285
Views
1
CrossRef citations to date
0
Altmetric
Review

A systems biology approach to antimalarial drug discovery

, ORCID Icon &
Pages 617-626 | Received 25 Aug 2017, Accepted 26 Apr 2018, Published online: 08 May 2018

References

  • Dondorp AM, Nosten F, Yi P, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361(5):455–467.
  • Geiling EK, Cannon PR. Pathologic effects of elixir of sulfanilamide (diethylene glycol) poisoning: a clinical and experimental correlation: final report. J Amer Med Ass. 1938;111(10):919–926.
  • Bartlett JB, Dredge K, Dalgleish AG. Timeline the evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat Rev Canc. 2004;4(4):314–322.
  • Vargesson N. Thalidomide-induced teratogenesis: history and mechanisms. Birth Defects Res C Embryo Today. 2015;105(2):140–156.
  • Berman AY, Motechin RA, Wiesenfeld MY, et al. The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol. 2017;35(1).
  • Das S, Lo AW. Re-inventing drug development: a case study of the I-SPY 2 breast cancer clinical trials program. Contemp Clin Trials. 2017;62:168–174.
  • Garcia-Canaveras JC, Castell JV, Donato MT, et al. metabolomics cell-based approach for anticipating and investigating drug-induced liver injury. Sci Rep. 2016;6:27239.
  • Kaelin WG Jr. Common pitfalls in preclinical cancer target validation. Nat Rev Cancer. 2017;17(7):425–440.
  • Brazma A, Krestyaninova M, Sarkans U. Standards for systems biology. Nat Rev Genet. 2006;7(8):593–605.
  • Cassman M. Barriers to progress in systems biology. Nature. 2005;438(7071):1079.
  • Winzeler EA. Applied systems biology and malaria. Nat Rev Microbiol. 2006;4(2):145–151.
  • Kazmin D, Nakaya HI, Lee EK, et al. Systems analysis of protective immune responses to RTS,S malaria vaccination in humans. Proc Natl Acad Sci U S A. 2017;114(9):2425–2430.
  • Brodland GW. How computational models can help unlock biological systems. Semin Cell Dev Biol. 2015;47–48:62–73.
  • Nussinov R. Advancements and challenges in computational biology. PLoS Comput Biol. 2015;11(1):e1004053.
  • Noble D. Computational models of the heart and their use in assessing the actions of drugs. J Pharmacol Sci. 2008;107(2):107–117.
  • Schoeberl B, Kudla A, Masson K, et al. Systems biology driving drug development: from design to the clinical testing of the anti-ErbB3 antibody seribantumab (MM-121). NPJ Syst Biol Appl. 2017;3:16034.
  • Van Voorhis WC, Adams JH, Adelfio R, et al. Open source drug discovery with the malaria box compound collection for neglected diseases and beyond. PLoS Pathog. 2016;12(7):e1005763.
  • Frenette PS, Atweh GF. Sickle cell disease: old discoveries, new concepts, and future promise. J Clin Invest. 2007;117(4):850–858.
  • White NJ. Plasmodium knowlesi: the fifth human malaria parasite. Clin Infect Dis. 2008;46(2):172–173.
  • World malaria report 2015. World Health Organisation: Geneva, 2015. Available from: http://www.who.int/malaria/publications/world-malaria-report-2015/report/en/. [cited 2018 April 14].
  • Insecticide resistance. Available from: http://www.who.int/malaria/areas/vector_control/insecticide_resistance/en/. [cited 2018 March 26].
  • Amino R, Thiberge S, Martin B, et al. Quantitative imaging of Plasmodium transmission from mosquito to mammal. Nat Med. 2006;12(2):220–224.
  • Amino R, Giovannini D, Thiberge S, et al. Host cell traversal is important for progression of the malaria parasite through the dermis to the liver. Cell Host Microbe. 2008;3(2):88–96.
  • Miller LH, Ackerman HC, Su XZ, et al. Malaria biology and disease pathogenesis: insights for new treatments. Nat Med. 2013;19(2):156–167.
  • Menard R, Tavares J, Cockburn I, et al. Looking under the skin: the first steps in malarial infection and immunity. Nat Rev Microbiol. 2013;11(10):701–712.
  • Hanboonkunupakarn B, White NJ. The threat of antimalarial drug resistance. Trop Dis Trav Med Vac. 2016;2(1):10.
  • Peters W. Plasmodium: resistance to antimalarial drugs. Ann Parasitol Hum Comp. 1990;65(Suppl 1):103–106.
  • Price RN, Uhlemann AC, Brockman A, et al. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet. 2004;364(9432):438–447.
  • Foley M, Tilley L. Quinoline antimalarials: mechanisms of action and resistance and prospects for new agents. Pharmacol Ther. 1998;79(1):55–87.
  • Cortopassi WA, Oliveira AA, Guimaraes AP, et al. Docking studies on the binding of quinoline derivatives and hematin to Plasmodium falciparum lactate dehydrogenase. J Biomol Struct Dyn. 2011;29(1):207–218.
  • Read JA, Wilkinson KW, Tranter R, et al. Chloroquine binds in the cofactor binding site of Plasmodium falciparum lactate dehydrogenase. J Biol Chem. 1999;274(15):10213–10218.
  • Wang J, Zhang CJ, Chia WN, et al. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat Commun. 2015;6:10111.
  • Wong YK, Xu CC, Kalesh KA, et al. Artemisinin as an anticancer drug: recent advances in target profiling and mechanisms of action. Med Res Rev. 2017;37(6):1492–1517.
  • Kavishe RA, Koenderink JB, Alifrangis M. Oxidative stress in malaria and artemisinin combination therapy: pros and Cons. Febs J. 2017;284(16):2579–2591.
  • Cui L, Su XZ. Discovery, mechanisms of action and combination therapy of artemisinin. Expert Rev Anti Infect Ther. 2009;7(8):999–1013.
  • Achan J, Talisuna AO, Erhart A, et al. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar J. 2011;10:144.
  • Thu AM, Phyo AP, Landier J, et al. Combating multidrug-resistant Plasmodium falciparum malaria. Febs J. 2017;284(16):2569–2578.
  • Zaw MT, Emran NA, Lin Z. Updates on k13 mutant alleles for artemisinin resistance in Plasmodium falciparum. J Microbiol Immunol Infect. 2017;51(2):159-165.
  • Nosten F, White NJ. Artemisinin-based combination treatment of falciparum malaria. Am J Trop Med Hyg. 2007;77(6 Suppl):181–192.
  • Aguiar AC, De Sousa LRF, Garcia CRS, et al. New molecular targets and strategies for antimalarial discovery. Curr Med Chem. 2017;24. doi: 10.2174/0929867324666170830103003
  • Bechtsi DP, Waters AP. Genomics and epigenetics of sexual commitment in Plasmodium. Int J Parasitol. 2017;47(7):425–434.
  • Creek DJ, Chua HH, Cobbold SA, et al. Metabolomics-based screening of the malaria box reveals both novel and established mechanisms of action. Antimicrob Agents Ch. 2016;60(11):6650–6663.
  • Hovlid ML, Winzeler EA. Phenotypic screens in antimalarial drug discovery. Trends Parasitol. 2016;32(9):697–707.
  • Horak P, Frohling S, Glimm H. Integrating next-generation sequencing into clinical oncology: strategies, promises and pitfalls. ESMO Open. 2016;1(5):e000094.
  • Wooller SK, Benstead-Hume G, Chen X, et al. Bioinformatics in translational drug discovery. Biosci Rep. 2017;37:4.
  • Gardner MJ, Hall N, Fung E, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;419(6906):498–511.
  • Bruggeman FJ, Westerhoff HV. The nature of systems biology. Trends Microbiol. 2007;15(1):45–50.
  • Jamal S, Periwal V. Open source drug discovery, c.; scaria, v., predictive modeling of anti-malarial molecules inhibiting apicoplast formation. BMC Bioinformatics. 2013;14:55.
  • Pradhan A, Siwo GH, Singh N, et al. Chemogenomic profiling of Plasmodium falciparum as a tool to aid antimalarial drug discovery. Sci Rep. 2015;5:15930.
  • Spitzmuller A, Mestres J. Prediction of the P. falciparum target space relevant to malaria drug discovery. PLoS Comput Biol. 2013;9(10):e1003257.
  • Bento AP, Gaulton A, Hersey A, et al. The ChEMBL bioactivity database: an update. Nucleic Acids Res. 2014;42(Database issue):D1083–90.
  • Slater HC, Okell LC, Ghani AC. Mathematical modelling to guide drug development for malaria elimination. Trends Parasitol. 2017;33(3):175–184.
  • Penna-Coutinho J, Almela MJ, Miguel-Blanco C, et al. Transmission-blocking potential of mefas, a hybrid compound derived from artesunate and mefloquine. Antimicrob Agents Chemother. 2016;60(5):3145–3147.
  • De Pilla Varotti F, Botelho AC, Andrade AA, et al. Synthesis, antimalarial activity, and intracellular targets of MEFAS, a new hybrid compound derived from mefloquine and artesunate. Antimicrob Agents Chemother. 2008;52(11):3868–3874.
  • Slater HC, Walker PG, Bousema T, et al. The potential impact of adding ivermectin to a mass treatment intervention to reduce malaria transmission: a modelling study. J Infect Dis. 2014;210(12):1972–1980.
  • Ogbunugafor CB, Wylie CS, Diakite I, et al. Adaptive landscape by environment interactions dictate evolutionary dynamics in models of drug resistance. PLoS Comput Biol. 2016;12(1):e1004710.
  • Coteron JM, Marco M, Esquivias J, et al. Structure-guided lead optimization of triazolopyrimidine-ring substituents identifies potent Plasmodium falciparum dihydroorotate dehydrogenase inhibitors with clinical candidate potential. J Med Chem. 2011;54(15):5540–5561.
  • McCarthy JS, Lotharius J, Ruckle T, et al. Safety, tolerability, pharmacokinetics, and activity of the novel long-acting antimalarial DSM265: a two-part first-in-human phase 1a/1b randomised study. Lancet Infect Dis. 2017;17(6):626–635.
  • Rottmann M, McNamara C, Yeung BK, et al. Spiroindolones, a potent compound class for the treatment of malaria. Science. 2010;329(5996):1175–1180.
  • Wells TN, Van Huijsduijnen RH, Van Voorhis WC. Malaria medicines: a glass half full? Nat Rev Drug Discov. 2015;14(6):424–442.
  • Jimenez-Diaz MB, Ebert D, Salinas Y, et al. (+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of Plasmodium (vol 111, pg E5455, 2014). P Natl Acad Sci USA. 2015;112(42):E5764–E5764.
  • Younis Y, Douelle F, Feng TS, et al. 3,5-diaryl-2-aminopyridines as a novel class of orally active antimalarials demonstrating single dose cure in mice and clinical candidate potential. J Med Chem. 2012;55(7):3479–3487.
  • Paquet T, Le Manach C, Cabrera DG, et al. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase. Sci Transl Med. 2017; 9(387) doi: 10.1126/scitranslmed.aad9735.
  • Baart GJ, Martens DE. Genome-scale metabolic models: reconstruction and analysis. Methods Mol Biol. 2012;799:107–126.
  • Reed JL, Vo TD, Schilling CH, et al. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol. 2003;4(9):R54.
  • Edwards JS, Palsson BO. The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci U S A. 2000;97(10):5528–5533.
  • Plata G, Hsiao TL, Olszewski KL, et al. Reconstruction and flux-balance analysis of the Plasmodium falciparum metabolic network. Mol Syst Biol. 2010;6:408.
  • Huthmacher C, Hoppe A, Bulik S, et al. Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis. BMC Syst Biol. 2010;4:120.
  • Orth JD, Thiele I, Palsson BO. What is flux balance analysis? Nat Biotechnol. 2010;28(3):245–248.
  • Chiappino-Pepe A, Tymoshenko S, Ataman M, et al. Bioenergetics-based modeling of Plasmodium falciparum metabolism reveals its essential genes, nutritional requirements, and thermodynamic bottlenecks. PLoS Comput Biol. 2017;13(3):e1005397.
  • Kirchner S, Power BJ, Waters AP. Recent advances in malaria genomics and epigenomics. Genome Med. 2016;8(1):92.
  • Cortopassi WA, Kumar K, Duarte F, et al. Mechanisms of histone lysine-modifying enzymes: a computational perspective on the role of the protein environment. J Mol Graph Model. 2016;67:69–84.
  • Doerig C, Rayner JC, Scherf A, et al. Post-translational protein modifications in malaria parasites. Nat Rev Microbiol. 2015;13(3):160–172.
  • Freitas-Junior LH, Hernandez-Rivas R, Ralph SA, et al. Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites. Cell. 2005;121(1):25–36.
  • Lopez-Rubio JJ, Gontijo AM, Nunes MC, et al. 5ʹ flanking region of var genes nucleate histone modification patterns linked to phenotypic inheritance of virulence traits in malaria parasites. Mol Microbiol. 2007;66(6):1296–1305.
  • Chookajorn T, Dzikowski R, Frank M, et al. Epigenetic memory at malaria virulence genes. Proc Natl Acad Sci U S A. 2007;104(3):899–902.
  • Tonkin CJ, Carret CK, Duraisingh MT, et al. Sir2 paralogues cooperate to regulate virulence genes and antigenic variation in Plasmodium falciparum. PLoS Biol. 2009;7(4):e84.
  • Brancucci NM, Bertschi NL, Zhu L, et al. Heterochromatin protein 1 secures survival and transmission of malaria parasites. Cell Host Microbe. 2014;16(2):165–176.
  • Bartfai R, Hoeijmakers WA, Salcedo-Amaya AM, et al. H2A.Z demarcates intergenic regions of the Plasmodium falciparum epigenome that are dynamically marked by H3K9ac and H3K4me3. PLoS Pathog. 2010;6(12):e1001223.
  • Chaal BK, Gupta AP, Wastuwidyaningtyas BD, et al. Histone deacetylases play a major role in the transcriptional regulation of the Plasmodium falciparum life cycle. PLoS Pathog. 2010;6(1):e1000737.
  • Cui L, Miao J, Cui L. Cytotoxic effect of curcumin on malaria parasite Plasmodium falciparum: inhibition of histone acetylation and generation of reactive oxygen species. Antimicrob Agents Chemother. 2007;51(2):488–494.
  • Balasubramanyam K, Varier RA, Altaf M, et al. Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem. 2004;279(49):51163–51171.
  • White NJ. Antimalarial drug resistance. J Clin Invest. 2004;113(8):1084-92.
  • Malaria Genomic Epidemiology Network (multiple authors). A global network for investigating the genomic epidemiology of malaria. Nature. 2008;456(7223):732–737.
  • MalariaGEN Plasmodium falciparum Community Project (multiple authors). Genomic epidemiology of artemisinin resistant malaria. Elife. 2016;5:e08714.
  • Sibley CH, Barnes KI, Plowe CV. The rationale and plan for creating a World Antimalarial Resistance Network (WARN). Malar J. 2007;6:118.
  • Plowe CV, Roper C, Barnwell JW, et al. World Antimalarial Resistance Network (WARN) III: molecular markers for drug resistant malaria. Malar J. 2007;6:121.
  • Tun KM, Imwong M, Lwin KM, et al. Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker. Lancet Infect Dis. 2015;15(4):415-21.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.