828
Views
0
CrossRef citations to date
0
Altmetric
Review

Fluorescent probes for G-protein-coupled receptor drug discovery

, , &
Pages 933-947 | Received 08 Jun 2018, Accepted 30 Aug 2018, Published online: 24 Sep 2018

References

  • Kolakowski LF Jr. GCRDb: a G-protein-coupled receptor database. Receptors Channels. 1994;2(1): 1–7. PubMed PMID: 8081729.
  • Rajagopal S, Rajagopal K, Lefkowitz RJ. Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov. 2010 May;9(5):373–386. . PubMed PMID: 20431569; PubMed Central PMCID: PMCPMC2902265.
  • Santos R, Ursu O, Gaulton A, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov. 2017 Jan;16(1):19–34. PubMed PMID: 27910877.
  • Hauser AS, Attwood MM, Rask-Andersen M, et al. Trends in GPCR drug discovery: new agents, targets, and indications. Nat Rev Drug Discov. 2017 Dec;16(12):829–842. PubMed PMID: 29075003.
  • Wootten D, Miller LJ, Koole C, et al. Allostery and biased agonism at class B G Protein-coupled receptors. Chem Rev. 2017 Jan 11;117(1):111–138. PubMed PMID: 27040440.
  • Luttrell LM, Lefkowitz RJ. The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci. 2002 Feb 1;115(Pt 3):455–465. PubMed PMID: 11861753.
  • Rankovic Z, Brust TF, Bohn LM. Biased agonism: an emerging paradigm in GPCR drug discovery. Bioorg Med Chem Lett. 2016 Jan 15;26(2):241–250. . PubMed PMID: 26707396; PubMed Central PMCID: PMCPMC5595354.
  • Rosenbaum DM, Rasmussen SG, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature. 2009 May 21;459(7245):356–363. . PubMed PMID: 19458711; PubMed Central PMCID: PMCPMC3967846.
  • Milligan G. Exploring the dynamics of regulation of G-protein-coupled receptors using green fluorescent protein. Brit J Pharm. 1999;128:501–510.
  • Kobilka BK, Deupi X. Conformational complexity of G-protein-coupled receptors. Trends Pharmacol Sci. 2007 Aug;28(8):397–406. . PubMed PMID: 17629961.
  • Ma Z, Du L, Li M. Toward fluorescent probes for G-protein-coupled receptors (GPCRs). J Med Chem. 2014 Oct 23;57(20):8187–8203. . PubMed PMID: 24983484.
  • Bohme I, Beck-Sickinger AG. Illuminating the life of GPCRs. Cell Commun Signal. 2009 Jul 14;7:16. . PubMed PMID: 19602276; PubMed Central PMCID: PMCPMC2726148.
  • Jensen EC. Use of fluorescent probes: their effect on cell biology and limitations. Anatomical Record-Advances Integr Anat Evol Biol. 2012 Dec;295(12):2031–2036. . PubMed PMID: WOS:000314463500001; English.
  • Puliti D, Warther D, Orange C, et al. Small photoactivatable molecules for controlled fluorescence activation in living cells. Bioorg Med Chem. 2011 Feb 1;19(3):1023–1029. PubMed PMID: 20675143.
  • Mitronova GY, Lukinavicius G, Butkevich AN, et al. High-affinity functional fluorescent ligands for human beta-adrenoceptors. Sci Rep. 2017 Sep 26;7(1):12319. PubMed PMID: 28951558; PubMed Central PMCID: PMCPMC5614969.
  • Lam R, Gondin AB, Canals M, et al. Fluorescently labeled morphine derivatives for bioimaging studies. J Med Chem. 2018 Feb 8;61(3):1316–1329. PubMed PMID: 29291353.
  • Arttamangkul S, Alvarez-Maubecin V, Thomas G, et al. Binding and internalization of fluorescent opioid peptide conjugates in living cells. Mol Pharmacol. 2000 Dec;58(6):1570–1580. PubMed PMID: 11093798.
  • Stoddart LA, Kilpatrick LE, Briddon SJ, et al. Probing the pharmacology of G protein-coupled receptors with fluorescent ligands. Neuropharmacology. 2015 Nov;98:48–57. . PubMed PMID: 25979488.
  • Zhang S, Shao P, Bai M. In vivo type 2 cannabinoid receptor-targeted tumor optical imaging using a near infrared fluorescent probe. Bioconjug Chem. 2013 Nov 20;24(11):1907–1916. . PubMed PMID: 24094147; PubMed Central PMCID: PMCPMC4177906.
  • Ling X, Zhang S, Shao P, et al. A novel near-infrared fluorescence imaging probe that preferentially binds to cannabinoid receptors CB2R over CB1R. Biomaterials. 2015 Jul;57:169–178. PubMed PMID: 25916505; PubMed Central PMCID: PMCPMC4426855.
  • Bruno A, Lembo F, Novellino E, et al. Beyond radio-displacement techniques for identification of CB1 ligands: the first application of a fluorescence-quenching assay. Sci Rep. 2014 Jan 20; 4:3757. . PubMed PMID: 24441508; PubMed Central PMCID: PMCPMC3895875.
  • Sexton M, Woodruff G, Horne EA, et al. NIR-mbc94, a fluorescent ligand that binds to endogenous CB2 receptors and is amenable to high-throughput screening. Chem Biol. 2011 May 27;18(5):563–568. PubMed PMID: WOS:000291499600005; English.
  • Ring AM, Manglik A, Kruse AC, et al. Adrenaline-activated structure of beta(2)-adrenoceptor stabilized by an engineered nanobody. Nature. 2013 Oct 24;502(7472):575-+. PubMed PMID: WOS:000325988400060; English.
  • Staus DP, Strachan RT, Manglik A, et al. Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation. Nature. 2016 Jul 21;535(7612):448–452. PubMed PMID: 27409812; PubMed Central PMCID: PMCPMC4961583.
  • Shimamura T, Shiroishi M, Weyand S, et al. Structure of the human histamine H1 receptor complex with doxepin. Nature. 2011 Jun 22;475(7354):65–70. PubMed PMID: 21697825; PubMed Central PMCID: PMCPMC3131495.
  • Hua T, Vemuri K, Pu M, et al. Crystal structure of the human cannabinoid receptor CB 1. Cell. 2016;167(3):750–762 e14.
  • Shao Z, Yin J, Chapman K, et al. High-resolution crystal structure of the human CB1 cannabinoid receptor. Nature. 2016 Nov 16;540(7634):602. PubMed PMID: 27851727; PubMed Central PMCID: PMCPMC5433929.
  • Hua T, Vemuri K, Nikas SP, et al. Crystal structures of agonist-bound human cannabinoid receptor CB 1. Nature. 2017;547(7664):468.
  • Sridharan R, Zuber J, Connelly SM, et al. Fluorescent approaches for understanding interactions of ligands with G protein coupled receptors. Biochim Biophys Acta. 2014 Jan;1838(1 Pt A):15–33. . PubMed PMID: 24055822; PubMed Central PMCID: PMCPMC3926105.
  • Leopoldo M, Lacivita E, Berardi F, et al. Developments in fluorescent probes for receptor research. Drug Discov Today. 2009 Jul;14(13–14):706–712. PubMed PMID: 19573791.
  • Briddon SJ, Kellam B, Hill SJ. Design and use of fluorescent ligands to study ligand-receptor interactions in single living cells. Methods Mol Biol. 2011;746:211–236. . PubMed PMID: 21607859.
  • Vernall AJ, Hill SJ, Kellam B. The evolving small-molecule fluorescent-conjugate toolbox for Class A GPCRs. Br J Pharmacol. 2014 Mar;171(5):1073–1084. . PubMed PMID: 23734587; PubMed Central PMCID: PMCPMC3952789.
  • Kuder K, Kiec-Kononowicz K. Fluorescent GPCR ligands as new tools in pharmacology. Curr Med Chem. 2008 Sep;15(21):2132–2143. . PubMed PMID: WOS:000260033200005; English.
  • Kuder KJ, Fluorescent K-K-K. GPCR ligands as new tools in pharmacology-update, years 2008-early 2014. Curr Med Chem. 2014;21(34):3962–3975. . PubMed PMID: WOS:000343167400006; English.
  • Kozma E, Jayasekara PS, Squarcialupi L, et al. Fluorescent ligands for adenosine receptors. Bioorg Med Chem Lett. 2013 Jan 1;23(1):26–36. PubMed PMID: 23200243; PubMed Central PMCID: PMCPMC3557833.
  • Ciruela F, Fernandez-Duenas V, Jacobson KA. Lighting up G protein-coupled purinergic receptors with engineered fluorescent ligands. Neuropharmacology. 2015 Nov;98:58–67. PubMed PMID: 25890205; PubMed Central PMCID: PMCPMC4608850.
  • Vazquez-Villa H, Gonzalez-Vera JA, Benhamu B, et al. Development of molecular probes for the human 5-HT(6) receptor. J Med Chem. 2010 Oct 14;53(19):7095–7106. PubMed PMID: 20845907.
  • Zhang W, Chen L, Ma Z, et al. Design, synthesis and biological evaluation of naphthalimidebased fluorescent probes for α1-adrenergic receptors. Drug Discov Ther. 2014;8(1):11–17.
  • Li L, Kracht J, Peng S, et al. Synthesis and pharmacological activity of fluorescent histamine H1 receptor antagonists related to mepyramine. Bioorg Med Chem Lett. 2003 Apr 7;13(7):1245–1248. PubMed PMID: 12657255.
  • Li L, Kracht J, Peng S, et al. Synthesis and pharmacological activity of fluorescent histamine H2 receptor antagonists related to potentidine. Bioorg Med Chem Lett. 2003 May 19;13(10):1717–1720. PubMed PMID: 12729649.
  • Xie SX, Petrache G, Schneider E, et al. Synthesis and pharmacological characterization of novel fluorescent histamine H2-receptor ligands derived from aminopotentidine. Bioorg Med Chem Lett. 2006 Aug 1;16(15):3886–3890. PubMed PMID: 16730977.
  • Baker JG, Middleton R, Adams L, et al. Influence of fluorophore and linker composition on the pharmacology of fluorescent adenosine A1 receptor ligands. Br J Pharmacol. 2010 Feb;159(4):772–786. PubMed PMID: 20105183; PubMed Central PMCID: PMCPMC2829203.
  • Vernall AJ, Stoddart LA, Briddon SJ, et al. Highly potent and selective fluorescent antagonists of the human adenosine A(3) receptor based on the 1,2,4-triazolo[4,3-a]quinoxalin-1-one scaffold. J Med Chem. 2012 Feb 23;55(4):1771–1782. PubMed PMID: 22277057.
  • Schneider E, Keller M, Brennauer A, et al. Synthesis and characterization of the first fluorescent nonpeptide NPY Y1 receptor antagonist. Chembiochem. 2007 Nov 5;8(16):1981–1988. PubMed PMID: 17876753.
  • Li L, Mayer M, Schneider E, et al. Preparation of fluorescent nonpeptidic neuropeptide Y receptor ligands: analogues of the quinazoline-type anti-obesity Y5 antagonist CGP 71683A. Arch Pharm (Weinheim). 2003 Dec;336(12):585–590. PubMed PMID: 14677152.
  • Berque-Bestel I, Soulier J-L, Giner M, et al. Synthesis and sharacterization of the first fluorescent antagonists for human 5-HT4 receptors. J Med Chem. 2003;46(13):2606–2620.
  • Yates AS, Doughty SW, Kendall DA, et al. Chemical modification of the naphthoyl 3-position of JWH-015: in search of a fluorescent probe to the cannabinoid CB2 receptor. Bioorg Med Chem Lett. 2005 Aug 15;15;(16):3758–3762. DOI:10.1016/j.bmcl.2005.05.049. PubMed PMID: 15993070.
  • Keller M, Erdmann D, Pop N, et al. Red-fluorescent argininamide-type NPY Y1 receptor antagonists as pharmacological tools. Bioorg Med Chem. 2011 May 1;19(9):2859–2878. PubMed PMID: 21493077.
  • Azuaje J, Lopez P, Iglesias A, et al. Development of fluorescent probes that target serotonin 5-HT2B receptors. Sci Rep. 2017 Sep 7;7(1):10765. PubMed PMID: 28883627; PubMed Central PMCID: PMCPMC5589878.
  • Martin-Fontecha M, Angelina A, Ruckert B, et al. A fluorescent probe to unravel functional features of cannabinoid receptor CB1 in human blood and tonsil immune system cells. Bioconjug Chem. 2018 Feb 21;29(2):382–389. PubMed PMID: 29314831.
  • Cornelius P, Lee E, Lin W, et al. Design, synthesis, and pharmacology of fluorescently labeled analogs of serotonin: application to screening of the 5-HT2C receptor. J Biomol Screen. 2009 Apr;14(4):360–370. . PubMed PMID: 19403919.
  • Tahtaoui C, Parrot I, Klotz P, et al. Fluorescent pirenzepine derivatives as potential bitopic ligands of the human M1 muscarinic receptor. J Med Chem. 2004 Aug 12;47(17):4300–4315. PubMed PMID: WOS:000223142500025; English.
  • Amon M, Ligneau X, Camelin JC, et al. Highly potent fluorescence-tagged nonimidazole histamine H3 receptor ligands. ChemMedChem. 2007 May;2(5):708–716. PubMed PMID: 17361979.
  • Urban JD, Clarke WP, von Zastrow M, et al. Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther. 2007 Jan;320(1):1–13. PubMed PMID: 16803859.
  • Tomasch M, Schwed JS, Kuczka K, et al. Fluorescent human EP3 receptor antagonists. ACS Med Chem Lett. 2012 Sep 13;3(9):774–779. PubMed PMID: 24900547; PubMed Central PMCID: PMCPMC4025810.
  • Schembri LS, Stoddart LA, Briddon SJ, et al. Synthesis, biological evaluation, and utility of fluorescent ligands targeting the mu-opioid receptor. J Med Chem. 2015 Dec 24;58(24):9754–9767. PubMed PMID: 26632862.
  • Tomasch M, Schwed JS, Weizel L, et al. Novel chalcone-based fluorescent human histamine h(3) receptor ligands as pharmacological tools. Front Syst Neurosci. 2012;6:14. . PubMed PMID: 22470321; PubMed Central PMCID: PMCPMC3312100.
  • Alonso D, Vazquez-Villa H, Gamo AM, et al. Development of fluorescent ligands for the human 5-HT1A receptor. ACS Med Chem Lett. 2010 Sep 9;1(6):249–253. PubMed PMID: 24900203; PubMed Central PMCID: PMCPMC4007967.
  • Loison S, Cottet M, Orcel H, et al. Selective fluorescent nonpeptidic antagonists for vasopressin V(2) GPCR: application to ligand screening and oligomerization assays. J Med Chem. 2012 Oct 25;55(20):8588–8602. PubMed PMID: 22984902.
  • Stoddart LA, Vernall AJ, Bouzo-Lorenzo M, et al. Development of novel fluorescent histamine H1-receptor antagonists to study ligand-binding kinetics in living cells. Sci Rep. 2018 Jan 25;8(1):1572. PubMed PMID: 29371669; PubMed Central PMCID: PMCPMC5785503.
  • Vernall AJ, Stoddart LA, Briddon SJ, et al. Conversion of a non-selective adenosine receptor antagonist into A3-selective high affinity fluorescent probes using peptide-based linkers. Org Biomol Chem. 2013 Sep 14;11(34):5673–5682. PubMed PMID: 23881285.
  • Lacivita E, Masotti AC, Jafurulla M, et al. Identification of a red-emitting fluorescent ligand for in vitro visualization of human serotonin 5-HT(1A) receptors. Bioorg Med Chem Lett. 2010 Nov 15;20(22):6628–6632. PubMed PMID: 20888762.
  • Cowart M, Gfesser GA, Bhatia K, et al. Fluorescent benzofuran histamine H(3) receptor antagonists with sub-nanomolar potency. Inflamm Res. 2006 Apr;55(Suppl 1):S47–8. PubMed PMID: 16705379.
  • Thireau J, Marteaux J, Delagrange P, et al. Original design of fluorescent ligands by fusing BODIPY and melatonin neurohormone. ACS Med Chem Lett. 2014 Feb 13;5(2):158–161. PubMed PMID: 24900790; PubMed Central PMCID: PMCPMC4027590.
  • Makriyannis A, Lu D, Lai X-Z, inventors; University of Connecticut, assignee. Keto Cannabinoids with therapeutic indications. WO Patent Application 2004/017922 A2. 2004 March 4.
  • Lacivita E, Leopoldo M. N-[ω-[4-(2-methoxyphenyl)-1-piperazinyl]alkyl]-2-quinolinamines as high-affinity fluorescent 5-HT1A receptor ligands. J Med Chem. 2008;51(5):1492–1495.
  • Baker JG, Adams LA, Salchow K, et al. Synthesis and characterization of high-affinity 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene-labeled fluorescent ligands for human beta-adrenoceptors. J Med Chem. 2011 Oct 13;54(19):6874–6887. PubMed PMID: 21870877; PubMed Central PMCID: PMCPMC3188295.
  • Lacivita E, Leopoldo M, Masotti AC, et al. Synthesis and characterization of environment-sensitive fluorescent ligands for human 5-HT1A receptors with 1-arylpiperazine structure. J Med Chem. 2009 Dec 10;52(23):7892–7896. PubMed PMID: 19705871.
  • Middleton RJ, Briddon SJ, Cordeaux Y, et al. New fluorescent adenosine A1-receptor agonists that allow quantification of ligand-receptor interactions in microdomains of single living cells. J Med Chem. 2007;50(4):782–793.
  • Kshirsagar T, Nakano AH, Law PY, et al. NTI4F: a non-peptide fluorescent probe selective for functional delta opioid receptors. Neurosci Lett. 1998 Jun 19;249(2–3):83–86. PubMed PMID: 9682822.
  • Humpolickova J, Mejdrova I, Matousova M, et al. Fluorescent inhibitors as tools to characterize enzymes: case study of the lipid kinase phosphatidylinositol 4-Kinase IIIβ (PI4KB). J Med Chem. 2016;60(1):119–127.
  • Uddin M, Crews B, Ghebreselasie K, et al. Design, synthesis, and structure–activity relationship studies of fluorescent inhibitors of cycloxygenase-2 as targeted optical imaging agents. Bioconjug Chem. 2013;24(4):712–723.
  • Silva-Lopez EI, Barden AO, Brozik JA. Near native binding of a fluorescent serotonin conjugate to serotonin type 3 receptors. Bioorg Med Chem Lett. 2013 Feb 1;23(3):773–775. . PubMed PMID: 23265874.
  • Hounsou C, Baehr C, Gasparik V, et al. From the promiscuous asenapine to potent fluorescent ligands acting at a series of Aminergic G-Protein-coupled receptors. J Med Chem. 2018 Jan 11;61(1):174–188. PubMed PMID: 29219316.
  • Rose RH, Briddon SJ, Hill SJ. A novel fluorescent histamine H(1) receptor antagonist demonstrates the advantage of using fluorescence correlation spectroscopy to study the binding of lipophilic ligands. Br J Pharmacol. 2012 Mar;165(6):1789–1800. . PubMed PMID: 21880035; PubMed Central PMCID: PMCPMC3372830.
  • Zhang W, Ma Z, Li W, et al. Discovery of quinazoline-based fluorescent probes to alpha1-adrenergic receptors. ACS Med Chem Lett. 2015 May 14;6(5):502–506. PubMed PMID: 26005522; PubMed Central PMCID: PMCPMC4434465.
  • Kozma E, Kumar TS, Federico S, et al. Novel fluorescent antagonist as a molecular probe in A(3) adenosine receptor binding assays using flow cytometry. Biochem Pharmacol. 2012 Jun 1;83(11):1552–1561. PubMed PMID: 22402302; PubMed Central PMCID: PMCPMC3322254.
  • Hein JE, Fokin VV. Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper (I) acetylides. Chem Soc Rev. 2010;39(4):1302–1315.
  • Rostovtsev VV, Green LG, Fokin VV, et al. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed Engl. 2002;41(14):2596–2599.
  • Lavis LD, Raines RT. Bright ideas for chemical biology. ACS Chem Biol. 2008;3(3):142–155.
  • Malan SF, van Marle A, Menge WM, et al. Fluorescent ligands for the histamine H2 receptor: synthesis and preliminary characterization. Bioorg Med Chem. 2004 Dec 15;12(24):6495–6503. PubMed PMID: 15556766.
  • Amon M, Ligneau X, Schwartz JC, et al. Fluorescent non-imidazole histamine H3 receptor ligands with nanomolar affinities. Bioorg Med Chem Lett. 2006 Apr 1;16(7):1938–1940. PubMed PMID: 16434192.
  • Leopoldo M, Lacivita E, Passafume E, et al. 4-[ω-[4-Arylpiperazin-1-yl]alkoxy]phenyl)imidazo[1,2-a]pyridine derivatives: fluorescent high-affinity dopamine D3 receptor ligands as potential probes for receptor visualization. J Med Chem. 2007;50(20):5043–5047.
  • Aubin JE. Autofluorescence of viable cultured mammalian cells. J Histochem Cytochem. 1979 Jan;27(1):36–43. . PubMed PMID: 220325.
  • Kozma E, Gizewski ET, Tosh DK, et al. Characterization by flow cytometry of fluorescent, selective agonist probes of the A(3) adenosine receptor. Biochem Pharmacol. 2013 Apr 15;85(8):1171–1181. PubMed PMID: 23376019; PubMed Central PMCID: PMCPMC3604185.
  • Zhuang YD, Chiang PY, Wang CW, et al. Environment-sensitive fluorescent turn-on probes targeting hydrophobic ligand-binding domains for selective protein detection. Angew Chem Int Ed Engl. 2013 Jul 29;52(31):8124–8128. PubMed PMID: 23780746.
  • Er JC, Tang MK, Chia CG, et al. MegaStokes BODIPY-triazoles as environmentally sensitive turn-on fluorescent dyes. Chem Sci. 2013;4(5):2168–2176. . PubMed PMID: WOS:000316966500031; English.
  • Haack RA, Gayda S, Himmelsbach RJ, et al. Unexpected reactivity of the 2′-carboxyl functionality in rhodamine dyes. Tetrahedron Lett. 2017;58(18):1733–1737.
  • Klein Herenbrink C, Sykes DA, Donthamsetti P, et al. The role of kinetic context in apparent biased agonism at GPCRs. Nat Commun. 2016 Feb 24;7:10842. . PubMed PMID: 26905976; PubMed Central PMCID: PMCPMC4770093.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.