1,233
Views
44
CrossRef citations to date
0
Altmetric
Review

Murine models of psoriasis and their usefulness for drug discovery

, , &
Pages 551-562 | Received 11 Jan 2018, Accepted 06 Apr 2018, Published online: 17 Apr 2018

References

  • Griffiths CEM, van der Walt JM, Ashcroft DM, et al. The global state of psoriasis disease epidemiology: a workshop report. Br J Dermatol. 2017;177(1):e4–e7.
  • Parisi R, Symmons DP, Griffiths CE, et al. Global epidemiology of psoriasis: a systematic review of incidence and prevalence. J Invest Dermatol. 2013;133(2):377–385.
  • Tsai TF, Wang TS, Hung ST, et al. Epidemiology and comorbidities of psoriasis patients in a national database in Taiwan. J Dermatol Sci. 2011;63(1):40–46.
  • Griffiths CE, Barker JN. Pathogenesis and clinical features of psoriasis. Lancet. 2007;370(9583):263–271.
  • Ritchlin CT, Colbert RA, Gladman DD. Psoriatic arthritis. N Engl J Med. 2017;376(21):2095–2096.
  • Sobchak C, Eder L. Cardiometabolic disorders in psoriatic disease. Curr Rheumatol Rep. 2017;19(10):63.
  • Coto-Segura P, Eiris-Salvado N, Gonzalez-Lara L, et al. Psoriasis, psoriatic arthritis and type 2 diabetes mellitus: a systematic review and meta-analysis. Br J Dermatol. 2013;169(4):783–793.
  • Prussick RB, Miele L. Nonalcoholic fatty liver disease in patients with psoriasis: a consequence of systemic inflammatory burden? Br J Dermatol. 2017. DOI:10.1111/bjd.16239
  • Takeshita J, Grewal S, Langan SM, et al. Psoriasis and comorbid diseases: implications for management. J Am Acad Dermatol. 2017;76(3):393–403.
  • Wagner EF, Schonthaler HB, Guinea-Viniegra J, et al. Psoriasis: what we have learned from mouse models. Nat Rev Rheumatol. 2010;6(12):704–714.
  • Ronholt K, Iversen L. Old and new biological therapies for psoriasis. Int J Mol Sci. 2017;18(11):2297.
  • Nestle FO, Kaplan DH, Barker J. Psoriasis. N Engl J Med. 2009;361(5):496–509.
  • Norsgaard H, Svensson L, Hagedorn PH, et al. Translating clinical activity and gene expression signatures of etanercept and ciclosporin to the psoriasis xenograft SCID mouse model. Br J Dermatol. 2012;166(3):649–652.
  • Ma KMH, Fish S, Napierata L, et al. Attenuating Janus kinases (JAK) by tofacitinib effectively prevented psoriasis pathology in various mouse skin inflammation models. J Clin Cell Immunol. 2013;4:176.
  • Gates AH, Karasek M. Hereditary absence of sebaceous glands in the mouse. Science. 1965;148(3676):1471–1473.
  • Josefowicz WJ, Hardy MH. The expression of the gene asebia in the laboratory mouse. I Epidermis and Dermis. Genet Res. 1978;31(1):53–65.
  • Brown WR, Rogozinski TT, Ramsay CA. Anthralin and tar with UVB increase epidermal cell proliferation in asebia mice. Clin Exp Dermatol. 1988;13(4):248–251.
  • Brown WR, Hardy MH. A hypothesis on the cause of chronic epidermal hyperproliferation in asebia mice. Clin Exp Dermatol. 1988;13(2):74–77.
  • Sundberg JP, Beamer WG, Shultz LD, et al. Inherited mouse mutations as models of human adnexal, cornification, and papulosquamous dermatoses. J Invest Dermatol. 1990;95(5):62S–63S.
  • Sundberg JP, France M, Boggess D, et al. Development and progression of psoriasiform dermatitis and systemic lesions in the flaky skin (fsn) mouse mutant. Pathobiology. 1997;65(5):271–286.
  • Pelsue SC, Schweitzer PA, Beamer WG, et al. Mapping of the flaky skin (fsn) mutation on distal mouse chromosome 17. Mamm Genome. 1995;6(10):758.
  • HogenEsch H, Gijbels MJ, Offerman E, et al. A spontaneous mutation characterized by chronic proliferative dermatitis in C57BL mice. Am J Pathol. 1993;143(3):972–982.
  • Peuhu E, Salomaa SI, De Franceschi N, et al. Integrin beta 1 inhibition alleviates the chronic hyperproliferative dermatitis phenotype of SHARPIN-deficient mice. PLoS One. 2017;12(10):e0186628.
  • Potter CS, Wang Z, Silva KA, et al. Chronic proliferative dermatitis in Sharpin null mice: development of an autoinflammatory disease in the absence of B and T lymphocytes and IL4/IL13 signaling. PLoS One. 2014;9(1):e85666.
  • HogenEsch H, Torregrosa SE, Boggess D, et al. Increased expression of type 2 cytokines in chronic proliferative dermatitis (cpdm) mutant mice and resolution of inflammation following treatment with IL-12. Eur J Immunol. 2001;31(3):734–742.
  • Gijbels MJ, Elliott GR, HogenEsch H, et al. Therapeutic interventions in mice with chronic proliferative dermatitis (cpdm/cpdm). Exp Dermatol. 2000;9(5):351–358.
  • Kwon HH, Na SJ, Jo SJ, et al. Epidemiology and clinical features of pediatric psoriasis in tertiary referral psoriasis clinic. J Dermatol. 2012;39(3):260–264.
  • Nair RP, Stuart P, Henseler T, et al. Localization of psoriasis-susceptibility locus PSORS1 to a 60-kb interval telomeric to HLA-C. Am J Hum Genet. 2000;66(6):1833–1844.
  • Nair RP, Stuart PE, Nistor I, et al. Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. Am J Hum Genet. 2006;78(5):827–851.
  • Trembath RC, Clough RL, Rosbotham JL, et al. Identification of a major susceptibility locus on chromosome 6p and evidence for further disease loci revealed by a two stage genome-wide search in psoriasis. Hum Mol Genet. 1997;6(5):813–820.
  • Tian S, Krueger JG, Li K, et al. Meta-analysis derived (MAD) transcriptome of psoriasis defines the “core” pathogenesis of disease. PLoS One. 2012;7(9):e44274.
  • Suarez-Farinas M, Li K, Fuentes-Duculan J, et al. Expanding the psoriasis disease profile: interrogation of the skin and serum of patients with moderate-to-severe psoriasis. J Invest Dermatol. 2012;132(11):2552–2564.
  • Nair RP, Duffin KC, Helms C, et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet. 2009;41(2):199–204.
  • Capon F, Burden AD, Trembath RC, et al. Psoriasis and other complex trait dermatoses: from Loci to functional pathways. J Invest Dermatol. 2012;132(3 Pt 2):915–922.
  • Woo YR, Cho DH, Park HJ. Molecular mechanisms and management of a cutaneous inflammatory disorder: psoriasis. Int J Mol Sci. 2017;18(12):2684.
  • Gao J, Sun L, Zhang X. The genetic progress of psoriasis in the Han Chinese population. J Invest Dermatol Symp Proc. 2015;17(1):46–47.
  • Danilenko DM. Review paper: preclinical models of psoriasis. Vet Pathol. 2008;45(4):563–575.
  • Schon MP. Animal models of psoriasis: a critical appraisal. Exp Dermatol. 2008;17(8):703–712.
  • Gudjonsson JE, Johnston A, Dyson M, et al. Mouse models of psoriasis. J Invest Dermatol. 2007;127(6):1292–1308.
  • Sano S, Chan KS, Carbajal S, et al. Stat3 links activated keratinocytes and immunocytes required for development of psoriasis in a novel transgenic mouse model. Nat Med. 2005;11(1):43–49.
  • Li AG, Wang D, Feng XH, et al. Latent TGFbeta1 overexpression in keratinocytes results in a severe psoriasis-like skin disorder. Embo J. 2004;23(8):1770–1781.
  • Koegel H, von Tobel L, Schafer M, et al. Loss of serum response factor in keratinocytes results in hyperproliferative skin disease in mice. J Clin Invest. 2009;119(4):899–910.
  • Rebholz B, Haase I, Eckelt B, et al. Crosstalk between keratinocytes and adaptive immune cells in an IkappaBalpha protein-mediated inflammatory disease of the skin. Immunity. 2007;27(2):296–307.
  • Zenz R, Eferl R, Kenner L, et al. Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins. Nature. 2005;437(7057):369–375.
  • Johnston A, Fritz Y, Dawes SM, et al. Keratinocyte overexpression of IL-17C promotes psoriasiform skin inflammation. J Immunol. 2013;190(5):2252–2262.
  • Zhang Y, Meng XM, Huang XR, et al. Transforming growth factor-beta1 mediates psoriasis-like lesions via a Smad3-dependent mechanism in mice. Clin Exp Pharmacol Physiol. 2014;41(11):921–932.
  • Fitch EL, Rizzo HL, Kurtz SE, et al. Inflammatory skin disease in K5.hTGF-beta1 transgenic mice is not dependent on the IL-23/Th17 inflammatory pathway. J Invest Dermatol. 2009;129(10):2443–2450.
  • Pasparakis M, Courtois G, Hafner M, et al. TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature. 2002;417(6891):861–866.
  • Croxford AL, Karbach S, Kurschus FC, et al. IL-6 regulates neutrophil microabscess formation in IL-17A-driven psoriasiform lesions. J Invest Dermatol. 2014;134(3):728–735.
  • Canavese M, Altruda F, Silengo L, et al. Clinical, pathological and immunological features of psoriatic-like lesions affecting keratin 14-vascular endothelial growth factor transgenic mice. Histol Histopathol. 2011;26(3):285–296.
  • Kopp T, Kieffer JD, Rot A, et al. Inflammatory skin disease in K14/p40 transgenic mice: evidence for interleukin-12-like activities of p40. J Invest Dermatol. 2001;117(3):618–626.
  • Cheng J, Turksen K, Yu QC, et al. Cachexia and graft-vs.-host-disease-type skin changes in keratin promoter-driven TNF alpha transgenic mice. Genes Dev. 1992;6(8):1444–1456.
  • Blumberg H, Conklin D, Xu WF, et al. Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell. 2001;104(1):9–19.
  • Guo L, Yu QC, Fuchs E. Targeting expression of keratinocyte growth factor to keratinocytes elicits striking changes in epithelial differentiation in transgenic mice. Embo J. 1993;12(3):973–986.
  • Marina ME, Roman II, Constantin AM, et al. VEGF involvement in psoriasis. Clujul Med. 2015;88(3):247–252.
  • Xia YP, Li B, Hylton D, et al. Transgenic delivery of VEGF to mouse skin leads to an inflammatory condition resembling human psoriasis. Blood. 2003;102(1):161–168.
  • de Jong A, Cheng TY, Huang S, et al. CD1a-autoreactive T cells recognize natural skin oils that function as headless antigens. Nat Immunol. 2014;15(2):177–185.
  • de Jong A, Pena-Cruz V, Cheng TY, et al. CD1a-autoreactive T cells are a normal component of the human alphabeta T cell repertoire. Nat Immunol. 2010;11(12):1102–1109.
  • Bagchi S, He Y, Zhang H, et al. CD1b-autoreactive T cells contribute to hyperlipidemia-induced skin inflammation in mice. J Clin Invest. 2017;127(6):2339–2352.
  • Igney FH, Asadullah K, Zollner TM. Humanised mouse models in drug discovery for skin inflammation. Expert Opin Drug Discov. 2006;1(1):53–68.
  • Krueger GG, Chambers DA, Shelby J. Involved and uninvolved skin from psoriatic subjects: are they equally diseased? Assessment by skin transplanted to congenitally athymic (nude) mice. J Clin Invest. 1981;68(6):1548–1557.
  • Fraki JE, Briggaman RA, Lazarus GS. Uninvolved skin from psoriatic patients develops signs of involved psoriatic skin after being grafted onto nude mice. Science. 1982;215(4533):685–687.
  • Nickoloff BJ, Kunkel SL, Burdick M, et al. Severe combined immunodeficiency mouse and human psoriatic skin chimeras. Validation of a New Animal Model. Am J Pathol. 1995;146(3):580–588.
  • Di Domizio J, Conrad C, Gilliet M. Xenotransplantation model of psoriasis. Methods Mol Biol. 2017;1559:83–90.
  • Boyman O, Hefti HP, Conrad C, et al. Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-alpha. J Exp Med. 2004;199(5):731–736.
  • Chan JR, Blumenschein W, Murphy E, et al. IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J Exp Med. 2006;203(12):2577–2587.
  • Zheng Y, Danilenko DM, Valdez P, et al. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature. 2007;445(7128):648–651.
  • Mabuchi T, Singh TP, Takekoshi T, et al. CCR6 is required for epidermal trafficking of gammadelta-T cells in an IL-23-induced model of psoriasiform dermatitis. J Invest Dermatol. 2013;133(1):164–171.
  • Caruso R, Botti E, Sarra M, et al. Involvement of interleukin-21 in the epidermal hyperplasia of psoriasis. Nat Med. 2009;15(9):1013–1015.
  • Sarra M, Caruso R, Cupi ML, et al. IL-21 promotes skin recruitment of CD4(+) cells and drives IFN-gamma-dependent epidermal hyperplasia. J Immunol. 2011;186(9):5435–5442.
  • van der Fits L, Mourits S, Voerman JS, et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol. 2009;182(9):5836–5845.
  • Terhorst D, Chelbi R, Wohn C, et al. Dynamics and transcriptomics of skin dendritic cells and macrophages in an imiquimod-induced, biphasic mouse model of psoriasis. J Immunol. 2015;195(10):4953–4961.
  • Costa S, Marini O, Bevilacqua D, et al. Role of MyD88 signaling in the imiquimod-induced mouse model of psoriasis: focus on innate myeloid cells. J Leukoc Biol. 2017;102(3):791–803.
  • Lin YK, Yang SH, Chen CC, et al. Using imiquimod-induced psoriasis-like skin as a model to measure the skin penetration of anti-psoriatic drugs. PLoS One. 2015;10(9):e0137890.
  • Hawkes JE, Gudjonsson JE, Ward NL. The snowballing literature on imiquimod-induced skin inflammation in mice: a critical appraisal. J Invest Dermatol. 2017;137(3):546–549.
  • Grine L, Steeland S, Van Ryckeghem S, et al. Topical imiquimod yields systemic effects due to unintended oral uptake. Sci Rep. 2016;6:20134.
  • Swindell WR, Michaels KA, Sutter AJ, et al. Imiquimod has strain-dependent effects in mice and does not uniquely model human psoriasis. Genome Med. 2017;9(1):24.
  • Pal HC, Chamcheu JC, Adhami VM, et al. Topical application of delphinidin reduces psoriasiform lesions in the flaky skin mouse model by inducing epidermal differentiation and inhibiting inflammation. Br J Dermatol. 2015;172(2):354–364.
  • Atochina O, Harn D. Prevention of psoriasis-like lesions development in fsn/fsn mice by helminth glycans. Exp Dermatol. 2006;15(6):461–468.
  • Oran A, Marshall JS, Kondo S, et al. Cyclosporin inhibits intercellular adhesion molecule-1 expression and reduces mast cell numbers in the asebia mouse model of chronic skin inflammation. Br J Dermatol. 1997;136(4):519–526.
  • Takaishi M, Ishizaki M, Suzuki K, et al. Oral administration of a novel RORgammat antagonist attenuates psoriasis-like skin lesion of two independent mouse models through neutralization of IL-17. J Dermatol Sci. 2017;85(1):12–19.
  • Wen J, Wang X, Pei H, et al. Anti-psoriatic effects of Honokiol through the inhibition of NF-kappaB and VEGFR-2 in animal model of K14-VEGF transgenic mouse. J Pharmacol Sci. 2015;128(3):116–124.
  • Su Y, Wu L, Mu G, et al. 9,19-Cycloartenol glycoside G3 from Cimicifuga simplex regulates immune responses by modulating Th17/Treg ratio. Bioorg Med Chem. 2017;25(17):4917–4923.
  • Stenderup K, Rosada C, Shanebeck K, et al. AZ17: a new bispecific drug targeting IL-6 and IL-23 with potential clinical use–improves psoriasis in a human xenograft transplantation model. Protein Eng Des Sel. 2015;28(10):467–480.
  • Schafer PH, Parton A, Gandhi AK, et al. Apremilast, a cAMP phosphodiesterase-4 inhibitor, demonstrates anti-inflammatory activity in vitro and in a model of psoriasis. Br J Pharmacol. 2010;159(4):842–855.
  • Smith SH, Jayawickreme C, Rickard DJ, et al. Tapinarof is a natural AhR agonist that resolves skin inflammation in mice and humans. J Invest Dermatol. 2017;137(10):2110–2119.
  • Chen HH, Chao YH, Chen DY, et al. Oral administration of acarbose ameliorates imiquimod-induced psoriasis-like dermatitis in a mouse model. Int Immunopharmacol. 2016;33:70–82.
  • Palombo R, Savini I, Avigliano L, et al. Luteolin-7-glucoside inhibits IL-22/STAT3 pathway, reducing proliferation, acanthosis, and inflammation in keratinocytes and in mouse psoriatic model. Cell Death Dis. 2016;7(8):e2344.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.