194
Views
11
CrossRef citations to date
0
Altmetric
Review

An omics perspective to the molecular mechanisms of anticancer metallo-drugs in the computational microscope era

&
Pages 813-825 | Received 04 Apr 2017, Accepted 06 Jun 2017, Published online: 21 Jun 2017

References

  • Jung Y, Lippard SJ. Direct cellular responses to platinum-induced DNA damage. Chem Rev. 2007 May;107(5):1387–1407.
  • Fuertes MA, Alonso C, Pérez JM. Biochemical modulation of Cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance. Chem Rev. 2003 Mar;103(3):645–662.
  • Jamieson ER, Lippard SJ. Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev. 1999 Sep 08;99(9):2467–2498.
  • Hall MD, Okabe M, Shen DW, et al. The role of cellular accumulation in determining sensitivity to platinum-based chemotherapy. Annu Rev Pharmacol Toxicol. 2008;48:495–535.
  • Arnesano F, Losacco M, Natile G. An updated view of cisplatin transport. Eur J Inorg Chem. 2013 May 15;(2013):2701–2711.
  • Howell SB, Safaei R, Larson CA, et al. Copper transporters and the cellular pharmacology of the platinum-containing cancer drugs. Mol Pharmacol. 2010 Jun;77(6):887–894.
  • Sava G, Bergamo A, Dyson PJ. Metal-based antitumour drugs in the post-genomic era: what comes next? Dalton Trans. 2011;40(36):9069–9075.
  • Jungwirth U, Kowol CR, Keppler BK, et al. Anticancer activity of metal complexes: involvement of redox processes. Antioxid Redox Signal. 2011 Aug 15;15(4):1085–1127.
  • Goodwin KD, Lewis MA, Long EC, et al. Crystal structure of DNA-bound Co(III) bleomycin B2: insights on intercalation and minor groove binding. Proc Natl Acad Sci U S A. 2008 Apr 01;105(13):5052–5056.
  • Vargiu AV, Robertazzi A, Magistrato A, et al. The hydrolysis mechanism of the anticancer ruthenium drugs NAMI-A and ICR investigated by DFT-PCM calculations. J Phys Chem B. 2008 Apr 10;112(14):4401–4409.
  • Scolaro C, Bergamo A, Brescacin L, et al. In vitro and in vivo evaluation of ruthenium(II)-arene PTA complexes. J Med Chem. 2005 Jun 16;48(12):4161–4171.
  • Santini C, Pellei M, Gandin V, et al. Advances in copper complexes as anticancer agents. Chem Rev. 2014 Jan 8;114(1):815–862.
  • De Vizcaya-Ruiz A, Rivero-Müller A, Ruiz-Ramirez L, et al. Hematotoxicity response in rats by the novel copper-based anticancer agent: casiopeina II. Toxicology. 2003 Dec 15;194(1–2):103–113.
  • Pérez A, Luque FJ, Orozco M. Frontiers in molecular dynamics simulations of DNA. Acc Chem Res. 2012 Feb 21;45(2):196–205.
  • Senn HM, Thiel W. QM/MM methods for biomolecular systems. Angewandte Chemie. 2009;48(7):1198–1229.
  • Futera Z, Burda JV. Reaction mechanism of Ru(II) piano-stool complexes: umbrella sampling QM/MM MD study. J Comput Chem. 2014 Jul 15;35(19):1446–1456.
  • Gkionis K, Mutter ST, Platts JA. QM/MM description of platinum-DNA interactions: comparison of binding and DNA distortion of five drugs. Rsc Adv. 2013;3(12):4066–4073.
  • Magistrato A, Ruggerone P, Spiegel K, et al. Binding of novel azole-bridged dinuclear platinum(II) anticancer drugs to DNA: insights from hybrid QM/MM molecular dynamics simulations. J Phys Chem B. 2006 Mar 02;110(8):3604–3613.
  • Daan Frenkel BS. Understanding molecular simulation. San Diego (CA): Academic Press; 2002.
  • Cornell WD, Cieplak P, Bayly CI, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc. 1996 Mar 6;118(9):5179–5197.
  • Jorgensen WL, Maxwell DS, TiradoRives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc. 1996 Nov 13;118(45):11225–11236.
  • Christen M, Hünenberger PH, Bakowies D, et al. The GROMOS software for biomolecular simulation: GROMOS05. J Comput Chem. 2005 Dec;26(16):1719–1751.
  • MacKerell AD, Bashford D, Bellott M, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B. 1998 Apr 30;102(18):3586–3616.
  • Ivani I, Dans PD, Noy A, et al. Parmbsc1: a refined force field for DNA simulations. Nat Methods. 2016 Jan;13(1):55–58.
  • Laio A, Parrinello M. Escaping free-energy minima. Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12562–12566.
  • Miao YL, Feher VA, McCammon JA. Gaussian accelerated molecular dynamics: unconstrained enhanced sampling and free energy calculation. J Chem Theory Comput. 2015 Aug;11(8):3584–3595.
  • Baron R, McCammon JA. Molecular recognition and ligand association. Annu Rev Phys Chem. 2013;64:151–175.
  • Vidossich P, Magistrato A. QM/MM molecular dynamics studies of metal binding proteins. Biomolecules. 2014 Jul 08; 4(3):616–645.
  • Warshel A, Levitt M. Theoretical studies of enzymic reactions – dielectric, electrostatic and steric stabilization of carbonium-ion in reaction of lysozyme. J Mol Biol. 1976;103(2):227–249.
  • Brunk E, Rothlisberger U. Mixed quantum mechanical/molecular mechanical molecular dynamics simulations of biological systems in ground and electronically excited states. Chem Rev. 2015 Jun 24; 115(12):6217–6263.
  • Vreven T, Byun KS, Komáromi I, et al. Combining quantum mechanics methods with molecular mechanics methods in ONIOM. J Chem Theory Comput. 2006 May;2(3):815–826.
  • Gaussian 09, Revision A.02, Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian, Inc., Wallingford CT, 2016.
  • CPMD, http://www.cpmd.org/
  • Laino T, Mohamed F, Laio A, et al. An efficient real space multigrid QM/MM electrostatic coupling. J Chem Theory Comput. 2005 Nov;1(6):1176–1184.
  • Cramer CJ, Truhlar DG. Density functional theory for transition metals and transition metal chemistry. Phys Chem Chem Phys. 2009;11(46):10757–10816.
  • Spiegel K, Magistrato A. Modeling anticancer drug-DNA interactions via mixed QM/MM molecular dynamics simulations. Org Biomol Chem. 2006;4(13):2507–2517.
  • Gurova K. New hopes from old drugs: revisiting DNA-binding small molecules as anticancer agents. Future Oncol. 2009 Dec;5(10):1685–1704.
  • Elizondo-Riojas MA, Kozelka J. Unrestrained 5 ns molecular dynamics simulation of a cisplatin-DNA 1,2-GG adduct provides a rationale for the NMR features and reveals increased conformational flexibility at the platinum binding site. J Mol Biol. 2001 Dec 14;314(5):1227–1243.
  • Carloni P, Andreoni W, Hutter J, et al. Structure and bonding in cisplatin and other Pt(Ii) complexes. Chem Phys Lett. 1995 Mar 3;234(1–3):50–56.
  • Carloni P, Sprik M, Andreoni W. Key steps of the cis-platin-DNA interaction: density functional theory-based molecular dynamics simulations. J Phys Chem B. 2000 Feb 3;104(4):823–835.
  • Spiegel K, Rothlisberger U, Carloni P. Cisplatin binding to DNA oligomers from hybrid Car-Parrinello/molecular dynamics simulations. J Phys Chem B. 2004 Feb 26;108(8):2699–2707.
  • Hill G, Burda J, Leszczynski J. The search for chemotherapy alternatives: computational study of the properties of cisplatin and cisplatin analogs. Metal Ions Biol Med. 2004;8:74–78.
  • Raber J, Zhu CB, Eriksson LA. Theoretical study of cisplatin binding to DNA: the importance of initial complex stabilization. J Phys Chem B. 2005 Jun 2;109(21):11006–11015.
  • Robertazzi A, Platts JA. A QM/MM study of cisplatin-DNA oligonucleotides: from simple models to realistic systems. Chem-Eur J. 2006 Jul 24;12(22):5747–5756.
  • Komeda S, Lutz M, Spek AL, et al. New antitumor-active azole-bridged dinuclear platinum(II) complexes: synthesis, characterization, crystal structures, and cytotoxic studies. Inorg Chem. 2000 Sep 18;39(19):4230–4236.
  • Spiegel K, Magistrato A, Maurer P, et al. Parameterization of azole-bridged dinuclear platinum anticancer drugs via a QM/MM force matching procedure. J Comput Chem. 2008 Jan 15;29(1):38–49.
  • Maurer P, Laio A, Hugosson HW, et al. Automated parametrization of biomolecular force fields from quantum mechanics/molecular mechanics (QM/MM) simulations through force matching. J Chem Theory Comput. 2007 Mar;3(2):628–639.
  • Gossens C, Tavernelli I, Rothlisberger U. DNA structural distortions induced by ruthenium–arene anticancer compounds. J Am Chem Soc. 2008 Aug 20;130(33):10921–10928.
  • Franco D, Sgrignani J, Bussi G, et al. Structural role of uracil DNA glycosylase for the recognition of uracil in DNA duplexes. Clues from atomistic simulations. J Chem Inf Model. 2013 Jun 24;53(6):1371–1387.
  • Van Dyke MW, Hertzberg RP, Dervan PB. Map of distamycin, netropsin, and actinomycin binding sites on heterogeneous DNA: DNA cleavage-inhibition patterns with methidiumpropyl-EDTA.Fe(II). Proc Natl Acad Sci U S A. 1982 Sep;79(18):5470–5474.
  • Lauria A, Montalbano A, Barraja P, et al. DNA minor groove binders: an overview on molecular modeling and QSAR approaches. Curr Med Chem. 2007;14(20):2136–2160.
  • Vargiu AV, Ruggerone P, Magistrato A, et al. Sliding of alkylating anticancer drugs along the minor groove of DNA: new insights on sequence selectivity. Biophys J. 2008 Jan 15;94(2):550–561.
  • Sigman DS, Graham DR, D’Aurora V, et al. Oxygen-dependent cleavage of DNA by the 1,10-phenanthroline. cuprous complex. Inhibition of Escherichia coli DNA polymerase I. J Biol Chem. 1979 Dec 25;254(24):12269–12272.
  • Robertazzi A, Vargiu AV, Magistrato A, et al. Copper-1,10-phenanthroline complexes binding to DNA: structural predictions from molecular simulations. J Phys Chem B. 2009 Aug 06;113(31):10881–10890.
  • Pitié M, Croisy A, Carrez D, et al. Cytostatic activity of 1,10-phenanthroline derivatives generated by the clip-phen strategy. Chembiochem: Eur J Chem Biol. 2005 Apr;6(4):686–691.
  • Robertazzi A, Magistrato A, de Hoog P, et al. Density functional theory studies on copper phenanthroline complexes. Inorg Chem. 2007 Jul 23;46(15):5873–5881.
  • Martínez R, Chacón-García L. The search of DNA-intercalators as antitumoral drugs: what it worked and what did not work. Curr Med Chem. 2005;12(2):127–151.
  • Erkkila KE, Odom DT, Barton JK. Recognition and reaction of metallointercalators with DNA. Chem Rev. 1999 Sep 08;99(9):2777–2796.
  • McConnell AJ, Lim MH, Olmon ED, et al. Luminescent properties of ruthenium(II) complexes with sterically expansive ligands bound to DNA defects. Inorg Chem. 2012 Nov 19;51(22):12511–12520.
  • Niyazi H, Hall JP, O’Sullivan K, et al. Crystal structures of Lambda-[Ru(phen)(2)dppz](2)(+) with oligonucleotides containing TA/TA and AT/AT steps show two intercalation modes. Nat Chem. 2012 Jun 24;4(8):621–628.
  • Franco D, Vargiu AV, Magistrato A. Ru[(bpy)(2)(dppz)](2+) and Rh[(bpy)(2)(chrysi)](3+) targeting double strand DNA: the shape of the intercalating ligand tunes the free energy landscape of deintercalation. Inorg Chem. 2014 Aug 4;53(15):7999–8008.
  • Barone G, Terenzi A, Lauria A, et al. DNA-binding of nickel(II), copper(II) and zinc(II) complexes: structure-affinity relationships. Coordin Chem Rev. 2013 Oct;257(19–20):2848–2862.
  • Spinello A, Terenzi A, Barone G. Metal complex-DNA binding: insights from molecular dynamics and DFT/MM calculations. J Inorg Biochem. 2013 Jul;124:63–69.
  • Liu HK, Sadler PJ. Metal complexes as DNA intercalators. Acc Chem Res. 2011 May;44(5):349–359.
  • Lauria A, Bonsignore R, Terenzi A, et al. Nickel(II), copper(II) and zinc(II) metallointercalators: structural details of the DNA-binding by a combined experimental and computational investigation. Dalton T. 2014;43(16):6108–6119.
  • Gutiérrez AG, Vázquez-Aguirre A, García-Ramos JC, et al. Copper(II) mixed chelate compounds induce apoptosis through reactive oxygen species in neuroblastoma cell line CHP-212. J Inorg Biochem. 2013;126:17–25.
  • Galindo-Murillo R, García-Ramos JC, Ruiz-Azuara L, et al. Intercalation processes of copper complexes in DNA. Nucleic Acids Res. 2015 Jun 23;43(11):5364–5376.
  • Zeglis BM, Pierre VC, Barton JK. Metallo-intercalators and metallo-insertors. Chem Commun. 2007;44:4565–4579.
  • Pierre VC, Kaiser JT, Barton JK. Insights into finding a mismatch through the structure of a mispaired DNA bound by a rhodium intercalator. Proc Natl Acad Sci U S A. 2007 Jan 9;104(2):429–434.
  • Vargiu AV, Magistrato A. Detecting DNA mismatches with metallo-insertors: a molecular simulation study. Inorg Chem. 2012 Feb 20;51(4):2046–2057.
  • Gilley D, Tanaka H, Herbert BS. Telomere dysfunction in aging and cancer. Int J Biochem Cell B. 2005 May;37(5):1000–1013.
  • Rankin S, Reszka AP, Huppert J, et al. Putative DNA quadruplex formation within the human c-kit oncogene. J Am Chem Soc. 2005 Aug 3;127(30):10584–10589.
  • Burge S, Parkinson GN, Hazel P, et al. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 2006 Nov;34(19):5402–5415.
  • Gattuso H, Spinello A, Terenzi A, et al. Circular dichroism of DNA G-quadruplexes: combining modeling and spectroscopy to unravel complex structures. J Phys Chem B. 2016 Mar 31;120(12):3113–3121.
  • Biffi G, Tannahill D, McCafferty J, et al. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat Chem. 2013 Mar;5(3):182–186.
  • Moraca F, Amato J, Ortuso F, et al. Ligand binding to telomeric G-quadruplex DNA investigated by funnel-metadynamics simulations. Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):E2136–E2145.
  • Spinello A, Barone G, Grunenberg J. Molecular recognition of naphthalene diimide ligands by telomeric quadruplex-DNA: the importance of the protonation state and mediated hydrogen bonds. Phys Chem Chem Phys. 2016 Jan 28;18(4):2871–2877.
  • Drygin D, Siddiqui-Jain A, O’Brien S, et al. Anticancer activity of cx-3543: a direct inhibitor of rRNA biogenesis. Cancer Res. 2009 Oct 1;69(19):7653–7661.
  • Cao Q, Li Y, Freisinger E, et al. G-quadruplex DNA targeted metal complexes acting as potential anticancer drugs. Inorg Chem Front. 2017;4(1):10–32.
  • Reed JE, Arnal AA, Neidle S, et al. Stabilization of G-quadruplex DNA and inhibition of telomerase activity by square-planar nickel(II) complexes. J Am Chem Soc. 2006 May 10;128(18):5992–5993.
  • Campbell NH, Abd Karim NH, Parkinson GN, et al. Molecular basis of structure-activity relationships between salphen metal complexes and human telomeric DNA quadruplexes. J Med Chem. 2012 Jan 12;55(1):209–222.
  • Terenzi A, Bonsignore R, Spinello A, et al. Selective G-quadruplex stabilizers: Schiff-base metal complexes with anticancer activity. Rsc Adv. 2014;4(63):33245–33256.
  • Bonsignore R, Terenzi A, Spinello A, et al. G-quadruplex vs. duplex-DNA binding of nickel(II) and zinc(II) Schiff base complexes. J Inorg Biochem. 2016;161:115–121.
  • Baylin SB, Jones PA. A decade of exploring the cancer epigenome – biological and translational implications. Nat Rev Cancer. 2011 Oct;11(10):726–734.
  • Danford AJ, Wang D, Wang Q, et al. Platinum anticancer drug damage enforces a particular rotational setting of DNA in nucleosomes. Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12311–12316.
  • Chua EY, Davey GE, Chin CF, et al. Stereochemical control of nucleosome targeting by platinum-intercalator antitumor agents. Nucleic Acids Res. 2015 Jun 23;43(11):5284–5296.
  • Ma ZJ, Palermo G, Adhireksan Z, et al. An organometallic compound which exhibits a DNA topology-dependent one-stranded intercalation mode. Angew Chem Int Edit. 2016 Jun 20;55(26):7441–7444.
  • Adhireksan Z, Davey GE, Campomanes P, et al. Ligand substitutions between ruthenium-cymene compounds can control protein versus DNA targeting and anticancer activity. Nat Commun. 2014 Mar;(5):3462.
  • Casini A, Reedijk J. Interactions of anticancer Pt compounds with proteins: an overlooked topic in medicinal inorganic chemistry? Chem Sci. 2012 Nov;3(11):3135–3144.
  • Groessl M, Hartinger CG. Anticancer metallodrug research analytically painting the “omics” picture-current developments and future trends. Anal Bioanal Chem. 2013 Feb;405(6):1791–1808.
  • Shen DW, Pouliot LM, Hall MD, et al. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol Rev. 2012 Jul;64(3):706–721.
  • Dolgova NV, Nokhrin S, Yu CH, et al. Copper chaperone Atox1 interacts with the metal-binding domain of Wilson’s disease protein in cisplatin detoxification. Biochem J. 2013 Aug 15;454:147–156.
  • Boal AK, Rosenzweig AC. Crystal structures of cisplatin bound to a human copper chaperone. J Am Chem Soc. 2009 Oct 14;131(40):14196–14197.
  • Calandrini V, Nguyen TH, Arnesano F, et al. Structural biology of cisplatin complexes with cellular targets: the adduct with human copper chaperone Atox1 in aqueous solution. Chem-Eur J. 2014 Sep 8;20(37):11719–11725.
  • Arnesano F, Banci L, Bertini I, et al. Probing the interaction of cisplatin with the human copper chaperone Atox1 by solution and in-cell NMR spectroscopy. J Am Chem Soc. 2011 Nov 16;133(45):18361–18369.
  • Calandrini V, Arnesano F, Galliani A, et al. Platination of the copper transporter ATP7A involved in anticancer drug resistance. Dalton T. 2014 Aug 21;43(31):12085–12094.
  • Parker LJ, Italiano LC, Morton CJ, et al. Studies of glutathione transferase P1-1 bound to a platinum(IV)-based anticancer compound reveal the molecular basis of its activation. Chem-Eur J. 2011 Jul;17(28):7806–7816.
  • Spiegel K, Magistrato A, Carloni P, et al. Azole-bridged diplatinum anticancer compounds. Modulating DNA flexibility to escape repair mechanism and avoid cross resistance. J Phys Chem B. 2007 Oct 18;111(41):11873–11876.
  • Messori L, Merlino A. Ruthenium metalation of proteins: the X-ray structure of the complex formed between NAMI-A and hen egg white lysozyme. Dalton T. 2014;43(16):6128–6131.
  • Casini A, Temperini C, Gabbiani C, et al. The X-ray structure of the adduct between NAMI-A and carbonic anhydrase provides insights into the reactivity of this metallodrug with proteins. Chemmedchem. 2010 Dec 3;5(12):1989–1994.
  • Pelillo C, Mollica H, Eble JA, et al. Inhibition of adhesion, migration and of alpha 5 beta 1 integrin in the HCT-116 colorectal cancer cells treated with the ruthenium drug NAMI-A. J Inorg Biochem. 2016;160:225–235.
  • Trondl R, Heffeter P, Kowol CR, et al. NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chem Sci. 2014;5(8):2925–2932.
  • Kratz F, Hartmann M, Keppler B, et al. The binding properties of two antitumor ruthenium(III) complexes to apotransferrin. J Biol Chem. 1994 Jan 28;269(4):2581–2588.
  • Bijelic A, Theiner S, Keppler BK, et al. X-ray structure analysis of indazolium trans-[Tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019) bound to human serum albumin reveals two ruthenium binding sites and provides insights into the drug binding mechanism. J Med Chem. 2016 Jun 23;59(12):5894–5903.
  • Casalino L, Palermo G, Rothlisberger U, et al. Who activates the nucleophile in ribozyme catalysis? An answer from the splicing mechanism of group II introns. J Am Chem Soc. 2016 Aug 24;138(33):10374–10377.
  • Sgrignani J, Magistrato A. QM/MM MD simulations on the enzymatic pathway of the human flap endonuclease (hFEN1) elucidating common cleavage pathways to RNase H enzymes. Acs Catal. 2015 Jun;5(6):3864–3875.
  • Sgrignani J, Iannuzzi M, Magistrato A. Role of water in the puzzling mechanism of the final aromatization step promoted by the human aromatase enzyme. Insights from QM/MM MD simulations. J Chem Inf Model. 2015 Oct 26;55(10):2218–2226.
  • Osborn MF, White JD, Haley MM, et al. Platinum-RNA modifications following drug treatment in S. cerevisiae identified by click chemistry and enzymatic mapping. Acs Chem Biol. 2014 Oct;9(10):2404–2411.
  • Melnikov SV, Söll D, Steitz TA, et al. Insights into RNA binding by the anticancer drug cisplatin from the crystal structure of cisplatin-modified ribosome. Nucleic Acids Res. 2016 Jun 2;44(10):4978–4987.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.