687
Views
0
CrossRef citations to date
0
Altmetric
Review

Strategies for improving the specificity of siRNAs for enhanced therapeutic potential

, , , &
Pages 709-725 | Received 21 Oct 2017, Accepted 21 May 2018, Published online: 14 Jun 2018

References

  • Lindquist D, Kvarnbrink S, Henriksson R, et al. LRIG and cancer prognosis. Acta Oncol (Madr). 2014;53(9):1135–1142.
  • Osta WA, Chen Y, Mikhitarian K, et al. EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Res. 2004;64(16):5818–5824.
  • Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell. 1990;2(4):279–289.
  • Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–811.
  • Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411(6836):494–498.
  • Mello CC, Conte D. Revealing the world of RNA interference. Nature. 2004;431(7006):338–342.
  • Gilmore IR, Fox SP, Hollins AJ, et al. The design and exogenous delivery of siRNA for post-transcriptional gene silencing. J Drug Target. 2004;12(6):315–340.
  • Vermeulen A, Behlen L, Reynolds A, et al. The contributions of dsRNA structure to Dicer specificity and efficiency. Rna. 2005;11(5):674–682.
  • Robb GB, Brown KM, Khurana J, et al. Specific and potent RNAi in the nucleus of human cells. Nat Struct Mol Biol. 2005;12(2):133–137.
  • Agrawal N, Dasaradhi P, Mohmmed A, et al. RNA interference: biology, mechanism, and applications. Microbio Mol Bio Reviews. 2003;67(4):657–685.
  • Song M-S, Rossi JJ. Molecular mechanisms of Dicer: endonuclease and enzymatic activity. Biochem J. 2017;474(10):1603–1618.
  • Birmingham A, Anderson E, Sullivan K, et al. A protocol for designing siRNAs with high functionality and specificity. Nat Protoc. 2007;2(9):2068–2078.
  • Cullen BR. Enhancing and confirming the specificity of RNAi experiments. Nat Methods. 2006;3(9):677–681.
  • Echeverri CJ, Beachy PA, Baum B, et al. Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat Methods. 2006;3(10):777–779.
  • Elbashir SM, Martinez J, Patkaniowska A, et al. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 2001;20(23):6877–6888.
  • Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev. 2001;15(2):188–200.
  • Elbashir SM, Harborth J, Weber K, et al. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods. 2002;26(2):199–213.
  • Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference. Nat Biotechnol. 2004;22(3):326–330.
  • Amarzguioui M, Prydz H. An algorithm for selection of functional siRNA sequences. Biochem Biophys Res Commun. 2004;316(4):1050–1058.
  • Pei Y, Tuschl T. On the art of identifying effective and specific siRNAs. Nat Methods. 2006;3(9):670–676.
  • Ui‐Tei K, Naito Y, Takahashi F, et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 2004;32(3):936–948.
  • Ma J-B, Ye K, Patel DJ. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature. 2004;429(6989):318–322.
  • Zhang H, Kolb FA, Brondani V, et al. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J. 2002;21(21):5875–5885.
  • Tanudji M, Machalek D, Arndt GM, et al. Competition between siRNA duplexes: impact of RNA-induced silencing complex loading efficiency and comparison between conventional-21 bp and dicer-substrate siRNA. Oligonucleotides. 2010;20(1):27–32.
  • Kim D-H, Behlke MA, Rose SD, et al. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol. 2005;23(2):222–226.
  • Bégin-Lavallée V, Midavaine É, Dansereau M-A, et al. Functional inhibition of chemokine receptor CCR2 by dicer-substrate-siRNA prevents pain development. Mol Pain. 2016;12:1744806916653969.
  • Sano M, Sierant M, Miyagishi M, et al. Effect of asymmetric terminal structures of short RNA duplexes on the RNA interference activity and strand selection. Nucleic Acids Res. 2008;36(18):5812–5821.
  • Rose SD, Kim D-H, Amarzguioui M, et al. Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic Acids Res. 2005;33(13):4140–4156.
  • Dudek H, Wong DH, Arvan R, et al. Knockdown of β-catenin with dicer-substrate siRNAs reduces liver tumor burden in vivo. Mol Ther. 2014;22(1):92–101.
  • Tomari Y, Matranga C, Haley B, et al. A protein sensor for siRNA asymmetry. Science. 2004;306(5700):1377–1380.
  • Lee YS, Nakahara K, Pham JW, et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell. 2004;117(1):69–81.
  • Noland CL, Ma E, Doudna JA. siRNA repositioning for guide strand selection by human Dicer complexes. Mol Cell. 2011;43(1):110–121.
  • Sohrab SS, El-Kafrawy SA, Mirza Z, et al. Design and delivery of therapeutic siRNAs: application to MERS-Coronavirus. Curr Pharm Des. 2018;24(1):62–77.
  • Malhotra M, Nambiar S, Rengaswamy V, et al. Small interfering ribonucleic acid design strategies for effective targeting and gene silencing. Expert Opin Drug Discov. 2011;6(3):269–289.
  • Matveeva O, Nechipurenko Y, Rossi L, et al. Comparison of approaches for rational siRNA design leading to a new efficient and transparent method. Nucleic Acids Res. 2007;35(8):e63.
  • Bohula EA, Salisbury AJ, Sohail M, et al. The efficacy of small interfering RNAs targeted to the type 1 insulin-like growth factor receptor (IGF1R) is influenced by secondary structure in the IGF1R transcript. J Biol Chemistry. 2003;278(18):15991–15997.
  • Luo KQ, Chang DC. The gene-silencing efficiency of siRNA is strongly dependent on the local structure of mRNA at the targeted region. Biochem Biophys Res Commun. 2004;318(1):303–310.
  • Zuker M. M fold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31(13):3406–3415.
  • Ding Y, Chan CY, Lawrence CE. S fold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res. 2004;32(suppl_2):W135–W141.
  • Gruber AR, Lorenz R, Bernhart SH, et al. The Vienna RNA websuite. Nucleic Acids Res. 2008;36(suppl_2):W70–W74.
  • Schmich F, Szczurek E, Kreibich S, et al. gespeR: a statistical model for deconvoluting off-target-confounded RNA interference screens. Genome Biol. 2015;16(1):220.
  • Buehler E, Khan AA, Marine S, et al. siRNA off-target effects in genome-wide screens identify signaling pathway members. Sci Rep. 2012;2:428.
  • Mysara M, Garibaldi JM, ElHefnawi M. MysiRNA-designer: a workflow for efficient siRNA design. PLoS One. 2011;6(10):e25642.
  • Jackson AL, Burchard J, Schelter J, et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA. 2006;12(7):1179–1187.
  • Aagaard L, Rossi JJ. RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev. 2007;59(2):75–86.
  • Tseng Y-C, Mozumdar S, Huang L. Lipid-based systemic delivery of siRNA. Adv Drug Deliv Rev. 2009;61(9):721–731.
  • Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discovery. 2009;8(2):129–138.
  • Saxena S, Jónsson ZO, Dutta A. Small RNAs with imperfect match to endogenous mRNA repress translation implications for off-target activity of small inhibitory RNA in mammalian cells. J Biol Chem. 2003;278(45):44312–44319.
  • Alemán LM, Doench J, Sharp PA. Comparison of siRNA-induced off-target RNA and protein effects. RNA. 2007;13(3):385–395.
  • Jackson AL, Linsley PS. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discovery. 2010;9(1):57–67.
  • Persengiev SP, Zhu X, Green MR. Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). Rna. 2004;10(1):12–18.
  • Jackson AL, Bartz SR, Schelter J, et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol. 2003;21(6):635–637.
  • Sigoillot FD, King RW. Vigilance and validation: keys to success in RNAi screening. ACS Chem Biol. 2011;6(1):47.
  • Jackson AL, Burchard J, Leake D, et al. Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA. 2006;12(7):1197–1205.
  • Robbins M, Judge A, Liang L, et al. 2′-O-methyl-modified RNAs act as TLR7 antagonists. Mol Ther. 2007;15(9):1663–1669.
  • Kamola PJ, Nakano Y, Takahashi T, et al. The siRNA non-seed region and its target sequences are auxiliary determinants of off-target effects. PLoS Comput Biol. 2015;11(12):e1004656.
  • Grimm D, Streetz KL, Jopling CL, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 2006;441(7092):537–541.
  • Hannus M, Beitzinger M, Engelmann JC, et al. siPools: highly complex but accurately defined siRNA pools eliminate off-target effects. Nucleic Acids Res. 2014;42(12):8049–8061.
  • Sakurai K, Amarzguioui M, Kim D-H, et al. A role for human Dicer in pre-RISC loading of siRNAs. Nucleic Acids Res. 2011;39(4):1510–1525.
  • Mansoori B, Shotorbani SS, Baradaran B. RNA interference and its role in cancer therapy. Adv Pharm Bull. 2014;4(4):313–321.
  • Betancur JG, Tomari Y. Dicer is dispensable for asymmetric RISC loading in mammals. RNA. 2012;18(1):24–30.
  • Khan AA, Betel D, Miller ML, et al. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat Biotechnol. 2009;27(6):549–555.
  • Semizarov D, Frost L, Sarthy A, et al. Specificity of short interfering RNA determined through gene expression signatures. Proc Natl Acad Sci. 2003;100(11):6347–6352.
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801.
  • Simon AK, Hollander GA, McMichael A, editors. Evolution of the immune system in humans from infancy to old age. Proc. R. Soc. B. The Royal Society, London, U.K; 2015.
  • Judge A, Maclachlan I. Overcoming the innate immune response to small interfering RNA. Hum Gene Ther. 2008;19(2):111–124.
  • Weber C, Müller C, Podszuweit A, et al. Toll‐like receptor (TLR) 3 immune modulation by unformulated small interfering RNA or DNA and the role of CD14 (in TLR‐mediated effects). Immunology. 2012;136(1):64–77.
  • Karikó K, Bhuyan P, Capodici J, et al. Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J Immunol. 2004;172(11):6545–6549.
  • Kanasty RL, Whitehead KA, Vegas AJ, et al. Action and reaction: the biological response to siRNA and its delivery vehicles. Mol Ther. 2012;20(3):513–524.
  • Judge AD, Sood V, Shaw JR, et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol. 2005;23(4):457–462.
  • Hornung V, Guenthner-Biller M, Bourquin C, et al. Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med. 2005;11(3):263–270.
  • Diebold SS, Massacrier C, Akira S, et al. Nucleic acid agonists for Toll‐like receptor 7 are defined by the presence of uridine ribonucleotides. Eur J Immunol. 2006;36(12):3256–3267.
  • Pastan I, Willingham MC. The pathway of endocytosis. Springer, Boston, USA; 1985. p. 1–44.
  • Ming X. Cellular delivery of siRNA and antisense oligonucleotides via receptor-mediated endocytosis. Expert Opin Drug Deliv. 2011;8(4):435–449.
  • El-Sayed A, Harashima H. Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Mol Ther. 2013;21(6):1118–1130.
  • Liang W, Lam JK. Endosomal escape pathways for non-viral nucleic acid delivery systems. INTECH Open Access Publisher, London, U.K; 2012.
  • Akinc A, Thomas M, Klibanov AM, et al. Exploring polyethylenimine‐mediated DNA transfection and the proton sponge hypothesis. J Gene Med. 2005;7(5):657–663.
  • Sawant RR, Patel NR, Torchilin VP. Therapeutic delivery using cell-penetrating peptides. Eur J Nanomedicine. 2013;5(3):141–158.
  • Shukla RS, Qin B, Cheng K. Peptides used in the delivery of small noncoding RNA. Mol Pharm. 2014;11(10):3395.
  • Xu C-F, Wang J. Delivery systems for siRNA drug development in cancer therapy. Asian J Pharm Sci. 2015;10(1):1–12.
  • Schroeder A, Levins CG, Cortez C, et al. Lipid‐based nanotherapeutics for siRNA delivery. J Intern Med. 2010;267(1):9–21.
  • Selbo PK, Weyergang A, Høgset A, et al. Photochemical internalization provides time- and space-controlled endolysosomal escape of therapeutic molecules. J Controlled Release. 2010;148(1):2–12.
  • Lennox K, Behlke M. Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther. 2011;18(12):1111–1120.
  • Watts JK, Deleavey GF, Damha MJ. Chemically modified siRNA: tools and applications. Drug Discov Today. 2008;13(19):842–855.
  • Kraynack BA, Baker BF. Small interfering RNAs containing full 2′-O-methylribonucleotide-modified sense strands display Argonaute2/eIF2C2-dependent activity. Rna. 2006;12(1):163–176.
  • Chiu Y-L, Rana TM. siRNA function in RNAi: a chemical modification analysis. Rna. 2003;9(9):1034–1048.
  • Choung S, Kim YJ, Kim S, et al. Chemical modification of siRNAs to improve serum stability without loss of efficacy. Biochem Biophys Res Commun. 2006;342(3):919–927.
  • Elmén J, Thonberg H, Ljungberg K, et al. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res. 2005;33(1):439–447.
  • Li Z-Y, Mao H, Kallick DA, et al. The effects of thiophosphate substitutions on native siRNA gene silencing. Biochem Biophys Res Commun. 2005;329(3):1026–1030.
  • Ku SH, Jo SD, Lee YK, et al. Chemical and structural modifications of RNAi therapeutics. Adv Drug Deliv Rev. 2016;104:16–28.
  • Morrissey DV, Blanchard K, Shaw L, et al. Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology. 2005;41(6):1349–1356.
  • Dowler T, Bergeron D, Tedeschi A-L, et al. Improvements in siRNA properties mediated by 2′-deoxy-2′-fluoro-β-d-arabinonucleic acid (FANA). Nucleic Acids Res. 2006;34(6):1669–1675.
  • Judge AD, Bola G, Lee AC, et al. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther. 2006;13(3):494–505.
  • Nallagatla SR, Bevilacqua PC. Nucleoside modifications modulate activation of the protein kinase PKR in an RNA structure-specific manner. RNA. 2008;14(6):1201–1213.
  • Watts JK, Yu D, Charisse K, et al. Effect of chemical modifications on modulation of gene expression by duplex antigene RNAs that are complementary to non-coding transcripts at gene promoters. Nucleic Acids Res. 2010;38(15):5242–5259.
  • Schirle NT, Kinberger GA, Murray HF, et al. Structural analysis of human Argonaute-2 bound to a modified siRNA guide. J Am Chem Soc. 2016;138(28):8694–8697.
  • Prakash TP, Allerson CR, Dande P, et al. Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J Med Chem. 2005;48(13):4247–4253.
  • Prakash TP. An overview of sugar‐modified oligonucleotides for antisense therapeutics. Chem Biodivers. 2011;8(9):1616–1641.
  • Bramsen JB, Kjems J. Development of therapeutic-grade small interfering RNAs by chemical engineering. Front Genet. 2012;3:154.
  • Behlke MA. Chemical modification of siRNAs for in vivo use. Oligonucleotides. 2008;18(4):305–320.
  • Wada S, Obika S, Shibata M-A, et al. Development of a 2′, 4′-BNA/LNA-based siRNA for dyslipidemia and assessment of the effects of its chemical modifications in vivo. Mol Ther-Nucleic Acids. 2012;1:e45.
  • Vaish N, Chen F, Seth S, et al. Improved specificity of gene silencing by siRNAs containing unlocked nucleobase analogs. Nucleic Acids Res. 2011;39(5):1823–1832.
  • Piascik P. Fomiversen sodium approved to treat CMV retinitis. J Am Pharm Assoc (Washington, DC: 1996). 1998;39(1):84–85.
  • Lundin KE, Gissberg O, Smith CE. Oligonucleotide therapies: the past and the present. Hum Gene Ther. 2015;26(8):475–485.
  • Watts JK, Corey DR. Silencing disease genes in the laboratory and the clinic. J Pathol. 2012;226(2):365–379.
  • Sipa K, Sochacka E, Kazmierczak-Baranska J, et al. Effect of base modifications on structure, thermodynamic stability, and gene silencing activity of short interfering RNA. RNA. 2007;13(8):1301–1316.
  • Dar SA, Thakur A, Qureshi A, et al. siRNAmod: a database of experimentally validated chemically modified siRNAs. Sci Rep. 2016;6.
  • Akhtar S, Benter IF. Nonviral delivery of synthetic siRNAs in vivo. J Clin Invest. 2007;117(12):3623–3632.
  • Hollins AJ, Omidi Y, Benter IF, et al. Toxicogenomics of drug delivery systems: exploiting delivery system-induced changes in target gene expression to enhance siRNA activity. J Drug Target. 2007;15(1):83–88.
  • Nogueira E, Freitas J, Loureiro A, et al. Neutral PEGylated liposomal formulation for efficient folate-mediated delivery of MCL1 siRNA to activated macrophages. Colloids and Surf B: Biointerfaces. 2017;155:459–465.
  • Liang Y, Liu Z, Shuai X, et al. Delivery of cationic polymer-siRNA nanoparticles for gene therapies in neural regeneration. Biochem Biophys Res Commun. 2012;421(4):690–695.
  • Pantazis P, Dimas K, Wyche JH, et al. Preparation of siRNA-encapsulated PLGA nanoparticles for sustained release of siRNA and evaluation of encapsulation efficiency. Nanoparticles in Bio and Med: Methods and Protoc. 2012;906:311–319.
  • Andón F, Pazinatto D, Fadeel B. DNA origami: self-assembled nucleic acid nanoparticles for siRNA delivery. Nanomedicine (Lond). 2012;7(9):1295.
  • Wang J, Lu Z, Wientjes MG, et al. Delivery of siRNA therapeutics: barriers and carriers. AAPS J. 2010;12(4):492–503.
  • Pan M, Ni J, He H, et al. New paradigms on siRNA local application. BMB Rep. 2015;48(3):147.
  • Zatsepin TS, Kotelevtsev YV, Koteliansky V. Lipid nanoparticles for targeted siRNA delivery – going from bench to bedside. Int J Nanomedicine. 2016;11:3077.
  • Davis ME. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm. 2009;6(3):659–668.
  • Kim N, Jiang D, Jacobi AM, et al. Synthesis and characterization of mannosylated pegylated polyethylenimine as a carrier for siRNA. Int J Pharm. 2012;427(1):123–133.
  • Akhtar S, Benter I. Toxicogenomics of non-viral drug delivery systems for RNAi: potential impact on siRNA-mediated gene silencing activity and specificity. Adv Drug Deliv Rev. 2007;59(2–3):164–182.
  • Khan A, Benboubetra M, Sayyed PZ, et al. Sustained polymeric delivery of gene silencing antisense ODNs, siRNA, DNAzymes and ribozymes: in vitro and in vivo studies. J Drug Target. 2004;12(6):393–404.
  • Nguyen J, Steele TW, Merkel O, et al. Fast degrading polyesters as siRNA nano-carriers for pulmonary gene therapy. J Controlled Release. 2008;132(3):243–251.
  • Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles: an overview of biomedical applications. J Controlled Release. 2012;161(2):505–522.
  • Tam DY, Lo PK. Multifunctional DNA nanomaterials for biomedical applications. J Nanomater. 2015;2015:6.
  • Capel V, Vllasaliu D, Watts P, et al. Insight into the relationship between the cell culture model, cell trafficking and siRNA silencing efficiency. Biochem Biophys Res Commun. 2016;477(2):260–265.
  • Cheng A, Magdaleno S, Vlassov AV. Optimization of transfection conditions and analysis of siRNA potency using real-time PCR. Ther Oligonucleotides: Methods Protoc. 2011;764:199–213.
  • Holmes K, Williams CM, Chapman EA, et al. Detection of siRNA induced mRNA silencing by RT-qPCR: considerations for experimental design. BMC Res Notes. 2010;3(1):53.
  • Rantala JK, Mäkelä R, Aaltola A-R, et al. A cell spot microarray method for production of high density siRNA transfection microarrays. BMC Genomics. 2011;12(1):162.
  • Zhang A, Pastor L, Nguyen Q, et al. Small interfering RNA and gene expression analysis using a multiplex branched DNA assay without RNA purification. J Biomol Screen. 2005;10(6):549–556.
  • Bader A, Brown D, Stoudemire J, et al. Developing therapeutic microRNAs for cancer. Gene Ther. 2011;18(12):1121–1126.
  • Barros SA, Hinkle G. Discovery and development strategies for small interfering RNAs. In: Y. Will, J. E. McDuffie, A. J. Olaharski, et.al., editors.Drug discovery toxicology: from target assessment to translational biomarkers, Hoboken, New Jersey, United States. 2016. p. 39.
  • Romano N, Macino G. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol. 1992;6(22):3343–3353.
  • Ren Y, Gong W, Xu Q, et al. siRecords: an extensive database of mammalian siRNAs with efficacy ratings. Bioinformatics. 2006;22(8):1027–1028.
  • Shabalina SA, Spiridonov AN, Ogurtsov AY. Computational models with thermodynamic and composition features improve siRNA design. BMC Bioinformatics. 2006;7(1):65.
  • Vert J-P, Foveau N, Lajaunie C, et al. An accurate and interpretable model for siRNA efficacy prediction. BMC Bioinformatics. 2006;7(1):520.
  • Huesken D, Lange J, Mickanin C, et al. Design of a genome-wide siRNA library using an artificial neural network. Nat Biotechnol. 2005;23(8):995–1001.
  • Ichihara M, Murakumo Y, Masuda A, et al. Thermodynamic instability of siRNA duplex is a prerequisite for dependable prediction of siRNA activities. Nucleic Acids Res. 2007;35(18):e123.
  • Han Y, Liu Y, Zhang H, et al. Utilizing selected di-and trinucleotides of siRNA to predict RNAi activity. Comput Math Methods Med. 2017;2017.
  • Bramsen JB, Laursen MB, Nielsen AF, et al. A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity. Nucleic Acids Res. 2009;37(9):2867–2881.
  • Jagani H, Rao JV, Palanimuthu VR, et al. A nanoformulation of siRNA and its role in cancer therapy: in vitro and in vivo evaluation. Cell Mol Biol Lett. 2013 Mar 01;18(1):120–136.
  • Sharma M, El-Sayed NS, Do H, et al. Tumor-targeted delivery of siRNA using fatty acyl-CGKRK peptide conjugates. Sci Rep. 2017;7(1):6093.
  • Jagani Hitesh JVR. RNA interference in therapeutics: issues, solutions and future prospects. 1 ed. Singh B, SPSSC editor. Vol. 5. U.S.A: Studium Press; 2015. Nanobiomedicine; 5.
  • Koganti S, Jagani HV, Palanimuthu VR, et al. In vitro and in vivo evaluation of the efficacy of nanoformulation of siRNA as an adjuvant to improve the anticancer potential of cisplatin. Exp Mol Pathol. 2013;94(1):137–147.
  • Draz MS, Fang BA, Zhang P, et al. Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Theranostics. 2014;4(9):872.
  • Miniarikova J, Zanella I, Huseinovic A, et al. Design, characterization, and lead selection of therapeutic miRNAs targeting Huntingtin for development of gene therapy for Huntington’s disease. Mol Ther-Nucleic Acids. 2016;5.
  • Chen Y, Gu H, Zhang DS-Z, et al. Highly effective inhibition of lung cancer growth and metastasis by systemic delivery of siRNA via multimodal mesoporous silica-based nanocarrier. Biomaterials. 2014;35(38):10058–10069.
  • Thi EP, Mire CE, Lee ACH, et al. Lipid nanoparticle siRNA treatment of Ebola-virus-Makona-infected nonhuman primates. Nature. 2015;521:362.
  • Chakraborty C, Sharma AR, Sharma G, et al. Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther-Nucleic Acids. 2017;8:132–143.
  • Chalk AM, Wahlestedt C, Sonnhammer EL. Improved and automated prediction of effective siRNA. Biochem Biophys Res Commun. 2004;319(1):264–274.
  • Jiang P, Wu H, Da Y, et al. RFRCDB-siRNA: improved design of siRNAs by random forest regression model coupled with database searching. Comput Methods Programs Biomed. 2007;87(3):230–238.
  • Naito Y, Yamada T, Ui-Tei K, et al. siDirect: highly effective, target-specific siRNA design software for mammalian RNA interference. Nucleic Acids Res. 2004;32(suppl 2):W124–W129.
  • Wang L, Mu FYA. Web-based design center for vector-based siRNA and siRNA cassette. Bioinformatics. 2004;20(11):1818–1820.
  • Owczarzy R, Tataurov AV, Wu Y, et al. IDT SciTools: a suite for analysis and design of nucleic acid oligomers. Nucleic Acids Res. 2008;36(suppl 2):W163–W169.
  • Lu ZJ, Mathews DH. OligoWalk: an online siRNA design tool utilizing hybridization thermodynamics. Nucleic Acids Res. 2008;36(suppl 2):W104–W108.
  • Kang C-S, Pu P-Y, Li Y-H, et al. An in vitro study on the suppressive effect of glioma cell growth induced by plasmid-based small interference RNA (siRNA) targeting human epidermal growth factor receptor. J Neurooncol. 2005;74(3):267–273.
  • Park Y-K, Park S-M, Choi Y-C, et al. AsiDesigner: exon-based siRNA design server considering alternative splicing. Nucleic Acids Res. 2008;36(suppl 2):W97–W103.
  • Schwarz DS, Hutvágner G, Du T, et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell. 2003;115(2):199–208.
  • Shah JK, Garner HR, White MA, et al. sIR: siRNA information resource, a web-based tool for siRNA sequence design and analysis and an open access siRNA database. BMC Bioinformatics. 2007;8(1):178.
  • Kittler R, Surendranath V, Heninger A-K, et al. Genome-wide resources of endoribonuclease-prepared short interfering RNAs for specific loss-of-function studies. Nat Methods. 2007;4(4):337–344.
  • Overhoff M, Alken M, Far R-K-K, et al. Local RNA target structure influences siRNA efficacy: a systematic global analysis. J Mol Biol. 2005;348(4):871–881.
  • Ui-Tei K, Naito Y, Nishi K, et al. Thermodynamic stability and Watson–Crick base pairing in the seed duplex are major determinants of the efficiency of the siRNA-based off-target effect. Nucleic Acids Res. 2008;36(22):7100–7109.
  • Eberle F, Gießler K, Deck C, et al. Modifications in small interfering RNA that separate immunostimulation from RNA interference. J Immunol. 2008;180(5):3229–3237.
  • Heil F, Hemmi H, Hochrein H, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 2004;303(5663):1526–1529.
  • Forsbach A, Nemorin J-G, Montino C, et al. Identification of RNA sequence motifs stimulating sequence-specific TLR8-dependent immune responses. J Immunol. 2008;180(6):3729–3738.
  • Sui H, Zhou M, Chen Q, et al. siRNA enhances DNA-mediated interferon lambda-1 response through crosstalk between RIG-I and IFI16 signalling pathway. Nucleic Acids Res. 2014;42(1):583–598.
  • Lo SL, Wang S. An endosomolytic Tat peptide produced by incorporation of histidine and cysteine residues as a nonviral vector for DNA transfection. Biomaterials. 2008;29(15):2408–2414.
  • Hassani Z, Lemkine GF, Erbacher P, et al. Lipid‐mediated siRNA delivery down‐regulates exogenous gene expression in the mouse brain at picomolar levels. J Gene Med. 2005;7(2):198–207.
  • Draz MS, Fang BA, Zhang P, et al. Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Theranostics. 2014;4(9):872–892.
  • Zhou J, Rossi JJ. Aptamer-targeted cell-specific RNA interference. Silence. 2010;1(1):4.
  • Oliveira S, Fretz MM, Høgset A, et al. Photochemical internalization enhances silencing of epidermal growth factor receptor through improved endosomal escape of siRNA. Biochimica Et Biophysica Acta (Bba)-Biomembranes. 2007;1768(5):1211–1217.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.