment of human hepatotoxicity potential. Chem Biol Interact. 2004;150(1):115–128. DOI:10.1016/j.cbi.2004.09.011
  • Abraham VC, Towne DL, Waring JF, et al. Application of a high-content multiparameter cytotoxicity assay to prioritize compounds based on toxicity potential in humans. J Biomol Screen. 2008;13(6):527–537. DOI:10.1177/1087057108318428
  • Tolosa L, Gomez-Lechon MJ, Donato MT. High-content screening technology for studying drug-induced hepatotoxicity in cell models. Arch Toxicol. 2015;89(7):1007–1022. DOI:10.1007/s00204-015-1503-z.
  • van Vliet E, Daneshian M, Beilmann M, et al. Current approaches and future role of high content imaging in safety sciences and drug discovery. Altex. 2014;31(4):479–493. DOI:10.14573/altex.1405271
  • Persson M, Loye AF, Jacquet M, et al. High-content analysis/screening for predictive toxicology: application to hepatotoxicity and genotoxicity. Basic Clin Pharmacol Toxicol. 2014;115(1):18–23. DOI:10.1111/bcpt.12200
  • Zanella F, Lorens JB, Link W. High content screening: seeing is believing. Trends Biotechnol. 2010;28(5):237–245. DOI:10.1016/j.tibtech.2010.02.005
  • Kim JA, Han E, Eun CJ, et al. Real-time concurrent monitoring of apoptosis, cytosolic calcium, and mitochondria permeability transition for hypermulticolor high-content screening of drug-induced mitochondrial dysfunction-mediated hepatotoxicity. Toxicol Lett. 2012;214(2):175–181. DOI:10.1016/j.toxlet.2012.08.027
  • O’Brien PJ, Irwin W, Diaz D, et al. High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening. Arch Toxicol. 2006;80(9):580–604. DOI:10.1007/s00204-006-0091-3.
  • Tolosa L, Pinto S, Donato MT, et al. Development of a multiparametric cell-based protocol to screen and classify the hepatotoxicity potential of drugs. Toxicol Sci. 2012;127(1):187–198. DOI:10.1093/toxsci/kfs083
  • Leist M, Lidbury BA, Yang C, et al. Novel technologies and an overall strategy to allow hazard assessment and risk prediction of chemicals, cosmetics, and drugs with animal-free methods. Altex. 2012;29(4):373–388.
  • Foldes G, Mioulane M. High-content imaging and analysis of pluripotent stem cell-derived cardiomyocytes. Methods Mol Biol. 2013;1052:29–39. DOI:10.1007/7651_2013_25
  • Buchser W, Collins M, Garyantes T, et al. Assay development guidelines for image-based high content screening, high content analysis and high content imaging. In: Sittampalam GS, Coussens NP, Nelson H, et al. editors. Assay guidance manual. Bethesda (MD):Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004.
  • Inglese J, Johnson RL, Simeonov A, et al. High-throughput screening assays for the identification of chemical probes. Nat Chem Biol. 2007;3(8):466–479. DOI:10.1038/nchembio.2007.17
  • Tsiper MV, Sturgis J, Avramova LV, et al. Differential mitochondrial toxicity screening and multi-parametric data analysis. Plos One. 2012;7(10):e45226. DOI:10.1371/journal.pone.0045226
  • van de Water FM, Havinga J, Ravesloot WT, et al. High content screening analysis of phospholipidosis: validation of a 96-well assay with cho-k1 and hepg2 cells for the prediction of in vivo based phospholipidosis. Toxicol In Vitro. 2011;25(8):1870–1882. DOI:10.1016/j.tiv.2011.05.026.
  • Westerink WM, Schirris TJ, Horbach GJ, et al. Development and validation of a high-content screening in vitro micronucleus assay in cho-k1 and hepg2 cells. Mutat Res. 2011;724(1–2):7–21. DOI:10.1016/j.mrgentox.2011.05.007
  • Xu JJ, Henstock PV, Dunn MC, et al. Cellular imaging predictions of clinical drug-induced liver injury. Toxicol Sci. 2008;105(1):97–105. DOI:10.1093/toxsci/kfn109.
  • Dykens JA, Jamieson JD, Marroquin LD, et al. In vitro assessment of mitochondrial dysfunction and cytotoxicity of nefazodone, trazodone, and buspirone. Toxicol Sci. 2008;103(2):335–345. DOI:10.1093/toxsci/kfn056
  • Tolosa L, Carmona A, Castell JV, et al. High-content screening of drug-induced mitochondrial impairment in hepatic cells: effects of statins. Arch Toxicol. 2015;89(10):1847–1860. DOI:10.1007/s00204-014-1334-3
  • Tolosa L, Gomez-Lechon MJ, Perez-Cataldo G, et al. Hepg2 cells simultaneously expressing five p450 enzymes for the screening of hepatotoxicity: identification of bioactivable drugs and the potential mechanism of toxicity involved. Arch Toxicol. 2013;87(6):1115–1127. DOI:10.1007/s00204-013-1012-x
  • Cosgrove BD, King BM, Hasan MA, et al. Synergistic drug-cytokine induction of hepatocellular death as an in vitro approach for the study of inflammation-associated idiosyncratic drug hepatotoxicity. Toxicol Appl Pharmacol. 2009;237(3):317–330. DOI:10.1016/j.taap.2009.04.002
  • Pernelle K, Le Guevel R, Glaise D, et al. Automated detection of hepatotoxic compounds in human hepatocytes using heparg cells and image-based analysis of mitochondrial dysfunction with jc-1 dye. Toxicol Appl Pharmacol. 2011;254(3):256–266. DOI:10.1016/j.taap.2011.04.018
  • Apostolova N, Gomez-Sucerquia LJ, Moran A, et al. Enhanced oxidative stress and increased mitochondrial mass during efavirenz-induced apoptosis in human hepatic cells. Br J Pharmacol. 2010;160(8):2069–2084. DOI:10.1111/j.1476-5381.2010.00866.x
  • Persson M, Loye AF, Mow T, et al. A high content screening assay to predict human drug-induced liver injury during drug discovery. J Pharmacol Toxicol Methods. 2013;68(3):302–313. DOI:10.1016/j.vascn.2013.08.001
  • Ye N, Qin J, Shi W, et al. Cell-based high content screening using an integrated microfluidic device. Lab Chip. 2007;7(12):1696–1704. DOI:10.1039/b711513j
  • Donato MT, Tolosa L, Jimenez N, et al. High-content imaging technology for the evaluation of drug-induced steatosis using a multiparametric cell-based assay. J Biomol Screen. 2012;17(3):394–400. DOI:10.1177/1087057111427586
  • Fujimura H, Murakami N, Kurabe M, et al. In vitro assay for drug-induced hepatosteatosis using rat primary hepatocytes, a fluorescent lipid analog and gene expression analysis. J Appl Toxicol. 2009;29(4):356–363. DOI:10.1002/jat.1420
  • Pradip A, Steel D, Jacobsson S, et al. High content analysis of human pluripotent stem cell derived hepatocytes reveals drug induced steatosis and phospholipidosis. Stem Cells Int. 2016;2016:2475631. DOI:10.1155/2016/1243659
  • Wink S, Hiemstra S, Herpers B, et al. High-content imaging-based bac-gfp toxicity pathway reporters to assess chemical adversity liabilities. Arch Toxicol. 2016. DOI:10.1007/s00204-016-1781-0
  • Wink S, Hiemstra S, Huppelschoten S, et al. Quantitative high content imaging of cellular adaptive stress response pathways in toxicity for chemical safety assessment. Chem Res Toxicol. 2014;27(3):338–355. DOI:10.1021/tx4004038
  • Shariff A, Kangas J, Coelho LP, et al. Automated image analysis for high-content screening and analysis. J Biomol Screen. 2010;15(7):726–734. DOI:10.1177/1087057110370894
  • Chen M, Tung CW, Shi Q, et al. A testing strategy to predict risk for drug-induced liver injury in humans using high-content screen assays and the ‘rule-of-two’ model. Arch Toxicol. 2014;88(7):1439–1449. DOI:10.1007/s00204-014-1276-9
  • Giuliano KA, Haskins JR, Taylor DL. Advances in high content screening for drug discovery. Assay Drug Dev Technol. 2003;1(4):565–577. DOI:10.1089/154065803322302826
  • Gomez-Lechon MJ, Donato MT, Castell JV, et al. Human hepatocytes in primary culture: the choice to investigate drug metabolism in man. Curr Drug Metab. 2004;5(5):443–462.
  • Gomez-Lechon MJ, O’Connor JE, Lahoz A, et al. Identification of apoptotic drugs: multiparametric evaluation in cultured hepatocytes. Curr Med Chem. 2008;15(20):2071–2085.
  • Hewitt NJ, Lechon MJ, Houston JB, et al. Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab Rev. 2007;39(1):159–234. DOI:10.1080/03602530601093489
  • De Bruyn T, Sempels W, Snoeys J, et al. Confocal imaging with a fluorescent bile acid analogue closely mimicking hepatic taurocholate disposition. J Pharm Sci. 2014;103(6):1872–1881. DOI:10.1002/jps.23933
  • Donato MT, Lahoz A, Castell JV, et al. Cell lines: a tool for in vitro drug metabolism studies. Curr Drug Metab. 2008;9(1):1–11.
  • Guo L, Dial S, Shi L, et al. Similarities and differences in the expression of drug-metabolizing enzymes between human hepatic cell lines and primary human hepatocytes. Drug Metab Dispos. 2011;39(3):528–538. DOI:10.1124/dmd.110.035873
  • Gomez-Lechon MJ, Tolosa L. Human hepatocytes derived from pluripotent stem cells: a promising cell model for drug hepatotoxicity screening. Arch Toxicol. 2016;90(9):2049–2061. DOI:10.1007/s00204-016-1756-1
  • Yi F, Liu GH, Izpisua Belmonte JC. Human induced pluripotent stem cells derived hepatocytes: rising promise for disease modeling, drug development and cell therapy. Protein Cell. 2012;3(4):246–250. DOI:10.1007/s13238-012-2918-4
  • Katsuda T, Sakai Y, Ochiya T. Induced pluripotent stem cell-derived hepatocytes as an alternative to human adult hepatocytes. J Stem Cells. 2012;7(1):1–17.
  • Medine CN, Lucendo-Villarin B, Storck C, et al. Developing high-fidelity hepatotoxicity models from pluripotent stem cells. Stem Cells Transl Med. 2013;2(7):505–509. DOI:10.5966/sctm.2012-0138
  • Grimm FA, Iwata Y, Sirenko O, et al. High-content assay multiplexing for toxicity screening in induced pluripotent stem cell-derived cardiomyocytes and hepatocytes. Assay Drug Dev Technol. 2015;13(9):529–546. DOI:10.1089/adt.2015.659
  • Dragovic S, Vermeulen NP, Gerets HH, et al. Evidence-based selection of training compounds for use in the mechanism-based integrated prediction of drug-induced liver injury in man. Arch Toxicol. 2016;90:2979–3003. DOI:10.1007/s00204-016-1845-1.
  • Abraham VC, Taylor DL, Haskins JR. High content screening applied to large-scale cell biology. Trends Biotechnol. 2004;22(1):15–22. DOI:10.1016/j.tibtech.2003.10.012
  • Shahane SA, Huang R, Gerhold D, et al. Detection of phospholipidosis induction: a cell-based assay in high-throughput and high-content format. J Biomol Screen. 2014;19(1):66–76. DOI:10.1177/1087057113502851
  • Garside H, Marcoe KF, Chesnut-Speelman J, et al. Evaluation of the use of imaging parameters for the detection of compound-induced hepatotoxicity in 384-well cultures of hepg2 cells and cryopreserved primary human hepatocytes. Toxicol In Vitro. 2014;28(2):171–181. DOI:10.1016/j.tiv.2013.10.015
  • Saito J, Okamura A, Takeuchi K, et al. High content analysis assay for prediction of human hepatotoxicity in heparg and hepg2 cells. Toxicol In Vitro. 2016;33:63–70. DOI:10.1016/j.tiv.2016.02.019
  • Schurdak ME, Vernetti LA, Abel SJ, et al. Adaptation of an in vitro phospholipidosis assay to an automated image analysis system. Toxicol Mech Methods. 2007;17(2):77–86. DOI:10.1080/15376510600860185
  • Feng B, Xu JJ, Bi YA, et al. Role of hepatic transporters in the disposition and hepatotoxicity of a her2 tyrosine kinase inhibitor cp-724,714. Toxicol Sci. 2009;108(2):492–500. DOI:10.1093/toxsci/kfp033
  • Xu JJ, Dunn MC, Smith AR, et al. Assessment of hepatotoxicity potential of drug candidate molecules including kinase inhibitors by hepatocyte imaging assay technology and bile flux imaging assay technology. Methods Mol Biol. 2012;795:83–107. DOI:10.1007/978-1-61779-337-0_6
  • Germano D, Uteng M, Pognan F, et al. Determination of liver specific toxicities in rat hepatocytes by high content imaging during 2-week multiple treatment. Toxicol In Vitro. 2015;30(1 Pt A):79–94. DOI:10.1016/j.tiv.2014.05.009
  • Tolosa L, Gomez-Lechon MJ, Lopez S, et al. Human upcyte hepatocytes: characterization of the hepatic phenotype and evaluation for acute and long-term hepatotoxicity routine testing. Toxicol Sci. 2016;152(1):214–229. DOI:10.1093/toxsci/kfw078
  • Tolosa L, Gomez-Lechon MJ, Jimenez N, et al. Advantageous use of heparg cells for the screening and mechanistic study of drug-induced steatosis. Toxicol Appl Pharmacol. 2016;302:1–9. DOI:10.1016/j.taap.2016.04.007
  • Sirenko O, Hesley J, Rusyn I, et al. High-content assays for hepatotoxicity using induced pluripotent stem cell-derived cells. Assay Drug Dev Technol. 2014;12(1):43–54. DOI:10.1089/adt.2013.520.
  • Ranade AR, Wilson MS, McClanahan AM, et al. High content imaging and analysis enable quantitative in situ assessment of cyp3a4 using cryopreserved differentiated heparg cells. J Toxicol. 2014;2014:291054. DOI:10.1155/2014/291054
  • McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol. 2006;16(14):R551–R560. DOI:10.1016/j.cub.2006.06.054
  • Tait SW, Green DR. Mitochondria and cell signalling. J Cell Sci. 2012;125(Pt 4):807–815. DOI:10.1242/jcs.099234
  • Begriche K, Massart J, Robin MA, et al. Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. J Hepatol. 2011;54(4):773–794. DOI:10.1016/j.jhep.2010.11.006
  • Pessayre D, Fromenty B, Berson A, et al. Central role of mitochondria in drug-induced liver injury. Drug Metab Rev. 2012;44(1):34–87. DOI:10.3109/03602532.2011.604086
  • Wewering F, Jouy F, Wissenbach DK, et al. Characterization of chemical-induced sterile inflammation in vitro: application of the model compound ketoconazole in a human hepatic co-culture system. Arch Toxicol. 2016. DOI:10.1007/s00204-016-1686-y
  • Tolosa L, Donato MT, Perez-Cataldo G, et al. Upgrading cytochrome p450 activity in hepg2 cells co-transfected with adenoviral vectors for drug hepatotoxicity assessment. Toxicol In Vitro. 2012;26(8):1272–1277. DOI:10.1016/j.tiv.2011.11.008
  • Fogel AI, Martin SE, Hasson SA. Application of imaging-based assays in microplate formats for high-content screening. Methods Mol Biol. 2016;1439:273–304. DOI:10.1007/978-1-61779-337-0_6
  • Fraietta I, Gasparri F. The development of high-content screening (hcs) technology and its importance to drug discovery. Expert Opin Drug Discov. 2016;11(5):501–514. DOI:10.1517/17460441.2016.1165203.
  • Zock JM. Applications of high content screening in life science research. Comb Chem High Throughput Screen. 2009;12(9):870–876.
  • O’Brien PJ. High-content analysis in toxicology: screening substances for human toxicity potential, elucidating subcellular mechanisms and in vivo use as translational safety biomarkers. Basic Clin Pharmacol Toxicol. 2014;115(1):4–17. DOI:10.1111/bcpt.12227
  • Bale SS, Vernetti L, Senutovitch N, et al. In vitro platforms for evaluating liver toxicity. Exp Biol Med (Maywood). 2014;239(9):1180–1191. DOI:10.1177/1535370214531872
  • Cyprotex. [cited 2016 Nov 08]. Available from: www.cyprotex.com
  • HCS Pharma. [cited 2016 Nov 09]. Available from: hcs-pharma.com
  • Evotec. [cited 2016 Nov 08]. Available from: www.evotec.com
  • Fluofarma. [cited 2016 Nov 14] Available from: www.fluofarma.com/
  • Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol. 2014;32(8):760–772. DOI:10.1038/nbt.2989
  • Bhise NS, Ribas J, Manoharan V, et al. Organ-on-a-chip platforms for studying drug delivery systems. J Control Release. 2014;190:82–93. DOI:10.1016/j.jconrel.2014.05.004
  • Ma C, Zhao L, Zhou EM, et al. On-chip construction of liver lobule-like microtissue and its application for adverse drug reaction assay. Anal Chem. 2016;88(3):1719–1727. DOI:10.1021/acs.analchem.5b03869

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.