104
Views
0
CrossRef citations to date
0
Altmetric
Review

Developments with investigating descriptors for antimicrobial AApeptides and their derivatives

&
Pages 727-739 | Received 21 Dec 2017, Accepted 08 Jun 2018, Published online: 22 Jun 2018

References

  • Projan SJ. Why is big Pharma getting out of antibacterial drug discovery? Curr Opin Microbiol. 2003;6(5):427–430.
  • Endres BT, Bassères E, Alam MJ, et al. Cadazolid for the treatment of Clostridium difficile. Expert Opin Investig Drugs. 2017;26(4):509–514.
  • Tomasz A. Multiple-antibiotic-resistant pathogenic bacteria – a report on the Rockefeller University workshop. N Engl J Med. 1994;330(17):1247–1251.
  • Murray BE. Vancomycin-resistant enterococcal infections. N Engl J Med. 2000;342(10):710–721.
  • Aires de Sousa M, De Lencastre H. Evolution of sporadic isolates of methicillin-resistant Staphylococcus aureus (MRSA) in hospitals and their similarities to isolates of community-acquired MRSA. J Clin Microbiol. 2003;41(8):3806–3815.
  • Dodds DR. Antibiotic resistance: A current epilogue. Biochem Pharmacol. 2017;134(SupplementC):139–146.
  • Hemshekhar M, Anaparti V, Mookherjee N. Functions of cationic host defense peptides in immunity. Pharmaceuticals. 2016;9(3):40.
  • Hancock REW, Haney EF, Gill EE. The immunology of host defence peptides: beyond antimicrobial activity. Nat Rev Immunol. 2016;16:321.
  • Hancock REW. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis. 2001;1(3):156–164.
  • Zhang L-J, Gallo RL. Antimicrobial peptides. Curr Biol. 2016;26(1):R14–R19.
  • Lehrer RI, Lu W. α-Defensins in human innate immunity. Immunol Rev. 2012;245(1):84–112.
  • Mohanram H, Bhattacharjya S. Resurrecting inactive antimicrobial peptides from the lipopolysaccharide trap. Antimicrob Agents Chemother. 2014;58(4):1987–1996.
  • Bhattacharjya S, Ramamoorthy A. Multifunctional host defense peptides: functional and mechanistic insights from NMR structures of potent antimicrobial peptides. FEBS J. 2009;276(22):6465–6473.
  • Domadia PN, Bhunia A, Ramamoorthy A, et al. Structure, interactions, and antibacterial activities of msi-594 derived mutant peptide msi-594f5a in lipopolysaccharide micelles: role of the helical hairpin conformation in outer-membrane permeabilization. J Am Chem Soc. 2010;132(51):18417–18428.
  • Bechinger B, Gorr SU. Antimicrobial peptides: mechanisms of action and resistance. J Dent Res. 2016;96(3):254–260.
  • Welsh MA, Blackwell HE. Chemical probes of quorum sensing: from compound development to biological discovery. FEMS Microbiol Rev. 2016;40(5):774–794.
  • Karathanasi G, Bojer MS, Baldry M, et al. Linear peptidomimetics as potent antagonists of Staphylococcus aureus agr quorum sensing. Sci Rep. 2018;8(1):3562.
  • Fjell CD, Hiss JA, Hancock REW, et al. Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov. 2011;11:37.
  • Van der Velden WJ, Van Iersel TM, Blijlevens NM, et al. Safety and tolerability of the antimicrobial peptide human lactoferrin 1-11 (hLF1-11). BMC Med. 2009;7(1):44.
  • Marr AK, Gooderham WJ, Hancock REW. Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol. 2006;6(5):468–472.
  • Hancock REW, Sahl H-G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006;24:1551.
  • Rinaldi AC, Scorciapino M. Antimicrobial peptidomimetics: reinterpreting nature to deliver innovative therapeutics. Front Immunol. 2012;3:171.
  • Porter EA, Wang X, Lee H-S, et al. Non-haemolytic β-amino-acid oligomers. Nature. 2000;404:565.
  • Hamuro Y, Schneider JP, DeGrado WF. De novo design of antibacterial β-peptides. J Am Chem Soc. 1999;121(51):12200–12201.
  • Karlsson AJ, Pomerantz WC, Weisblum B, et al. Antifungal activity from 14-helical β-peptides. J Am Chem Soc. 2006;128(39):12630–12631.
  • Karlsson AJ, Pomerantz WC, Neilsen KJ, et al. Effect of sequence and structural properties on 14-helical β-peptide activity against Candida albicans planktonic cells and biofilms. ACS Chem Biol. 2009;4(7):567–579.
  • Karlsson AJ, Flessner RM, Gellman SH, et al. Polyelectrolyte multilayers fabricated from antifungal β-peptides: design of surfaces that exhibit antifungal activity against Candida albicans. Biomacromolecules. 2010;11(9):2321–2328.
  • Chongsiriwatana NP, Patch JA, Czyzewski AM, et al. Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides. Proc Natl Acad Sci U S A. 2008;105(8):2794–2799.
  • Olsen CA, Ziegler HL, Nielsen HM, et al. Antimicrobial, hemolytic, and cytotoxic activities of β-peptoid–peptide hybrid oligomers: improved properties compared to natural AMPs. ChemBioChem. 2010;11(10):1356–1360.
  • Huang ML, Shin SBY, Benson MA, et al. A comparison of linear and cyclic peptoid oligomers as potent antimicrobial agents. ChemMedChem. 2012;7(1):114–122.
  • Liu D, Choi S, Chen B, et al. Nontoxic membrane-active antimicrobial arylamide oligomers. Angew Chem Int Ed. 2004;43(9):1158–1162.
  • Choi S, Isaacs A, Clements D, et al. De novo design and in vivo activity of conformationally restrained antimicrobial arylamide foldamers. Proc Natl Acad Sci U S A. 2009;106(17):6968–6973.
  • Hua J, Yamarthy R, Felsenstein S, et al. Activity of antimicrobial peptide mimetics in the oral cavity: I. Activity against biofilms of candida albicans. Mol Oral Microbiol. 2010;25(6):418–425.
  • Hua J, Scott RW, Diamond G. Activity of antimicrobial peptide mimetics in the oral cavity: II. Activity against periopathogenic biofilms and anti-inflammatory activity. Mol Oral Microbiol. 2010;25(6):426–432.
  • Srinivas N, Jetter P, Ueberbacher BJ, et al. Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science. 2010;327(5968):1010–1013.
  • Obrecht D, Robinson JA, Bernardini F, et al. Recent progress in the discovery of macrocyclic compounds as potential anti-infective therapeutics. Curr Med Chem. 2009;16(1):42–65.
  • Kuroda K, DeGrado WF. Amphiphilic polymethacrylate derivatives as antimicrobial agents. J Am Chem Soc. 2005;127(12):4128–4129.
  • Ilker MF, Nüsslein K, Tew GN, et al. Tuning the hemolytic and antibacterial activities of amphiphilic polynorbornene derivatives. J Am Chem Soc. 2004;126(48):15870–15875.
  • Gelman MA, Weisblum B, Lynn DM, et al. Biocidal activity of polystyrenes that are cationic by virtue of protonation. Org Lett. 2004;6(4):557–560.
  • Nimmagadda A, Liu X, Teng P, et al. Polycarbonates with potent and selective antimicrobial activity toward gram-positive bacteria. Biomacromolecules. 2017;18(1):87–95.
  • Mowery BP, Lee SE, Kissounko DA, et al. Mimicry of antimicrobial host-defense peptides by random copolymers. J Am Chem Soc. 2007;129(50):15474–15476.
  • Takahashi H, Caputo GA, Vemparala S, et al. Synthetic random copolymers as a molecular platform to mimic host-defense antimicrobial peptides. Bioconjug Chem. 2017;28(5):1340–1350.
  • Su M, Xia D, Teng P, et al. Membrane-active hydantoin derivatives as antibiotic agents. J Med Chem. 2017;60(20):8456–8465.
  • Teng P, Huo D, Nimmagadda A, et al. Small antimicrobial agents based on acylated reduced amide scaffold. J Med Chem. 2016;59(17):7877–7887.
  • Tang H, Doerksen RJ, Tew GN. Synthesis of urea oligomers and their antibacterial activity. Chem Commun. 2005;12:1537–1539.
  • Tang H, Doerksen RJ, Jones TV, et al. Biomimetic facially amphiphilic antibacterial oligomers with conformationally stiff backbones. Chem Biol. 2006;13(4):427–435.
  • Schmitt MA, Weisblum B, Gellman SH. Interplay among folding, sequence, and lipophilicity in the antibacterial and hemolytic activities of α/β-peptides. J Am Chem Soc. 2007;129(2):417–428.
  • Hu Y, Li X, Sebti SM, et al. Design and synthesis of AApeptides: a new class of peptide mimics. Bioorg Med Chem Lett. 2011;21(5):1469–1471.
  • Niu Y, Hu Y, Li X, et al. γ-AApeptides: design, synthesis and evaluation. New J Chem. 2011;35(3):542–545.
  • Bolarinwa O, Nimmagadda A, Su M, et al. Structure and function of AApeptides. Biochemistry. 2017;56(3):445–457.
  • Sang P, Shi Y, Teng P, et al. Antimicrobial AApeptides. Curr Top Med Chem. 2017;17(11):1266–1279.
  • She F, Oyesiku O, Zhou P, et al. The development of antimicrobial γ-AApeptides. Future Med Chem. 2016;8(10):1101–1110.
  • Teng P, Shi Y, Sang P, et al. γ-AApeptides as a new class of peptidomimetics. Chem Eur J. 2016;22(16):5458–5466.
  • Shi Y, Teng P, Sang P, et al. γ-AApeptides: design, structure, and applications. Acc Chem Res. 2016;49(3):428–441.
  • Yang Y, Niu Y, Hong H, et al. Radiolabeled γ-AApeptides: a new class of tracers for positron emission tomography. Chem Commun (Camb). 2012;48(63):7850–7852.
  • Niu Y, Jones A, Wu H, et al. γ-AApeptides bind to RNA by mimicking RNA-binding proteins. Org Biomol Chem. 2011;9(19). DOI:10.1039/c1ob05738c
  • Niu Y, Bai G, Wu H, et al. Cellular Translocation of a γ-AApeptide mimetic of tat peptide. Mol Pharm. 2012;9(5):1529–1534.
  • Bai G, Padhee S, Niu Y, et al. Cellular uptake of an α-AApeptide. Org Biomol Chem. 2012;10(6):1149–1153.
  • Wu H, Teng P, Cai J. Rapid access to multiple classes of peptidomimetics from common γ-AApeptide building blocks. Eur J Org Chem. 2014;2014(8):1760–1765.
  • Wu H, Amin MN, Niu Y, et al. Solid-Phase Synthesis of γ-AApeptides using a submonomeric approach. Org Lett. 2012;14(13):3446–3449.
  • Niu Y, Padhee S, Wu H, et al. Identification of γ-AApeptides with potent and broad-spectrum antimicrobial activity. Chem Commun. 2011;47(44):12197–12199.
  • Padhee S, Smith C, Wu H, et al. The development of antimicrobial α-AApeptides that suppress proinflammatory immune responses. ChemBioChem. 2014;15(5):688–694.
  • Padhee S, Hu Y, Niu Y, et al. Non-hemolytic α-AApeptides as antimicrobial peptidomimetics. Chem Commun. 2011;47(34):9729–9731.
  • Ivankin A, Livne L, Mor A, et al. Role of the conformational rigidity in de novo design of biomimetic antimicrobial compounds. Angew Chem Int Ed. 2010;49(45):8462–8465.
  • Kleijn LHJ, Martin NI. The Cyclic Lipopeptide Antibiotics. In: Topics in Medicinal Chemistry.  Springer, Berlin, Heidelberg: 2017. p.1-27.
  • Makovitzki A, Avrahami D, Shai Y. Ultrashort antibacterial and antifungal lipopeptides. Proc Natl Acad Sci U S A. 2006;103(43):15997–16002.
  • Hu Y, Amin MN, Padhee S, et al. Lipidated peptidomimetics with improved antimicrobial activity. ACS Med Chem Lett. 2012;3(8):683–686.
  • Yu Z, Qin W, Lin J, et al. Antibacterial mechanisms of polymyxin and bacterial resistance. Biomed Res Int. 2015;2015:11.
  • Olaitan AO, Morand S, Rolain J-M. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol. 2014;5:643.
  • Kern WV. Daptomycin: first in a new class of antibiotics for complicated skin and soft-tissue infections. Int J Clin Pract. 2006;60(3):370–378.
  • Niu Y, Padhee S, Wu H, et al. Lipo-γ-AApeptides as a new class of potent and broad-spectrum antimicrobial agents. J Med Chem. 2012;55(8):4003–4009.
  • Wu H, Niu Y, Padhee S, et al. Design and synthesis of unprecedented cyclic γ-AApeptides for antimicrobial development. Chem Sci. 2012;3(8):2570–2575.
  • Li Y, Smith C, Wu H, et al. Lipidated cyclic γ-AApeptides display both antimicrobial and anti-inflammatory activity. ACS Chem Biol. 2014;9(1):211–217.
  • Padhee S, Li Y, Cai J. Activity of lipo-cyclic γ-AApeptides against biofilms of Staphylococcus epidermidis and Pseudomonas aeruginosa. Bioorg Med Chem Lett. 2015;25(12):2565–2569.
  • Wu H, Qiao Q, Hu Y, et al. Sulfono-γ-AApeptides as a new class of nonnatural helical foldamer. Chem Eur J. 2015;21(6):2501–2507.
  • Matsuzaki K. Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim Biophys Acta Rev Biomembr. 1998;1376(3):391–400.
  • Li Y, Wu H, Teng P, et al. Helical antimicrobial sulfono-γ-AApeptides. J Med Chem. 2015;58(11):4802–4811.
  • Schmitt MA, Weisblum B, Gellman SH. Unexpected relationships between structure and function in α,β-Peptides: antimicrobial foldamers with heterogeneous backbones. J Am Chem Soc. 126(22):6848–6849.
  • Ghosh C, Manjunath GB, Akkapeddi P, et al. Small molecular antibacterial peptoid mimics: the simpler the better! J Med Chem. 2014;57(4):1428–1436.
  • Li Y, Smith C, Wu H, et al. Short Antimicrobial Lipo-α/γ-AA hybrid peptides. ChemBioChem. 2014;15(15):2275–2280.
  • Wu H, Qiao Q, Teng P, et al. New class of heterogeneous helical peptidomimetics. Org Lett. 2015;17(14):3524–3527.
  • She F, Nimmagadda A, Teng P, et al. Helical 1:1 α/Sulfono-γ-AA heterogeneous peptides with antibacterial activity. Biomacromolecules. 2016;17(5):1854–1859.
  • Ge Y, MacDonald DL, Holroyd KJ, et al. In vitro antibacterial properties of pexiganan, an analog of magainin. Antimicrob Agents Chemother. 1999;43(4):782–788.
  • Thaker HD, Som A, Ayaz F, et al. Synthetic mimics of antimicrobial peptides with immunomodulatory responses. J Am Chem Soc. 2012;134(27):11088–11091.
  • Sawyer TK. 2.15 - peptidomimetic and nonpeptide drug discovery: receptor, protease, and signal transduction therapeutic targets A2 - Taylor, John B. In: Triggle DJ, ed. Comprehensive medicinal chemistry II. Oxford: Elsevier; 2007. p. 603–647.
  • Méndez-Samperio P. Peptidomimetics as a new generation of antimicrobial agents: current progress. Infect Drug Resist. 2014;7:229–237.
  • Brilacidin (PMX-30063) Antibiotic Fact Sheet, February, 2013.
  • d’Angelo I, Casciaro B, Miro A, et al. Overcoming barriers in Pseudomonas aeruginosa lung infections: engineered nanoparticles for local delivery of a cationic antimicrobial peptide. Colloids Surf B Biointerfaces. 2015;135:717–725.
  • Silva JP, Gonçalves C, Costa C, et al. Delivery of LLKKK18 loaded into self-assembling hyaluronic acid nanogel for tuberculosis treatment. J Control Release. 2016;235:112–124.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.