1,294
Views
87
CrossRef citations to date
0
Altmetric
Review

Zebrafish xenograft models of cancer and metastasis for drug discovery

, , , &
Pages 379-389 | Received 19 Oct 2016, Accepted 16 Feb 2017, Published online: 15 Mar 2017

References

  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4;144(5):646–674.
  • Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002 Aug;2(8):563–572.
  • Kang Y. Analysis of cancer stem cell metastasis in xenograft animal models. Methods Mol Biol. 2009;568:7–19.
  • Nguyen DX, Bos PD, Massague J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009 Apr;9(4):274–284.
  • Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer. 2012 Apr 19;12(5):323–334.
  • Tellez-Gabriel M, Ory B, Lamoureux F, et al. Tumour heterogeneity: the key advantages of single-cell analysis. Int J Mol Sci. 2016 Dec 20;17(12):2142.
  • van Marion DM, Domanska UM, Timmer-Bosscha H, et al. Studying cancer metastasis: existing models, challenges and future perspectives. Crit Rev Oncol Hematol. 2016;97:107–117.
  • Khanna C, Hunter K. Modeling metastasis in vivo. Carcinogenesis. 2005 Mar;26(3):513–523.
  • Chico TJ, Ingham PW, Crossman DC. Modeling cardiovascular disease in the zebrafish. Trends Cardiovasc Med. 2008 May;18(4):150–155.
  • Streisinger G, Walker C, Dower N, et al. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature. 1981 May 28;291(5813):293–296.
  • Ingham PW. Zebrafish genetics and its implications for understanding vertebrate development. Hum Mol Genet. 1997;6(10):1755–1760.
  • Kimmel CB, Ballard WW, Kimmel SR, et al. Stages of embryonic development of the zebrafish. Dev Dyn. 1995 Jul;203(3):253–310.
  • Gore AV, Monzo K, Cha YR, et al. Vascular development in the zebrafish. Cold Spring Harb Perspect Med. 2012;2(5:a006684.
  • Lam SH, Chua HL, Gong Z, et al. Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev Comp Immunol. 2004 Jan;28(1):9–28.
  • Lieschke GJ, Trede NS. Fish immunology. Curr Biol. 2009 Aug 25;19(16):R678–82.
  • Stoletov K, Klemke R. Catch of the day: zebrafish as a human cancer model. Oncogene. 2008 Jul 31;27(33):4509–4520.
  • Lawson ND, Weinstein BM. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol. 2002 Aug 15; 248(2):307–318.
  • Kamei M, Isogai S, Pan W, et al. Imaging blood vessels in the zebrafish. Methods Cell Biol. 2010;100:27–54.
  • Concha ML, Russell C, Regan JC, et al. Local tissue interactions across the dorsal midline of the forebrain establish CNS laterality. Neuron. 2003 Jul 31;39(3):423–438.
  • Bennett CM, Kanki JP, Rhodes J, et al. Myelopoiesis in the zebrafish, Danio rerio. Blood. 2001 Aug 1;98(3):643–651.
  • North TE, Goessling W, Peeters M, et al. Hematopoietic stem cell development is dependent on blood flow. Cell. 2009 May 15;137(4):736–748.
  • Henry KM, Loynes CA, Whyte MK, et al. Zebrafish as a model for the study of neutrophil biology. J Leukoc Biol. 2013 Oct;94(4):633–642.
  • Renshaw SA, Loynes CA, Trushell DM, et al. A transgenic zebrafish model of neutrophilic inflammation. Blood. 2006 Dec 15;108(13):3976–3978.
  • Bussmann J, Schulte-Merker S. Rapid BAC selection for tol2-mediated transgenesis in zebrafish. Development. 2011 Oct;138(19):4327–4332.
  • Suster ML, Abe G, Schouw A, et al. Transposon-mediated BAC transgenesis in zebrafish. Nat Protoc. 2011 Dec 01;6(12):1998–2021.
  • Suster ML, Kikuta H, Urasaki A, et al. Transgenesis in zebrafish with the tol2 transposon system. Methods Mol Biol. 2009;561:41–63.
  • White RM, Sessa A, Burke C, et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell. 2008 Feb 7;2(2):183–189.
  • Huisken J, Stainier DY. Selective plane illumination microscopy techniques in developmental biology. Development. 2009 Jun;136(12):1963–1975.
  • Huisken J, Swoger J, Del Bene F, et al. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science. 2004 Aug 13;305(5686):1007–1009.
  • Howe K, Clark MD, Torroja CF, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013 Apr 25;496(7446):498–503.
  • Isogai S, Horiguchi M, Weinstein BM. The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev Biol. 2001 Feb 15;230(2):278–301.
  • Patton EE, Widlund HR, Kutok JL, et al. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol. 2005 Feb 08;15(3):249–254.
  • Ceol CJ, Houvras Y, Jane-Valbuena J, et al. The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature. 2011 Mar 24;471(7339):513–517.
  • Berghmans S, Murphey RD, Wienholds E, et al. Tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc Natl Acad Sci U S A. 2005 Jan 11;102(2):407–412.
  • Park H, Galbraith R, Turner T, et al. Loss of Ewing sarcoma EWS allele promotes tumorigenesis by inducing chromosomal instability in zebrafish. Sci Rep. 2016 Aug;25(6):32297.
  • Kaufman CK, Mosimann C, Fan ZP, et al. A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation. Science. 2016 Jan 29;351(6272):aad2197.
  • Evason KJ, Francisco MT, Juric V, et al. Identification of chemical inhibitors of beta-catenin-driven liver tumorigenesis in zebrafish. PLoS Genet. 2015 Jul;11(7):e1005305.
  • Mayrhofer M, Gourain V, Reischl M, et al. A novel brain tumour model in zebrafish reveals the role of YAP activation in MAPK- and PI3K-induced malignant growth. Dis Model Mech. 2017 Jan 01;10(1):15–28.
  • Yaniv K, Isogai S, Castranova D, et al. Live imaging of lymphatic development in the zebrafish. Nat Med. 2006 Jun;12(6):711–716.
  • Zhang B, Shimada Y, Hirota T, et al. Novel immunologic tolerance of human cancer cell xenotransplants in zebrafish. Transl Res. 2016 Apr;170(89–98):e3.
  • Zhang B, Shimada Y, Kuroyanagi J, et al. Zebrafish xenotransplantation model for cancer stem-like cell study and high-throughput screening of inhibitors. Tumour Biol. 2014 Dec;35(12):11861–11869.
  • Stoletov K, Montel V, Lester RD, et al. High-resolution imaging of the dynamic tumor cell vascular interface in transparent zebrafish. Proc Natl Acad Sci U S A. 2007 Oct 30;104(44):17406–17411.
  • Heilmann S, Ratnakumar K, Langdon EM, et al. A quantitative system for studying metastasis using transparent zebrafish. Cancer Res. 2015 Oct 15;75(20):4272–4282.
  • Tang Q, Abdelfattah NS, Blackburn JS, et al. Optimized cell transplantation using adult rag2 mutant zebrafish. Nat Methods. 2014 Aug;11(8):821–824.
  • Tang Q, Moore JC, Ignatius MS, et al. Imaging tumour cell heterogeneity following cell transplantation into optically clear immune-deficient zebrafish. Nat Commun. 2016;7:10358.
  • Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007 Jan;11(1):69–82.
  • Stoletov K, Kato H, Zardouzian E, et al. Visualizing extravasation dynamics of metastatic tumor cells. J Cell Sci. 2010 Jul 1;123(Pt 13):2332–2341.
  • Kanada M, Zhang J, Yan L, et al. Endothelial cell-initiated extravasation of cancer cells visualized in zebrafish. PeerJ. 2014;2:e688.
  • Wang J, Cao Z, Zhang XM, et al. Novel mechanism of macrophage-mediated metastasis revealed in a zebrafish model of tumor development. Cancer Res. 2015 Jan 15;75(2):306–315.
  • Shiozawa Y, Eber MR, Berry JE, et al. Bone marrow as a metastatic niche for disseminated tumor cells from solid tumors. Bonekey Rep. 2015;4:689.
  • Eguiara A, Holgado O, Beloqui I, et al. Xenografts in zebrafish embryos as a rapid functional assay for breast cancer stem-like cell identification. Cell Cycle. 2011 Nov 01;10(21):3751–3757.
  • De Boeck M, Cui C, Mulder AA, et al. Smad6 determines BMP-regulated invasive behaviour of breast cancer cells in a zebrafish xenograft model. Sci Rep. 2016;6:24968.
  • He S, Lamers GE, Beenakker JW, et al. Neutrophil-mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft model. J Pathol. 2012 Aug;227(4):431–445.
  • Teng Y, Xie X, Walker S, et al. Evaluating human cancer cell metastasis in zebrafish. BMC Cancer. 2013;13:453.
  • Marques IJ, Weiss FU, Vlecken DH, et al. Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model. BMC Cancer. 2009;9:128.
  • Brown HK, Tellez-Gabriel M, Heymann D. Cancer stem cells in osteosarcoma. Cancer Lett. 2017 Feb;01(386):189–195.
  • El-Naggar AM, Veinotte CJ, Cheng H, et al. Translational activation of HIF1alpha by YB-1 promotes sarcoma metastasis. Cancer Cell. 2015 May 11;27(5):682–697.
  • Zhao C, Yang H, Shi H, et al. Distinct contributions of angiogenesis and vascular co-option during the initiation of primary microtumors and micrometastases. Carcinogenesis. 2011 Aug;32(8):1143–1150.
  • Nicoli S, Ribatti D, Cotelli F, et al. Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Cancer Res. 2007 Apr 1;67(7):2927–2931.
  • Muthukumarasamy KM. Identification of noreremophilane-based inhibitors of angiogenesis using zebrafish assays. Org Biomol Chem. 2015;14:1569–1578. 2015 Oct 8.
  • van der Ent W, Burrello C, De Lange MJ, et al. Embryonic zebrafish: different phenotypes after injection of human uveal melanoma cells. Ocul Oncol Pathol. 2015 Apr;1(3):170–181.
  • Pollard J. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004 Jan;4(1):71–78.
  • Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003 Jun;3(6):401–410.
  • Zhao C, Zhang W, Zhao Y, et al. Endothelial cords promote tumor initial growth prior to vascular function through a paracrine mechanism. Sci Rep. 2016;6:19404.
  • Lee SL, Rouhi P, Dahl Jensen L, et al. Hypoxia-induced pathological angiogenesis mediates tumor cell dissemination, invasion, and metastasis in a zebrafish tumor model. Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19485–19490.
  • Joyce JP. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009 April;2009(9):239–252.
  • Sacco A, Roccaro AM, Ma D, et al. Cancer cell dissemination and homing to the bone marrow in a zebrafish model. Cancer Res. 2016 Jan 15;76(2):463–471.
  • Drabsch Y, He S, Zhang L, et al. Transforming growth factor-beta signalling controls human breast cancer metastasis in a zebrafish xenograft model. Breast Cancer Res. 2013;15(6):R106.
  • Lal S, La Du J, Tanguay RL, et al. Calpain 2 is required for the invasion of glioblastoma cells in the zebrafish brain microenvironment. J Neurosci Res. 2012 Apr;90(4):769–781.
  • Basu-Roy U, Basilico C, Mansukhani A. Perspectives on cancer stem cells in osteosarcoma. Cancer Lett. 2013 Sep 10;338(1):158–167.
  • Tirino V, Desiderio V, Paino F, et al. Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. Faseb J. 2013 Jan;27(1):13–24.
  • Zoni E, van der Horst G, van de Merbel AF, et al. miR-25 modulates invasiveness and dissemination of human prostate cancer cells via regulation of alphav- and alpha6-integrin expression. Cancer Res. 2015 Jun 01;75(11):2326–2336.
  • Huiting LN, Laroche F, Feng H. The zebrafish as a tool to cancer drug discovery. Austin J Pharmacol Ther. 2015;3(2):1069.
  • Zon LI, Peterson RT. In vivo drug discovery in the zebrafish. Nat Rev Drug Discov. 2005 Jan;4(1):35–44.
  • Sala G, Dituri F, Raimondi C, et al. Phospholipase Cgamma1 is required for metastasis development and progression. Cancer Res. 2008 Dec 15;68(24):10187–10196.
  • Raimondi C, Calleja V, Ferro R, et al. A small molecule inhibitor of PDK1/PLCgamma1 interaction blocks breast and melanoma cancer cell invasion. Sci Rep. 2016;6:26142.
  • Ban JDNTA, Fourtouna A, van der Ent W, et al. Suppression of deacetylase SIRT1 mediates tumor-suppressive NOTCH response and offers a novel treatment option in metastatic ewing sarcoma. Cancer Research. 2015;7(22):6578–6588.
  • Li Y, Drabsch Y, Pujuguet P, et al. Genetic depletion and pharmacological targeting of alphav integrin in breast cancer cells impairs metastasis in zebrafish and mouse xenograft models. Breast Cancer Res. 2015;17:28.
  • Savio M, Ferraro D, Maccario C, et al. Resveratrol analogue 4,4ʹ-dihydroxy-trans-stilbene potently inhibits cancer invasion and metastasis. Sci Rep. 2016;6:19973.
  • Zhang S, Cao Z, Tian H, et al. SKLB1002, a novel potent inhibitor of VEGF receptor 2 signaling, inhibits angiogenesis and tumor growth in vivo. Clin Cancer Res. 2011 Jul 1;17(13):4439–4450.
  • Chiavacci E, Rizzo M, Pitto L, et al. The zebrafish/tumor xenograft angiogenesis assay as a tool for screening anti-angiogenic miRNAs. Cytotechnology. 2015 Dec;67(6):969–975.
  • Yang X, Cui W, Yu S, et al. A synthetic dl-nordihydroguaiaretic acid (Nordy), inhibits angiogenesis, invasion and proliferation of glioma stem cells within a zebrafish xenotransplantation model. PLoS One. 2014;9(1):e85759.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.