271
Views
16
CrossRef citations to date
0
Altmetric
Review

Advances in the use of Xenopus for successful drug screening

, &
Pages 1153-1159 | Received 12 May 2017, Accepted 10 Aug 2017, Published online: 28 Aug 2017

References

  • SSpemann H. Entwickelungsphysiologische Studien am Triton-Ei [Developmental physiology studies on the Triton egg]. Dev Genes Evol. 1903;16:551–631 .
  • Spemann H, Mangold H. Über induktion von Embryonalanlagen durchImplantation artfremder Organisatoren. Archiv für mikroskopische Anatomie und Entwicklungsmechanik [On induction of embryonic systems by implantation of foreign organisms. Archive for microscopic anatomy and development mechanics]. 1924;100:599–638.
  • Spemann H. Embryonic development and induction. New York: Hafner; 1938.
  • Gurdon J, Hopwood N. The introduction of Xenopus laevis into developmental biology: of empire, pregnancy testing and ribosomal genes. Int J Dev Biol. 2000;44:43–50.
  • Gurdon J. Changes in somatic cell nuclei inserted into growing and maturing amphibian oocytes. Development. 1968;20:401–414.
  • Gurdon J, Woodland H. The cytoplasmic control of nuclear activity in animal development. Biol Rev. 1968;43:233–267.
  • McMahon AP, Moon RT. Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell. 1989;58:1075–1084.
  • Smith WC, Harland RM. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell. 1992;70:829–840.
  • Thomsen GH, Melton A. Processed Vg1 protein is an axial mesoderm inducer in Xenopus. Cell. 1993;74(3):433–441.
  • Dale L, Matthews G, Colman A. Secretion and mesoderm-inducing activity of the TGFb-related domain of Xenopus Vg1. Embo J. 1993;12:4471–4480.
  • Cho K, Blumberg B, Steinbeisser H, et al. Molecular nature of Spemann’s organizer: the role of the Xenopus homeobox gene goosecoid. Cell. 1991;67:1111–1120.
  • Chow R, Altmann C, Lang R, et al. Pax6 induces ectopic eyes in a vertebrate. Development. 1999;126:4213–4222.
  • Piccolo S, Sasai Y, Lu B, et al. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell. 1996;86:589–598.
  • Sasai Y, Lu B, Steinbeisser H, et al. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell. 1994;79:779–790.
  • Wheeler GN, Brändli AW. Simple vertebrate models for chemical genetics and drug discovery screens: lessons from zebrafish and Xenopus. Dev Dyn. 2009;238:1287–1308.
  • Wheelere GN, Liu KJ. Xenopus: an ideal system for chemical genetics. Genesis. 2012;50:207–218.
  • Peterson RT, Link BA, Dowling JE, et al. Small molecule developmental screens reveal the logic and timing of vertebrate development. Pnas. 2000;97:12965–12969.
  • Langheinrich U, Hennen E, Stott G, et al. Zebrafish as a model organism for the identification and characterization of drugs and genes affecting p53 signaling. Curr Biol. 2002;12:2023–2028.
  • Langheinrich U. Zebrafish: a new model on the pharmaceutical catwalk. Bioessays. 2003;25:904–912.
  • Dumont JN, Schultz TW, Buchanan MV, et al. Frog embryo teratogenesis assay: Xenopus (FETAX) — a short-term assay applicable to complex environmental mixtures. In: Short-term bioassays in the analysis of complex environmental mixtures III. Plenum Press, New York (NY). 1983. p. 393–405.
  • Hoke R, Ankley G. Application of frog embryo teratogenesis assay‐Xenopus to ecological risk assessment. Environ Toxicol Chem. 2005;24:2677–2690.
  • Dawson D, Bantle. J. Coadministration of methylxanthines and inhibitor compounds potentiates teratogenicity in Xenopus embryos. Teratology. 1987;35:221–227.
  • Longoa M, Zanoncellia S, Torrea P, et al. Investigations of the effects of the antimalarial drug dihydroartemisinin (DHA) using the frog embryo teratogenesis assay-xenopus (FETAX). Reprod Toxicol. 2008;25(4):433–441.
  • Fort DJ, Stover EL, Bantle JA, et al. Evaluation of the developmental toxicity of thalidomide using frog embryo teratogenesis assay-Xenopus (FETAX): biotransformation and detoxification. Teratog Carcinog Mutagen. 2000;20:35–47.
  • Leconte I, Mouche I. Frog embryo teratogenesis assay on Xenopus and predictivity compared with in vivo mammalian studies. Teratogenicity Test. 2013;947:403–421.
  • Gard D, Kirsclmer. M. Microtubule assembly in cytoplasmic extracts of Xenopus oocytes and eggs. J Biol. 1987;105:2191–2201.
  • Peterson JR, Lokey RS, Mitchison TJ. A chemical inhibitor of N-WASP reveals a new mechanism for targeting protein interactions. PNAS. 2001;98:10624–10629.
  • Wignall SM, Gray NS, Chang Y-T, et al. Identification of a novel protein regulating microtubule stability through a chemical approach. Chem Biol. 2004;11:135–146.
  • Verma R, Peters NR, D’Onofrio M, et al. Ubistatins inhibit proteasome-dependent degradation by binding the ubiquitin Chain. Science. 2004;306:117–120.
  • Tomlinson ML, Fieldb RA, Wheeler GN. Xenopus as a model organism in developmental chemical genetic screens. Molecular BioSystems. 2005;1:223–228.
  • Tomlinson M, Rejzek M, Fidock M, et al. Chemical genomics identifies compounds affecting Xenopus laevis pigment cell development. Mol Biosyst. 2009;5:376–384.
  • Tomlinson M, Guan P, Morris R, et al. A chemical genomic approach identifies matrix metalloproteinases as playing an essential and specific role in Xenopus melanophore migration. Chem Biol. 2009;16:93–104.
  • Blackiston D, Shomrat T, Nicolas CL, et al. A second-generation device for automated training and quantitative behavior analyses of molecularly-tractable model organisms. PLoS One. 2010;5:e14370.
  • Robertis ED, Kuroda. H. Dorsal-ventral patterning and neural induction in Xenopus embryos. Annu Rev Cell Dev Biol. 2004;20:285–308.
  • Niehrs C. Head in the WNT: the molecular nature of Spemann’s head organizer. Trends Genet. 1999;15:314–319.
  • De Robertis E, Wessely O, Oelgeschlager M, et al. Molecular mechanisms of cell-cell signaling by the Spemann-Mangold organizer. Int J Dev Biol. 2001;45:189–197.
  • Glinka A, Wu W, Delius H, et al. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature. 1997;391:357–362.
  • Klein P, Melton. D. A molecular mechanism for the effect of lithium on development. Dev Biol. 1996;93:8455–8459.
  • Larabell C, Torres M, Rowning B, et al. Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in beta-catenin that are modulated by the Wnt signaling pathway. J Cell Biol. 1997;136:1123–1136.
  • Reis A, Almeida-Coburn K, Louza M, et al. Plasma membrane cholesterol depletion disrupts prechordal plate and affects early forebrain patterning. Dev Biol. 2012;365:350–362.
  • Amado NG, Fonseca BF, Cerqueira DM, et al. Effects of natural compounds on Xenopus embryogenesis: a potential read out for functional drug discovery targeting Wnt/β-catenin signaling. Curr Top Med Chem. 2012;12:2103–2113.
  • Fonseca B, Predes D, Cerqueira D, et al. Derricin and derricidin inhibit Wnt/β-Catenin signaling and suppress colon cancer cell growth in vitro. PLoS One. 2015;10:1–14.
  • Kao K, Masui Y, Elinson R. Lithium-induced respecification of pattern in Xenopus laevis embryos. Lett Nat. 1986;322:371–373.
  • Dominguez I, Green J. Dorsal downregulation of GSK3beta by a non-Wnt-like mechanism is an early molecular consequence of cortical rotation in early Xenopus embryos. Development. 2000;127:861–868.
  • Kao K, Elinso R. The entire mesodermal mantle behaves as Spemann’s organizer in dorsoanterior enhanced Xenopus laevis embryos. Dev Biol. 1988;127:64–77.
  • Thorne C, Lafleur B, Lewis M, et al. A biochemical screen for identification of small-molecule regulators of the Wnt pathway using Xenopus egg extracts. J Biomol Screen. 2011;16:995–1006.
  • Amado N, Predes D, Fonseca B, et al. Isoquercitrin suppresses colon cancer cell growth in vitro by targeting the Wnt/beta-catenin signaling pathway. J Biol Chem. 2014;289:35456–35467.
  • Saraswati S, Alfaro MP, Thorne CA, et al. Pyrvinium, a potent small molecule Wnt inhibitor, promotes wound repair and post-MI cardiac remodeling. PLoS One. 2010;5:e15521.
  • Myers C, Appleby S, Krieg P. Use of small molecule inhibitors of the Wnt and Notch signaling pathway during Xenopus development. Methods. 2014;66:380–389.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.