458
Views
8
CrossRef citations to date
0
Altmetric
Review

‘Big data’ approaches for novel anti-cancer drug discovery

, &
Pages 599-609 | Received 20 Jan 2017, Accepted 11 Apr 2017, Published online: 02 May 2017

References

  • Varmus H, Kumar HS. Addressing the growing international challenge of cancer: a multinational perspective. Sci Transl Med. 2013;5:175cm2.
  • Pearl LH, Schierz AC, Ward SE, et al. Therapeutic opportunities within the DNA damage response. Nat Rev Cancer. 2015;15:166–180.
  • Varmus H. The new era in cancer research. Science. 2006;312:1162–1165.
  • Mukherjee S. The emperor of all maladies: a biography of cancer. Simon and Schuster; London, UK:HarperCollins Publishers;2011.
  • Yap TA, Workman P. Exploiting the cancer genome: strategies for the discovery and clinical development of targeted molecular therapeutics. Annu Rev Pharmacol Toxicol. 2012;52:549–573.
  • Garnock-Jones KP, Keating GM, Scott LJ. Trastuzumab: A review of its use as adjuvant treatment in human epidermal growth factor receptor 2 (HER2)-positive early breast cancer. Drugs. 2010;70:215–239.
  • Stagno F, Stella S, Spitaleri A, et al. Imatinib mesylate in chronic myeloid leukemia: frontline treatment and long-term outcomes. Expert Rev Anticancer Ther. 2016;16:273–278.
  • Garraway LA, Jänne PA. Circumventing cancer drug resistance in the era of personalized medicine. Cancer Discov. 2012;2:214–226.
  • Al-Lazikani B, Banerji U, Workman P. Combinatorial drug therapy for cancer in the post-genomic era. Nat Biotechnol. 2012;30:679–692.
  • Garraway LA, Lander ES. Lessons from the cancer genome. Cell. 2013;153:17–37.
  • Stratton MR. Exploring the genomes of cancer cells: progress and promise. Science. 2011;331:1553–1558.
  • Ciriello G, Sinha R, Hoadley KA, et al. The molecular diversity of Luminal A breast tumors. Breast Cancer Res Treat. 2013;141:409–420.
  • Brennan CW, Verhaak RGW, McKenna A, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155:462–477.
  • Pereira B, Chin S-F, Rueda OM, et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun. 2016;7:11479.
  • Giannakis M, Mu XJ, Shukla SA, et al. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 2016;17:1206.
  • Vogelstein B, Papadopoulos N, Velculescu VE, et al. Cancer genome landscapes. Science. 2013;339:1546–1558.
  • Greenman C, Stephens P, Smith R, et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007;446:153–158.
  • Wood LD, Parsons DW, Jones S, et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318:1108–1113.
  • Kandoth C, McLellan MD, Vandin F, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502:333–339.
  • Tamborero D, Gonzalez-Perez A, Perez-Llamas C, et al. Comprehensive identification of mutational cancer driver genes across 12 tumor types. Sci Rep. 2013;3:2650.
  • Davoli T, Xu AW, Mengwasser KE, et al. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell. 2013;155:948–962.
  • Yoon S-H, Kim J-S, Song H-H. Statistical inference methods for detecting altered gene associations. Genome Inform. 2003;14:54–63.
  • Pickering CR, Zhang J, Yoo SY, et al. Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. Cancer Discov. 2013;3:770–781.
  • Zheng S, Cherniack AD, Dewal N, et al. Comprehensive pan-genomic characterization of adrenocortical carcinoma. Cancer Cell. 2016;30:363.
  • Mo Q, Wang S, Seshan VE, et al. Pattern discovery and cancer gene identification in integrated cancer genomic data. Proc Natl Acad Sci U S A. 2013;110:4245–4250.
  • Workman P, Al-Lazikani B. Drugging cancer genomes. Nat Rev Drug Discov. 2013;12:889–890.
  • Rubio-Perez C, Tamborero D, Schroeder MP, et al. In silico prescription of anticancer drugs to cohorts of 28 tumor types reveals targeting opportunities. Cancer Cell. 2015;27:382–396.
  • Santos R, Ursu O, Gaulton A, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov. 2016;16:19–34.
  • Thatcher N, Chang A, Parikh P, et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet. 2005;366:1527–1537.
  • Shepherd FA, Rodrigues Pereira J, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005;353:123–132.
  • Stinchcombe TE, Socinski MA. Gefitinib in advanced non-small cell lung cancer: does it deserve a second chance? Oncologist. 2008;13:933–944.
  • Lindeman NI, Cagle PT, Beasley MB, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Mol Diagn. 2013;15:415–453.
  • Tokheim C, Papadopoulis N, Kinzler KW, et al. Evaluating the evaluation of cancer driver genes [Internet]. 2016. Available from: https://doi.org/10.1101/060426.
  • Baeissa HM, Benstead-Hume G, Richardson CJ, et al. Mutational patterns in oncogenes and tumour suppressors. Biochem Soc Trans. 2016;44:925–931.
  • Baeissa H, Benstead-Hume G, Richardson CJ, et al. Identification and analysis of mutational hotspots in oncogenes and tumour suppressors. Oncotarget [Internet]. 2017. Available from: https://doi.org/10.18632/oncotarget.15514.
  • Luo J, Solimini NL, Elledge SJ. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell. 2009;136:823–837.
  • Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:l1.
  • Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–15550.
  • Huang DW, Sherman BT, Tan Q, et al. DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35:W169–W175.
  • Reimand J, Kull M, Peterson H, et al. g:Profiler–a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res. 2007;35:W193–W200.
  • Gundem G, Lopez-Bigas N. Sample-level enrichment analysis unravels shared stress phenotypes among multiple cancer types. Genome Med. 2012;4:28.
  • Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 2013;14:7.
  • Warde-Farley D, Donaldson SL, Comes O, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010;38:W214–W220.
  • Hofree M, Shen JP, Carter H, et al. Network-based stratification of tumor mutations. Nat Methods. 2013;10:1108–1115.
  • Khoo KH, Verma CS, Lane DP. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov. 2014;13:314–314.
  • Hartwell LH, Szankasi P, Roberts CJ, et al. Integrating genetic approaches into the discovery of anticancer drugs. Science. 1997;278:1064–1068.
  • Megchelenbrink W, Katzir R, Lu X, et al. Synthetic dosage lethality in the human metabolic network is highly predictive of tumor growth and cancer patient survival. Proc Natl Acad Sci U S A. 2015;112:12217–12222.
  • Kaelin WG Jr. The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer. 2005;5:689–698.
  • Bryant HE, Schultz N, Thomas HD, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434:913–917.
  • Brown JS, Kaye SB, Yap TA. PARP inhibitors: the race is on. Br J Cancer. 2016;114:713–715.
  • Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, et al.. The Cancer Genome Atlas pan-cancer analysis project. Nat Genet. 2013;45:1113–1120.
  • Dixon SJ, Fedyshyn Y, Koh JLY, et al. Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes. Proc Natl Acad Sci U S A. 2008;105:16653–16658.
  • Dixon SJ, Andrews B, Boone C. Exploring the conservation of synthetic lethal genetic interaction networks. Commun Integr Biol. 2009;2:78–81.
  • Iorns E, Lord CJ, Turner N, et al. Utilizing RNA interference to enhance cancer drug discovery. Nat Rev Drug Discov. 2007;6:556–568.
  • Madhukar NS, Elemento O, Pandey G. Prediction of genetic interactions using machine learning and network properties. Front Bioeng Biotechnol. 2015;3:172.
  • Jerby-Arnon L, Pfetzer N, Waldman YY, et al. Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality. Cell. 2014;158:1199–1209.
  • Wang X, Simon R. Identification of potential synthetic lethal genes to p53 using a computational biology approach. BMC Med Genomics. 2013;6:30.
  • Zhang F, Fan Z, Min W, et al. Predicting essential genes and synthetic lethality via influence propagation in signaling pathways of cancer cell fates. J Bioinform Comput Biol. 2015;13:1541002.
  • Chatr-Aryamontri A, Breitkreutz B-J, Oughtred R, et al. The BioGRID interaction database: 2015 update. Nucleic Acids Res. 2015;43:D470–D478.
  • Chipman KC, Singh AK. Predicting genetic interactions with random walks on biological networks. BMC Bioinform. 2009;10:17.
  • Paladugu SR, Zhao S, Ray A, et al. Mining protein networks for synthetic genetic interactions. BMC Bioinform. 2008;9:426.
  • Pandey G, Zhang B, Chang AN, et al. An integrative multi-network and multi-classifier approach to predict genetic interactions. Plos Comput Biol. [Internet]. 2010;6:e1000928.
  • Jacunski A, Dixon SJ, Tatonetti NP. Connectivity homology enables inter-species network models of synthetic lethality. PLoS Comput Biol. 2015;11:e1004506.
  • Wu M, Li X, Zhang F, et al. In silico prediction of synthetic lethality by meta-analysis of genetic interactions, functions, and pathways in yeast and human cancer. Cancer Inform. 2014;13:71–80.
  • Workman P, Al-Lazikani B, Clarke PA. Genome-based cancer therapeutics: targets, kinase drug resistance and future strategies for precision oncology. Curr Opin Pharmacol. 2013;13:486–496.
  • Forbes SA, Beare D, Bindal N, et al. COSMIC: high-resolution cancer genetics using the Catalogue Of Somatic Mutations In Cancer. Curr Protoc Hum Genet. 2016;91:10.11.1–10.11.37.
  • Scholl C, Fröhling S, Dunn IF, et al. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell. 2009;137:821–834.
  • Barbie DA, Tamayo P, Boehm JS, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009;462:108–112.
  • Wang Y, Ngo VN, Marani M, et al. Critical role for transcriptional repressor Snail2 in transformation by oncogenic RAS in colorectal carcinoma cells. Oncogene. 2010;29:4658–4670.
  • Potti A, Dressman HK, Bild A, et al. Retraction: genomic signatures to guide the use of chemotherapeutics. Nat Med. 2011;17:135–135.
  • Costa-Cabral S, Brough R, Konde A, et al. CDK1 is a synthetic lethal target for KRAS mutant tumours. PLoS One. 2016;11:e0149099.
  • Vicent S, Chen R, Sayles LC, et al. Wilms tumor 1 (WT1) regulates KRAS-driven oncogenesis and senescence in mouse and human models. J Clin Invest. 2010;120:3940–3952.
  • Helleday T. Cancer phenotypic lethality, exemplified by the non-essential MTH1 enzyme being required for cancer survival. Ann Oncol. 2014;25:1253–1255.
  • Gad H, Koolmeister T, Jemth A-S, et al. MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool. Nature. 2014;508:215–221.
  • Campbell J, Ryan CJ, Brough R, et al. Large-scale profiling of kinase dependencies in cancer cell lines. Cell Rep. 2016;14:2490–2501.
  • Aromataris E, Fernandez R, Godfrey CM, et al. Summarizing systematic reviews: methodological development, conduct and reporting of an umbrella review approach. Int J Evid Based Healthc. 2015;13:132–140.
  • Cunanan KM, Iasonos A, Shen R, et al. An efficient basket trial design. Stat Med. 2017;36(10):1568–1579.
  • Redig AJ, Jänne PA. Basket trials and the evolution of clinical trial design in an era of genomic medicine. J Clin Oncol. 2015;33:975–977.
  • Renfro LA, Sargent DJ. Statistical controversies in clinical research: basket trials, umbrella trials, and other master protocols: a review and examples. Ann Oncol. 2016;28(1):34–43.
  • Hopkins AL, Groom CR. The druggable genome. Nat Rev Drug Discov. 2002;1:727–730.
  • Jamali AA, Ferdousi R, Razzaghi S, et al. DrugMiner: comparative analysis of machine learning algorithms for prediction of potential druggable proteins. Drug Discov Today. 2016;21:718–724.
  • Meyers J, Brown N, Blagg J. Mapping the 3D structures of small molecule binding sites. J Cheminform. 2016;8. [Internet].
  • Kumari P, Nath A, Chaube R. Identification of human drug targets using machine-learning algorithms. Comput Biol Med. 2015;56:175–181.
  • Patel MN, Halling-Brown MD, Tym JE, et al. Objective assessment of cancer genes for drug discovery. Nat Rev Drug Discov. 2013;12:35–50.
  • Richardson CJ, Gao Q, Mitsopoulous C, et al. MoKCa database–mutations of kinases in cancer. Nucleic Acids Res. 2009;37:D824–D831.
  • Genomic Data PC. Commons ushers in new era for information sharing. Cancer. 2016;122:2777–2778.
  • Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol. 2015;19:A68–A77.
  • Zhang J, Baran J, Cros A, et al. International Cancer Genome Consortium data portal–a one-stop shop for cancer genomics data. Database. 2011;2011:bar026.
  • Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–404.
  • Sakoparnig T, Fried P, Beerenwinkel N. Identification of constrained cancer driver genes based on mutation timing. PLoS Comput Biol. 2015;11:e1004027.
  • Gaulton A, Hersey A, Nowotka M, et al. The ChEMBL database in 2017. Nucleic Acids Res. 2017;45:D945–D954.
  • Barretina J, Caponigro G, Stransky N, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603–607.
  • Yang W, Soares J, Greninger P, et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013;41:D955–D961.
  • Liu C, Bai B, Skogerbø G, et al. NONCODE: an integrated knowledge database of non-coding RNAs. Nucleic Acids Res. 2005;33:D112–D115.
  • Amaral PP, Clark MB, Gascoigne DK, et al. lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res. 2011;39:D146–D151.
  • Cook CE, Bergman MT, Finn RD, et al. The European Bioinformatics Institute in 2016: data growth and integration. Nucleic Acids Res. 2016;44:D20–D26.
  • Jacobs A. The pathologies of big data. Queueing Syst. 2009;7:10.
  • Boyd D, Crawford K. Critical questions for big data. Inf Commun Soc. 2012;15:662–679.
  • Stephens ZD, Lee SY, Faghri F, et al. Big data: astronomical or genomical? Plos Biol. 2015;13:e1002195.
  • Lynch C. Big data: how do your data grow? Nature. 2008;455:28–29.
  • Trelles O, Prins P, Snir M, et al. Big data, but are we ready? Nat Rev Genet. 2011;12:224.
  • Weng C, Kahn MG. Clinical research informatics for big data and precision medicine. Yearb Med Inform. 2016;211–218.
  • Fallik D. For big data, big questions remain. Health Aff. 2014;33:1111–1114.
  • Lazer D, Kennedy R, King G, et al. Big data. The parable of Google Flu: traps in big data analysis. Science. 2014;343:1203–1205.
  • Callebaut W. Scientific perspectivism: A philosopher of science’s response to the challenge of big data biology. Stud Hist Philos Sci C. 2012;43:69–80.
  • Clarke R. Big data, big risks. Inf Syst J. 2015;26:77–90.
  • Ioannidis JPA. Why most published research findings are false. PLoS Med. 2005;2:e124.
  • Hoerl RW, Snee RD, De Veaux RD. Applying statistical thinking to “Big Data” problems. Wiley Interdiscip Rev Comput Stat. 2014;6:222–232.
  • Cancer Target Discovery and Development Network. Transforming Big Data into cancer-relevant insight: an initial, multi-tier approach to assess reproducibility and relevance. Mol Cancer Res. 2016;14:675–682.
  • Elefsinioti A, Bellaire T, Wang A, et al. Key factors for successful data integration in biomarker research. Nat Rev Drug Discov. 2016;15:369–370.
  • Rocca-Serra P, Salek RM, Arita M, et al. Data standards can boost metabolomics research, and if there is a will, there is a way. Metabolomics. 2015; 15:369–370.
  • Conesa A, Madrigal P, Tarazona S, et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17:13.
  • Colquhoun D. An investigation of the false discovery rate and the misinterpretation of p-values. R Soc Open Sci. 2014;1:140216.
  • Al-Shahrour F, Malats N, Valencia A, et al. CANCEROMATICS III - tumor heterogeneity [Internet]. 2016. Available from: https://www.cnio.es/eventos/index.asp?ev=2&cev=138.
  • Jennings JL, Hudson TJ. Abstract 130: International Cancer Genome Consortium (ICGC). Cancer Res. 2016;76:130–130.
  • Ormond KE, Cho MK. Translating personalized medicine using new genetic technologies in clinical practice: the ethical issues. Per med. 2014;11:211–222.
  • Wang C, Machiraju R, Huang K. Breast cancer patient stratification using a molecular regularized consensus clustering method. Methods. 2014;67:304–312.
  • Riester M, Wei W, Waldron L, et al. Risk prediction for late-stage ovarian cancer by meta-analysis of 1525 patient samples. J Natl Cancer Inst. [Internet]. 2014;106. DOI:10.1093/jnci/dju048
  • Kelly AD, Heike K, Jumpei Y, et al. Abstract B22: genome-wide methylation analysis reveals an independently validated CpG island methylator phenotype associated with favorable prognosis in acute myeloid leukemia. Clin Cancer Res. 2015;21:B22–B22.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.