265
Views
18
CrossRef citations to date
0
Altmetric
Review

Approaches for multi-gram scale isolation of enantiomers for drug discovery

, , , , &
Pages 1253-1269 | Received 09 Jul 2017, Accepted 20 Sep 2017, Published online: 03 Oct 2017

References

  • Nguyen LA, He H, Chiral drugs P-HC. An overview. Int J Biomed Sci. 2006;2:85–100.
  • Williams A. Opportunities for chiral agrochemicals. Pestic Sci. 1996;46:3–9.
  • Wu Y, Miao H, Fan S. Separation of chiral pyrethroid pesticides and application in pharmacokinetics research and human exposure assessment. In: Pesticides in the modern world – effects of pesticides exposure. Baja California, Mexico InTech, ed. Margarita Stoytcheva; 2011.
  • Regulation (EU) n°528/2012 concerning the making available on the market and use of biocidal products. Evaluation of active substances. Assessment Report. 2013. [cited 23 Jul 2017]. Available from: http://dissemination.echa.europa.eu/Biocides/ActiveSubstances/1409-21/1409-21_Assessment_Report.pdf
  • Sekhon BS. Enantioseparation of chiral drugs – an overview. Int J PharmTech Res. 2010;2:1584–1594.
  • McConathy J, Owens MJ. Stereochemistry in drug action. Prim Care Companion J Clin Psychiatry. 2003;5:70–73.
  • Agranat I, Caner H, Caldwell J. Putting chirality to work: the strategy of chiral switches. Nat Rev Drug Discov. 2002;1:753–768.
  • Andersoon T. Single-isomer drugs: true therapeutic advances. Clin Pharmacokinet. 2004;43:279–285.
  • Campo VL, Bernardes LS, Carvalho I. Stereoselectivity in drug metabolism: molecular mechanisms and analytical methods. Curr Drug Metab. 2009;10:188–205.
  • Chiral technology market - global industry forecast, share, size, growth and industry analysis (2014–2020). Transparency Market Research (TMR). [cited 2 Jul 2017]. Available from: http://www.transparencymarketresearch.com/chiral-technology-market.html
  • Rouf A, Taneja SC. Synthesis of single-enantiomer bioactive molecules: a brief overview. Chirality. 2014;26:63–78.
  • Lorenz H, Seidel-Morgenstern A. Processes to separate enantiomers. Angew Chem Int Ed Engl. 2014;53:1218–1250.
  • Leek H, Thunberg L, Jonson AC, et al. Klarqvist M strategy for large-scale isolation of enantiomers in drug discovery. Drug Discovery Today. 2017;22:133–139.
  • FDA’s policy statement for the development of new stereoisomeric drugs. Chirality. 1992;4:338–340.
  • Development of new stereoisomeric drugs U.S. Food and Drug Administration. 1992. [cited 7 Jul 2017]. Available from: https://www.fda.gov/drugs/guidancecomplianceregulatoryinformation/guidances/ucm122883.htm
  • Federsel HJ. Facing chirality in the 21st century: approaching the challenges in the pharmaceutical industry. Chirality. 2003;15:S128–S142.
  • Subramanian G. Chiral separation techniques: a practical approach. 3rd ed. Weinheim: Wiley-VCH; 2007.
  • Lin GQ, You QD, Cheng JF. Overview of chirality and chiral drugs. In: Chiral drugs: chemistry and biological action. Weinheim:Wiley-VCH; 2011.
  • Ali I, Suhail M, Al-Othman ZA, et al. Enantiomeric resolution of multiple chiral centres racemates by capillary electrophoresis. Biomed Chromatogr. 2016;30:683–694.
  • Piacentini E, Mazzei R, Giorno L. Membrane bioreactors for pharmaceutical applications: optically pure enantiomers production. Curr Pharm Des. 2017;23:250–262.
  • Jozwiak K. Drug stereochemistry: analytical methods and pharmacology. Boca Raton:3rd ed. CRC Press; 2012.
  • Srinivas NR, Igwemezie LN. Chiral separation by high performance liquid chromatography. I. Review on indirect separation of enantiomers as diastereomeric derivatives using ultraviolet, fluorescence and electrochemical detection. Biomed Chromatogr. 1992;6:163–167.
  • Gaggeri R, Rossi D, Collina S, et al. Quick development of an analytical enantioselective high performance liquid chromatography separation and preparative scale-up for the flavonoid naringenin. J Chromatogr A. 2011;1218:5414–5422.
  • Collina S, Loddo G, Urbano M, et al. Enantioselective chromatography and absolute configuration of N,N-dimethyl-3-(naphthalen-2-yl)-butan-1-amines: potential sigma1 ligands. Chirality. 2006;18:245–253.
  • Rossi D, Marra A, Rui M, et al. “Fit-for-purpose” development of analytical and (semi)preparative enantioselective high performance liquid and supercritical fluid chromatography for the access to a novel σ1 receptor agonist. J Pharm Biomed Anal. 2016;118:363–369.
  • Rossi D, Nasti R, Marra A, et al. Enantiomeric 4-acylamino-6-alkyloxy-2 alkylthiopyrimidines as potential A3 adenosine receptor antagonists: HPLC chiral resolution and absolute configuration assignment by a full set of chiroptical spectroscopy. Chirality. 2016;28:434–440.
  • Shen J, Okamoto Y. Efficient separation of enantiomers using stereoregular chiral polymers. Chem Rev. 2016;116:1094–1138.
  • Okamoto Y, Ikai T. Chiral HPLC for efficient resolution of enantiomers. Chem Soc Rev. 2008;37:2593–2608.
  • Francotte ER. Enantioselective chromatography as a powerful alternative for the preparation of drug enantiomers. J Chromatogr A. 2001;906:379–397.
  • Franco P. Common screening approaches for efficient analytical method development in LC and SFC on columns packed with immobilized polysaccharide stationary phases. In Chiral separations, methods and Protocols. New York: Gerald Gübitz Martin G. Schmid (eds). 2nd ed. Humana Press; 2013.
  • Francotte ER. Chromatography as a separation tool for the preparative resolution of racemic compounds. In: Chiral separations, applications and technology. Washington:American Chemical Society; 1997.
  • Pirkle WH, House D, Finn J. Broad spectrum resolution of optical isomers using chiral high-performance liquid chromatographic bonded phases. J Chromatogr. 1980;192:143–158.
  • Davankov VA. Chiral selectors with chelating properties in liquid chromatography: fundamental reflections and selective review of recent developments. J Chromatogr. 1994;666:55–76.
  • Lämmerhofer M, Lindner W. Quinine and quinidine derivatives as chiral selectors I. Brush type chiral stationary phases for high-performance liquid chromatography based on cinchonan carbamates and their application as chiral anion exchangers. J Chromatogr A. 1996;741:33–48.
  • Ward TJ, Farris III AB. Chiral separations using the macrocyclic antibiotics: a review. J Chromatogr. 2001;906:73–89.
  • Haginaka J. Protein-based chiral stationary phases for high-performance liquid chromatography enantioseparations. J Chromatogr A. 2001;906(1–2):253–273.
  • Allenmark S, Andersson S, Möller P, et al. A new class of network-polymeric chiral stationary phases. Chirality. 1995;7:248–256.
  • Allenmark S, Schurig V. Chromatography on chiral stationary phases. J Mater Chem. 1997;7:1955–1963.
  • Miller L. Preparative enantioseparations using supercritical fluid chromatography. J Chromatogr A. 2012;1250:250–255.
  • Lee J, Lee JT, Watts WL, et al. On the method development of immobilized polysaccharide chiral stationary phases in supercritical fluid chromatography using an extended range of modifiers. J Chromatogr A. 2014;1374:238–246.
  • Speybrouck D, Lipka E. Preparative supercritical fluid chromatography: a powerful tool for chiral separations. J Chromatogr A. 2016;1467:33–55.
  • Francotte E. Practical advances in SFC for the purification of pharmaceutical molecules. LCGC Europe. 2016;29:194–204.
  • Płotka JM, Biziuk M, Morrison C, et al. Pharmaceutical and forensic drug applications of chiral supercritical fluid chromatography. Trends Analyt Chem. 2014;56:74–89.
  • Welch CJ. The use of preparative chiral chromatography for accessing enantiopurity in pharmaceutical discovery and development. In Comprehensive organic synthesis. Waltham:2nd ed. Elsevier Ltd; 2014.
  • Imamoglu S. Simulated moving bed chromatography (SMB) for application in bioseparation. Adv Biochem Eng Biotechnol. 2002;76:211–231.
  • Juza M, Mazzotti M, Morbidelli M. Simulated moving-bed chromatography and its application to chirotechnology. Trends Biotechnol. 2000;18:108–118.
  • Rajendran A, Paredes G, Mazzotti M. Simulated moving bed chromatography for the separation of enantiomers. J Chromatogr A. 2009;1216:709–738.
  • Schurig V. Preparative-scale separation of enantiomers on chiral stationary phases by gas chromatography. In: Enantiomer separation: fundamentals and practical methods. Fumino Toda (ed). Springer Netherlands; 2004.
  • Kinbara K. Design of resolving agents based on crystal engineering. Synlett. 2005;5:732–743.
  • Borghese A, Libert V, Zhang T, et al. Efficient fast screening methodology for optical resolution agents: solvent effects are used to affect the efficiency of the resolution process. Org Process Res Dev. 2004;8:532–534.
  • Fogassy E, Acs Maria FF. Pseudosymmetry and chiral discrimination in optical resolution via diastereoisomeric salt formation. The crystal structures of (R)- and (S)-N-methylamphetamine bitartrates (RMERTA and SMERTA). J Chem Soc Perkin Trans II. 1986;1881–1886.
  • Kozma D. CRC handbook of optical resolutions via diastereomeric salt formation. Boca Raton:CRC Press; 2002.
  • Guangyou Z, Yuquing L, Zhaohui W, et al. Resolution of β-aminoalcohols and 1,2-diamines using fractional crystallization of diastereomeric salts of dehydroabietic acid. Tetrahedron: Asymmetry. 2003;14:3297–3300.
  • Faigl F, Fogassy E, Nógrádi M, et al. Strategies in optical resolution: a practical guide. Tetrahedron: Asymmetry. 2008;19:519–536.
  • Kellogg RM, Kaptein B, Vries TR. Dutch resolution of racemates and the roles of solid solution formation and nucleation inhibition. Novel Optical Resolution Technologies. 2007. Kenichi Sakai, Noriaki Hirayama, Rui Tamura (eds). Springer Berlin Heidelberg.
  • Vries T, Wynberg H, van Echten E, et al. The family approach to the resolution of racemates. J Angew Chem Int Ed. 1998;37:2349–2354.
  • Kellogg RM. Crystallization as a tool in industrial applications of asymmetric synthesis. Comprehensive Chirality 2012. Waltham: Elsevier Ltd.
  • Gotrane DM, Deshmukh RD, Ranade PV, et al. A novel method for resolution of amlodipine. Org Process Res Dev. 2010;14:640–643.
  • Elati CR, Kolla N, Vankawala PJ, et al. Substrate modification approach to achieve efficient resolution: didesmethylcitalopram: a key intermediate for escitalopram. Org Process Res Dev. 2007;11:289–292.
  • Coquerel G. Preferential crystallization. In: Sakai K, Hirayama N, Tamura R, editors. Novel optical resolution technologies. Berlin, Heidelberg:Springer-Verlag; 2007. p. 1–51.
  • Collet A. Separation and purification of enantiomers by crystallisation methods. Enantiomer. 1999;4:157–172.
  • Jacques J, Collet A, Wilen SH. Enantiomers, racemates and resolutions. 1st ed. New York (NY): Wiley; 1991.
  • Rougeot C, Hein JE. Application of continuous preferential crystallization to efficiently access enantiopure chemicals. Org Process Res Dev. 2015;19:1809−1819.
  • Farina V, Reeves JT, Senanayake CH, et al. Asymmetric catalysis of active pharmaceutical ingredients. Chem Rev. 2006;106:2734–2793.
  • Hong B-C, Raja A, Sheth VM. Asymmetric synthesis of natural products and medicinal drugs through one-pot-reaction strategies. Synthesis. 2015;47:3257–3285.
  • Zhan G, Du W, Chen Y-C. Switchable divergent asymmetric synthesis via organocatalysis. Chem Soc Rev. 2017;46:1675—1692.
  • Burke D, Henderson DJ. Chirality: a blueprint for the future. Br J Anaesth. 2002;88:563–576.
  • Aratikatla EK, Bhattacharya AK. Chiral pool approach for the synthesis of functionalized amino acids: synthesis of antiepileptic drug (R)-Lacosamide. Tetrahedron Lett. 2015;56:5802–5803.
  • Damsen H, Niggemann M. Calcium-catalyzed synthesis of 1,2-disubstituted 3-benzazepines. Eur J Org Chem. 2015;36:7880–7883.
  • Gnas Y, Glorius F. Chiral auxiliaries – principles and recent applications. Synthesis. 2006;12:1899–1930.
  • Pignataro L, Carboni S, Civera M, et al. PhthalaPhos: chiral supramolecular ligands for enantioselective rhodium-catalyzed hydrogenation reactions. Angew Chem Int Ed. 2010;49:6633–6637.
  • Gajewski P, Renom-Carrasco M, Vailati Facchini S, et al. Synthesis of (R)-BINOL-derived (cyclopentadienone)iron complexes and their application in the catalytic asymmetric hydrogenation of ketones. Eur J Org Chem. 2015;2015:5526–5536.
  • Trost BM, Van Vranken DL. Asymmetric transition metal-catalyzed allylic alkylations. Chem Rev. 1996;96:395–422.
  • Di Giacomo M, Serra M, Brusasca M, et al. Stereoselective Pd-catalyzed synthesis of quaternary α-D-C-Mannosyl-(S)-amino acids. J Org Chem. 2011;76:5247–5257.
  • Dhar TG, Xiao HY, Xie J, et al. Identification and preclinical pharmacology of BMS-986104: a differentiated S1P1 receptor modulator in clinical trials. ACS Med Chem Lett. 2016;7:283–288.
  • Yang MG, Xiao Z, Murali Dhar TG, et al. Asymmetric hydroboration approach to the scalable synthesis of ((1R,3S)-1-amino-3-((R)-6-hexyl-5,6,7,8-tetrahydronaphthalen-2- yl)cyclopentyl)methanol (BMS-986104) as a potent S1P1 receptor modulator. J Med Chem. 2016;59:11138–11147.
  • Bühler S, Goettert M, Schollmeyer D, et al. Chiral sulfoxides as metabolites of 2-thioimidazole-based p38α mitogen-activated protein kinase inhibitors: enantioselective synthesis and biological evaluation. J Med Chem. 2011;54:3283–3297.
  • Gaich T, Mulzer J. Chiral pool synthesis: starting from terpenes. Comprehensive Chirality 2012. Waltham: Elsevier Ltd.
  • Chen WW, Xu MH. Recent advances in rhodium-catalyzed asymmetric synthesis of heterocycles. Org Biomol Chem. 2017;15:1029–1050.
  • Anthonsen T. Reactions catalyzed by enzymes. In Applied biocatalysis. Chur:2nd ed. Taylor & Francis; 2000.
  • Wells AS, Finch GL, Michels PC, et al. Use of enzymes in the manufacture of active pharmaceutical ingredients – a science and safety-based approach to ensure patient safety and drug quality. Org Process Res Dev. 2012;16:1986–1993.
  • Liese A, Seelbach K, Wandrey C. Industrial biotransformations. 2nd ed. Weinheim:Wiley-VCH; 2006.
  • Carvalho AC, Fonseca Tde S, de Mattos MC, et al. Recent advances in lipase-mediated preparation of pharmaceuticals and their intermediates. Int J Mol Sci. 2015;16:29682–29716.
  • Mohamad NR, Marzuki NHC, Buang NA, et al. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip. 2015;29:205–220.
  • Ismail H, Lau RM, van Rantwijk F, et al. Fully enzymatic resolution of chiral amines: acylation and deacylation in the presence of candida antarctica lipase B. Adv Synth Catal. 2008;350:1511–1516.
  • Blacker AJ, Stirling MJ, Page MI. Catalytic racemisation of chiral amines and application in dynamic kinetic resolution. Org Process Res Dev. 2007;11:642–648.
  • Hansen KB, Hsiao Y, Xu F, et al. Highly efficient asymmetric synthesis of sitagliptin. J Am Chem Soc. 2009;131:8798–8804.
  • Savile CK, Janey JM, Mundorff EC, et al. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science. 2010;329:305−309.
  • Truppo MD, Strotman H, Hughes G. Development of an immobilized transaminase capable of operating in organic solvent. ChemCatChem. 2012;4:1071–1074.
  • Li H, Moncecchi J, Truppo MD. Development of an immobilized ketoreductase for enzymatic (R)-1-(3,5-Bis(trifluoromethyl)phenyl)ethanol production. Org Process Res Dev. 2015;19:695–700.
  • Bryan MC, Dillon B, Hamann LG, et al. Sustainable practices in medicinal chemistry: current state and future directions. J Med Chem. 2013;56:6007–6021.
  • De Mas N, Natalie KJ, Quiroz F, et al. A partial classical resolution/preparative chiral supercritical fluid chromatography method for the rapid preparation of the pivotal intermediate in the synthesis of two nonsteroidal glucocorticoid receptor modulators. Org Process Res Dev. 2016;20:934–939.
  • Tullar BF. Optical isomers of mepivacaine and bupivacaine. J Med Chem. 1971;14:891–892.
  • von Langermann J, Kaspereit M, Shakeri M, et al. Design of an integrated process of chromatography, crystallization and racemization for the resolution of 2′,6′-pipecoloxylidide (PPX). Org Process Res Dev. 2012;16:343–352.
  • Marra A, Rossi D, Pignataro L, et al. Toward the identification of neuroprotective agents: g-scale synthesis, pharmacokinetic evaluation and CNS distribution of (R)-RC-33, a promising SIGMA1 receptor agonist. Future Med Chem. 2016;8:287–295.
  • Caldwell J. Through the looking glass in chiral drug development. Mol Drug Discov. 1999;2:51–60.
  • Maier NM, Franco P, Lindner W. Separation of enantiomers: needs, challenges, perspective. J Chromatogr A. 2001;906:3–33.
  • Shen Z, Lv C, Zeng S. Significance and challenges of stereoselectivity assessing methods in drug metabolism. J Pharmaceut Anal. 2016;6:1–10.
  • New drugs at FDA: CDER’s new molecular entities and new therapeutic biological products. FDA Public Health Advisory. Washington (DC): FDA/Center for Drug evaluation and Research; 2017. Available from: www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugInnovation/default.htm
  • Taylor LT. Supercritical fluid chromatography for the 21st century. J Supercritical Fluids. 2009;47:566–573.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.