274
Views
16
CrossRef citations to date
0
Altmetric
Review

Urinary peptidomics in kidney disease and drug research

ORCID Icon, & ORCID Icon
Pages 259-268 | Received 07 Sep 2017, Accepted 14 Dec 2017, Published online: 19 Dec 2017

References

  • Tinoco AD, Saghatelian A. Investigating endogenous peptides and peptidases using peptidomics. Biochemistry. 2011 Aug 15;50(35):7447–7461.
  • Clynen E, Baggerman G, Husson S, et al. Peptidomics in drug research. Expert Opin Drug Discov. 2008 Apr;3(4):425–440.
  • Patel A, Patel M, Yang X, et al. Recent advances in protein and peptide drug delivery: a special emphasis on polymeric nanoparticles. Protein Pept Lett. 2014;21(11):1102–1120.
  • Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov Today. 2015 Jan 1;20(1):122–128.
  • Romanova EV, Sweedler JV. Peptidomics for the discovery and characterization of neuropeptides and hormones. Trends Pharmacol Sci. 2015 Sep;36(9):579–586.
  • Schrader M, Schulz-Knappe P, Fricker LD. Historical perspective of peptidomics. EuPA Open Proteomics. 2014 Jun 1;3:171–182.
  • Merchant ML, Klein JB. Chapter 9 - Urinary proteomics and candidate biomarker discovery for diabetic nephropathy A2. In: Edelstein, Charles L Biomarkers of kidney disease. San Diego: Academic Press; 2011. p. 351–366.
  • Klein J, Bascands JL, Mischak H, et al. The role of urinary peptidomics in kidney disease research. Kidney Int. 2016 Mar;89(3):539–545.
  • Good DM, Zurbig P, Argiles A, et al. Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol Cell Proteomics MCP. 2010 Nov;9(11):2424–2437.
  • Cunningham R, Ma D, Li L. Mass spectrometry-based proteomics and peptidomics for systems biology and biomarker discovery. Front Biol. 2012;7(4):313–335.
  • Filip S, Zoidakis J, Vlahou A, et al. Advances in urinary proteome analysis and applications in systems biology. Bioanalysis. 2014;6(19):2549–2569.
  • Schaub S, Wilkins J, Weiler T, et al. Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry. Kidney Int. 2004 Jan;65(1):323–332.
  • Theodorescu D, Wittke S, Ross MM, et al. Discovery and validation of new protein biomarkers for urothelial cancer: a prospective analysis. Lancet Oncol. 2006 Mar;7(3):230–240.
  • Vanholder R, Annemans L, Brown E, et al. Reducing the costs of chronic kidney disease while delivering quality health care: a call to action. Nat Reviews Nephrol. 2017 Jul;13(7):393–409.
  • Pena-Polanco JE, Fried LF. Established and emerging strategies in the treatment of chronic kidney disease. Semin Nephrol. 2016 Jul;36(4):331–342.
  • Cisek K, Krochmal M, Klein J, et al. The application of multi-omics and systems biology to identify therapeutic targets in chronic kidney disease. Nephrol Dial Transplant. 2016;31(12):2003–2011.
  • Albalat A, Mischak H, Mullen W. Clinical application of urinary proteomics/peptidomics. Expert Rev Proteomics. 2011 Oct 1;8(5):615–629.
  • Pontillo C, Zhang Z-Y, Schanstra JP, et al. Prediction of chronic kidney disease stage 3 by CKD273, a urinary proteomic biomarker. Kidney Int Rep. 2017 Jun 15;2:1066–1075.
  • Heine G, Raida M, Forssmann WG. Mapping of peptides and protein fragments in human urine using liquid chromatography-mass spectrometry. J Chromatography. 1997 Jul 25;776(1):117–124.
  • Saxenhofer H, Raselli A, Weidmann P, et al. Urodilatin, a natriuretic factor from kidneys, can modify renal and cardiovascular function in men. Am J Physiol. 1990 Nov;259(5 Pt 2):F832–8.
  • Packer M, Holcomb R, Abraham WT, et al. Rationale for and design of the TRUE-AHF trial: the effects of ularitide on the short-term clinical course and long-term mortality of patients with acute heart failure. Eur J Heart Fail. 2017 May;19(5):673–681.
  • Packer M, O’Connor C, McMurray JJV, et al. Effect of ularitide on cardiovascular mortality in acute heart failure. New England J Med. 2017;376(20):1956–1964.
  • Noiri E, Gailit J, Sheth D, et al. Cyclic RGD peptides ameliorate ischemic acute renal failure in rats. Kidney Int. 1994;46(4):1050–1058.
  • Roscioni SS, de Zeeuw D, Hellemons ME, et al. A urinary peptide biomarker set predicts worsening of albuminuria in type 2 diabetes mellitus. Diabetologia. 2013 Feb;56(2):259–267.
  • Zurbig P, Jerums G, Hovind P, et al. Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes. 2012 Dec;61(12):3304–3313.
  • Schanstra JP, Zurbig P, Alkhalaf A, et al. Diagnosis and prediction of CKD progression by assessment of urinary peptides. J Am Soc Nephrol JASN. 2015 Aug;26(8):1999–2010.
  • Mischak H, Vlahou A, Ioannidis JP. Technical aspects and inter-laboratory variability in native peptide profiling: the CE-MS experience. Clin Biochem. 2013 Apr;46(6):432–443.
  • Siwy J, Schanstra JP, Argiles A, et al. Multicentre prospective validation of a urinary peptidome-based classifier for the diagnosis of type 2 diabetic nephropathy. Nephrol Dial Transplant. 2014 Aug;29(8):1563–1570.
  • Lindhardt M, Persson F, Currie G, et al. Proteomic prediction and Renin angiotensin aldosterone system Inhibition prevention Of early diabetic nephRopathy in TYpe 2 diabetic patients with normoalbuminuria (PRIORITY): essential study design and rationale of a randomised clinical multicentre trial. BMJ Open. 2016 Mar 02;6(3):e010310.
  • Pontillo C, Jacobs L, Staessen JA, et al. A urinary proteome-based classifier for the early detection of decline in glomerular filtration. Nephrol Dial Transplant. 2017 Sep 1;32(9):1510–1516.
  • Pontillo C, Mischak H. Urinary peptide-based classifier CKD273: towards clinical application in chronic kidney disease. Clin Kidney J. 2017 Apr;10(2):192–201.
  • Schievink B, Kropelin T, Mulder S, et al. Early renin-angiotensin system intervention is more beneficial than late intervention in delaying end-stage renal disease in patients with type 2 diabetes. Diabetes Obes Metab. 2016 Jan;18(1):64–71.
  • Kato S, Maruyama S, Makino H, et al. Anti-albuminuric effects of spironolactone in patients with type 2 diabetic nephropathy: a multicenter, randomized clinical trial. Clin Exp Nephrol. 2015 Dec;19(6):1098–1106.
  • Lindhardt M, Persson F, Oxlund C, et al. Predicting albuminuria response to spironolactone treatment with urinary proteomics in patients with type 2 diabetes and hypertension. Nephrol Dial Transplant. 2017 Jan 7.
  • Rossing K, Mischak H, Parving HH, et al. Impact of diabetic nephropathy and angiotensin II receptor blockade on urinary polypeptide patterns. Kidney Int. 2005 Jul;68(1):193–205.
  • Andersen S, Mischak H, Zürbig P, et al. Urinary proteome analysis enables assessment of renoprotective treatment in type 2 diabetic patients with microalbuminuria. BMC Nephrol. 2010 Nov 1 [07/01/received; 11/01/accepted];11:29.
  • Haubitz M, Good DM, Woywodt A, et al. Identification and validation of urinary biomarkers for differential diagnosis and evaluation of therapeutic intervention in anti-neutrophil cytoplasmic antibody-associated vasculitis. Mol Cell Proteomics MCP. 2009 Oct;8(10):2296–2307.
  • Cherney D, Perkins BA, Lytvyn Y, et al. The effect of sodium/glucose cotransporter 2 (SGLT2) inhibition on the urinary proteome. Plos One. 2017;12(10):e0186910.
  • Mischak H, Delles C, Klein J, et al. Urinary proteomics based on capillary electrophoresis-coupled mass spectrometry in kidney disease: discovery and validation of biomarkers, and clinical application. Adv Chronic Kidney Dis. 2010 Nov;17(6):493–506.
  • Klein J, Eales J, Zurbig P, et al. Proteasix: a tool for automated and large-scale prediction of proteases involved in naturally occurring peptide generation. Proteomics. 2013 Apr;13(7):1077–1082.
  • Fortelny N, Yang S, Pavlidis P, et al. Proteome TopFIND 3.0 with TopFINDer and PathFINDer: database and analysis tools for the association of protein termini to pre- and post-translational events. Nucleic Acids Res. 2015 Jan;43(Database issue):D290–7.
  • Song J, Tan H, Perry AJ, et al. PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites. PLoS ONE. 2012 Nov 29 [07/16/received; 10/18/accepted];7(11):e50300.
  • Iloro I, Gonzalez E, Gutierrez-de Juan V, et al. Non-invasive detection of drug toxicity in rats by solid-phase extraction and MALDI-TOF analysis of urine samples. Anal Bioanal Chem. 2013 March 01;405(7):2311–2320.
  • Drube J, Schiffer E, Mischak H, et al. Urinary proteome pattern in children with renal Fanconi syndrome. Nephrol Dial Transplant. 2009 Jul;24(7):2161–2169.
  • Foucher C, Schiffer E, Mischak H, et al. Effect of fenofibrate treatment on the low molecular weight urinary proteome of healthy volunteers. Proteomics Clin Appl. 2011 Apr;5(3–4):159–166.
  • Perez V, Sanchez A, Bayes B, et al. Effect of paricalcitol on the urinary peptidome of kidney transplant patients. Transplant Proc. 2010 Oct;42(8):2924–2927.
  • Perez V, Navarro-Munoz M, Bayes B, et al. Effect of low doses of atorvastatin on the urinary peptide profile of kidney transplant patients. Transplant Proc. 2009 Jul-Aug;41(6):2111–2114.
  • Becker GJ, Hewitson TD. Animal models of chronic kidney disease: useful but not perfect. Nephrol Dial Transplant. 2013 Oct;28(10):2432–2438.
  • Klein J, Ramirez-Torres A, Ericsson A, et al. Urinary peptidomics provides a noninvasive humanized readout of diabetic nephropathy in mice. Kidney Int. 2016 Nov;90(5):1045–1055.
  • Siwy J, Zoja C, Klein J, et al. Evaluation of the Zucker diabetic fatty (ZDF) rat as a model for human disease based on urinary peptidomic profiles. Plos One. 2012;7(12):e51334.
  • Delles C, Schiffer E, von Zur Muhlen C, et al. Urinary proteomic diagnosis of coronary artery disease: identification and clinical validation in 623 individuals. J Hypertens. 2010 Nov;28(11):2316–2322.
  • Dissard R, Klein J, Caubet C, et al. Long term metabolic syndrome induced by a high fat high fructose diet leads to minimal renal injury in C57BL/6 mice. PLoS One. 2013;8(10):e76703.
  • Pejchinovski M, Siwy J, Mullen W, et al. Urine peptidomic biomarkers for diagnosis of patients with systematic lupus erythematosus. Lupus. 2017 Jan 1;27(1):6–16.
  • Magalhães P, Pejchinovski M, Markoska K, et al. Association of kidney fibrosis with urinary peptides: a path towards non-invasive liquid biopsies? Sci Rep. 2017 Dec 5 [08/11/received; 11/20/accepted];7:16915.
  • Betz BB, Jenks SJ, Cronshaw AD, et al. Urinary peptidomics in a rodent model of diabetic nephropathy highlights epidermal growth factor as a biomarker for renal deterioration in patients with type 2 diabetes. Kidney Int. 2016 May;89(5):1125–1135.
  • Merchant ML, Perkins BA, Boratyn GM, et al. Urinary peptidome may predict renal function decline in type 1 diabetes and microalbuminuria. J Am Soc Nephrol JASN. 2009 Sep;20(9):2065–2074.
  • Pejchinovski M, Siwy J, Metzger J, et al. Urine peptidome analysis predicts risk of end-stage renal disease and reveals proteolytic pathways involved in autosomal dominant polycystic kidney disease progression. Nephrol Dial Transplant. 2017 Mar 1;32(3):487–497.
  • Kistler AD, Serra AL, Siwy J, et al. Urinary proteomic biomarkers for diagnosis and risk stratification of autosomal dominant polycystic kidney disease: a multicentric study. PLoS One. 2013 Jan 10 [06/15/received; 11/22/accepted];8(1):e53016.
  • Chinello C, Cazzaniga M, De Sio G, et al. Tumor size, stage and grade alterations of urinary peptidome in RCC. J Transl Med. 2015 Oct;20(13):332.
  • Milongo D, Bascands JL, Huart A, et al. Pretransplant urinary proteome analysis does not predict development of chronic kidney disease after liver transplantation. Liver Int. 2015 Jul;35(7):1893–1901.
  • Quintana LF, Campistol JM, Alcolea MP, et al. Application of label-free quantitative peptidomics for the identification of urinary biomarkers of kidney chronic allograft dysfunction. Mol Cell Proteomics MCP. 2009 Jul;8(7):1658–1673.
  • Krochmal M, Kontostathi G, Magalhães P, et al. Urinary peptidomics analysis reveals proteases involved in diabetic nephropathy. Sci Rep. 2017 Nov 9;7(1):15160.
  • Mullen W, Delles C, Mischak H. Urinary proteomics in the assessment of chronic kidney disease. Curr Opin Nephrol Hypertens. 2011 Nov;20(6):654–661.
  • Decramer S, Gonzalez de Peredo A, Breuil B, et al. Urine in clinical proteomics. Mol Cell Proteomics MCP. 2008 Oct;7(10):1850–1862.
  • Filip S, Vougas K, Zoidakis J, et al. Comparison of depletion strategies for the enrichment of low-abundance proteins in urine. PLoS One. 2015 Jul 24 [03/09/received; 07/01/accepted];10(7):e0133773.
  • Mischak H. Pro: urine proteomics as a liquid kidney biopsy: no more kidney punctures! Nephrol Dial Transplant. 2015 Apr;30(4):532–537.
  • Siwy J, Zurbig P, Argiles A, et al. Noninvasive diagnosis of chronic kidney diseases using urinary proteome analysis. Nephrol Dial Transplant. 2016 Oct 5.
  • Lindhardt M, Persson F, Zurbig P, et al. Urinary proteomics predict onset of microalbuminuria in normoalbuminuric type 2 diabetic patients, a sub-study of the DIRECT-Protect 2 study. Nephrol Dial Transplant. 2016 Aug 8.
  • Stalmach A, Albalat A, Mullen W, et al. Recent advances in capillary electrophoresis coupled to mass spectrometry for clinical proteomic applications. Electrophoresis. 2013 Jun;34(11):1452–1464.
  • Molina F, Dehmer M, Perco P, et al. Systems biology: opening new avenues in clinical research. Nephrol Dial Transplant. 2010 Apr;25(4):1015–1018.
  • Nkuipou-Kenfack E, Zürbig P, Mischak H. The long path towards implementation of clinical proteomics: exemplified based on CKD273. PROTEOMICS – Clin Appl. 2017;11(5–6):1600104-n/a.
  • Critselis E, Lambers Heerspink H. Utility of the CKD273 peptide classifier in predicting chronic kidney disease progression. Nephrol Dial Transplant. 2016 Feb;31(2):249–254.
  • Mischak H. How to get proteomics to the clinic? Issues in clinical proteomics, exemplified by CE-MS. Proteomics Clin Appl. 2012;6(9–10):437–442.
  • European Medicines Agency CfMPfHUC. Guideline on the clinical investigation of medicinal products to prevent development/slow progression of chronic renal insufficiency. Committee for Medicinal Products for Human Use (CHMP), www.ema.europa.eu. 2014. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2014/06/WC500169469.pdf.
  • Administration FaD. Biomarker letter of support; 2016. Available from: www.fda.gov.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.