559
Views
0
CrossRef citations to date
0
Altmetric
Review

Testing for drug-human serum albumin binding using fluorescent probes and other methods

ORCID Icon, , ORCID Icon &
Pages 1005-1014 | Received 06 Aug 2018, Accepted 08 Oct 2018, Published online: 15 Oct 2018

References

  • Shih HP, Zhang X, Aronov AM. Drug discovery effectiveness from the standpoint of therapeutic mechanisms and indications. Nat Rev Drug Discov. 2018;17(1):19–33.
  • Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3(8):711–715.
  • Waring MJ, Arrowsmith J, Leach AR, et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov. 2015;14(7):475–486.
  • Pe R. Plasma protein binding displacement interactions – why are they still regarded as clinically important? Br J Clin Pharmacol. 1994;37(2):125–128.
  • Vuignier K, Schappler J, Veuthey JL, et al. Drug-protein binding: a critical review of analytical tools. Anal Bioanal Chem. 2010;398(1):53–66.
  • Benet LZ, Ba H. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther. 2002;71(3):115–121.
  • Heuberger J, Schmidt S, Derendorf H. When is protein binding important? J Pharm Sci. 2013;102(9):3458–3467.
  • Liu X, Wright M, Ce H. Rational use of plasma protein and tissue binding data in drug design. J Med Chem. 2014;57(20):8238–8248.
  • Smith DA, Di L, Eh K. The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov. 2010;9(12):929–939.
  • Lindup WE, Orme MC. Clinical pharmacology: plasma protein binding of drugs. Br Med J (Clin Res Ed). 1981;282(6259):212–214.
  • Stamler JS, Jaraki O, Osborne J, et al. Nitric oxide circulates in mammalian plasma primarily as an s-nitroso adduct of serum albumin. Proc Natl Acad Sci. 1992;89(16):7674–7677.
  • Et W. Review article: albumin as a drug – biological effects of albumin unrelated to oncotic pressure. Aliment Pharmacol Ther. 2002;16(s5):6–11.
  • Zunszain PA, Ghuman J, Komatsu T, et al. Crystal structural analysis of human serum albumin complexed with hemin and fatty acid. BMC Struct Biol. 2003;3(1):6-15.
  • Sugio S, Kashima A, Mochizuki S, et al. Crystal structure of human serum albumin at 2.5 a resolution. Protein Eng. 1999;12(6):439–446.
  • Lambrinidis G, Vallianatou T, Tsantili-Kakoulidou A. In vitro, in silico and integrated strategies for the estimation of plasma protein binding. A review. Adv Drug Deliv Rev. 2015;86:27–45.
  • Kratochwil NA, Huber W, Muller F, et al. Predicting plasma protein binding of drugs: a new approach. Biochem Pharmacol. 2002;64(9):1355–1374.
  • Petitpas I, Bhattacharya AA, Twine S, et al. Crystal structure analysis of warfarin binding to human serum albumin: anatomy of drug site i. J Biol Chem. 2001;276(25):22804–22809.
  • Lejon S, Frick IM, Bjorck L, et al. Crystal structure and biological implications of a bacterial albumin binding module in complex with human serum albumin. J Biol Chem. 2004;279(41):42924–42928.
  • Sudlow G, Birkett DJ, Wade DN. The characterization of two specific drug binding sites on human serum albumin. Mol Pharmacol. 1975;11(6):824–832.
  • Zsila F. Subdomain Ib is the third major drug binding region of human serum albumin: toward the three-sites model. Mol Pharm. 2013;10(5):1668–1682.
  • Th A, Connors KA. Binding constants – the measurement of molecular complex stability, John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore 1987. 411 seiten, preis: £ 64.15. Berichte der Bunsengesellschaft für physikalische Chemie. 1987;91(12):1398.
  • Waters NJ, Jones R, Williams G, et al. Validation of a rapid equilibrium dialysis approach for the measurement of plasma protein binding. J Pharm Sci. 2008;97(10):4586–4595.
  • Zhang J, Shou WZ, Vath M, et al. An integrated bioanalytical platform for supporting high-throughput serum protein binding screening. Rapid Commun Mass Spectrom. 2010;24(24):3593–3601.
  • Zhivkova ZD. Studies on drug-human serum albumin binding: the current state of the matter. Curr Pharm Des. 2015;21(14):1817–1830.
  • Matsushita Y, Moriguchi I. Measurement of protein binding by ultracentrifugation. Chem Pharm Bull (Tokyo). 1985;33(7):2948–2955.
  • Barre J, Chamouard JM, Houin G, et al. Equilibrium dialysis, ultrafiltration, and ultracentrifugation compared for determining the plasma-protein-binding characteristics of valproic acid. Clin Chem. 1985;31(1):60–64.
  • Zhang HX, Xiong HX, Lw L. Investigation on the protein-binding properties of icotinib by spectroscopic and molecular modeling method. Spectrochim Acta A Mol Biomol Spectrosc. 2016;161:88–94.
  • Pontremoli C, Barbero N, Viscardi G, et al. Insight into the interaction of inhaled corticosteroids with human serum albumin: a spectroscopic-based study. J Pharm Anal. 2018;8(1):37–44.
  • Garg A, Manidhar DM, Gokara M, et al. Elucidation of the binding mechanism of coumarin derivatives with human serum albumin. PLoS One. 2013;8(5):e63805.
  • Zhang HX, Zhou D, Xia QH. Study on the molecular recognition action of lamivudine by human serum albumin. J Mol Recognit. 2018; 31:e2705.
  • Ariga GG, Naik PN, Nandibewoor ST, et al. Quenching of fluorescence by meclizine, a probe study for structural and conformational changes in human serum albumin. J Biomol Struct Dyn. 2017;35(14):3161–3175.
  • Wang Y, Wu P, Zhou X, et al. Exploring the interaction between picoplatin and human serum albumin: the effects on protein structure and activity. J Photochem Photobiol B. 2016;162:611–618.
  • Ishtikhar M, Khan MV, Khan S, et al. Biophysical and molecular docking insight into interaction mechanism and thermal stability of human serum albumin isoforms with a semi-synthetic water-soluble camptothecin analog irinotecan hydrochloride. J Biomol Struct Dyn. 2016;34(7):1545–1560.
  • He J, Wang Q, Ma X, et al. Probing the binding of two 19-nortestosterone derivatives to human serum albumin: insights into the interactions of steroid hormone drugs with functional biomacromolecule. J Mol Recognit. 2016;29(9):415–425.
  • Ali MS, Amina M, Al-Lohedan HA, et al. Human serum albumin binding to the biologically active labdane diterpene “leoheterin”: spectroscopic and in silico analysis. J Photochem Photobiol B. 2018;182:9–17.
  • Ma X, Wang Q, Wang L, et al. Investigation on the interaction of norgestrel with human serum albumin using spectroscopy and molecular-docking method. J Biochem Mol Toxicol. 2016;30(6):287–294.
  • Manivel P, Paulpandi M, Murugan K, et al. Probing the interaction of thionine with human serum albumin by multispectroscopic studies and its in vitro cytotoxic activity toward mcf-7 breast cancer cells. J Biomol Struct Dyn. 2017;35(14):3012–3031.
  • Yamasaki K, Hyodo S, Taguchi K, et al. Long chain fatty acids alter the interactive binding of ligands to the two principal drug binding sites of human serum albumin. PLoS One. 2017;12(6):e0180404.
  • Yang H, Liu J, Huang Y, et al. Domain-specific interactions between mln8237 and human serum albumin estimated by STD and waterlogsy NMR, ITC, spectroscopic, and docking techniques. Sci Rep. 2017;7:45514.
  • Nusrat S, Siddiqi MK, Zaman M, et al. A comprehensive spectroscopic and computational investigation to probe the interaction of antineoplastic drug nordihydroguaiaretic acid with serum albumins. PLoS One. 2016;11(7):e0158833.
  • Li Z, Beeram SR, Bi C, et al. High-performance affinity chromatography: applications in drug-protein binding studies and personalized medicine. Adv Protein Chem Struct Biol. 2016;102:1–39.
  • Vuignier K, Guillarme D, Veuthey J-L, et al. High performance affinity chromatography (HPAC) as a high-throughput screening tool in drug discovery to study drug–plasma protein interactions. J Pharm Biomed Anal. 2013;74:205–212.
  • Zheng X, Podariu M, Matsuda R, et al. Analysis of free drug fractions in human serum by ultrafast affinity extraction and two-dimensional affinity chromatography. Anal Bioanal Chem. 2016;408(1):131–140.
  • Li Z, Hage DS. Analysis of stereoselective drug interactions with serum proteins by high-performance affinity chromatography: a historical perspective. J Pharm Biomed Anal. 2017;144:12–24.
  • Matsuda R, Jobe D, Beyersdorf J, et al. Analysis of drug-protein binding using on-line immunoextraction and high-performance affinity microcolumns: studies with normal and glycated human serum albumin. J Chromatogr A. 2015;1416:112–120.
  • Ostergaard J, Nh H. Capillary electrophoresis frontal analysis: principles and applications for the study of drug-plasma protein binding. Electrophoresis. 2003;24(17):2903–2913.
  • Zhang Y, Sha Y, Qian K, et al. Comparison of three methods for analyzing loureirin b and human serum albumin interaction using capillary electrophoresis. Electrophoresis. 2017;38(7):1038–1043.
  • Nevidalova H, Michalcova L, Glatz Z. In-depth insight into the methods of plasma protein-drug interaction studies: comparison of capillary electrophoresis-frontal analysis, isothermal titration calorimetry, circular dichroism and equilibrium dialysis. Electrophoresis. 2018;39(4):581–589.
  • Michalcova L, Glatz Z. Comparison of various capillary electrophoretic approaches for the study of drug-protein interaction with emphasis on minimal consumption of protein sample and possibility of automation. J Sep Sci. 2015;38(2):325–331.
  • Rafols C, Amezqueta S, Fuguet E, et al. Molecular interactions between warfarin and human (HSA) or bovine (BSA) serum albumin evaluated by isothermal titration calorimetry (ITC), fluorescence spectrometry (FS) and frontal analysis capillary electrophoresis (FA/CE). J Pharm Biomed Anal. 2018;150:452–459.
  • Bandyopadhyay N, Pradhan AB, Das S, et al. Comparative study of an osazone based ligand and its palladium(ii) complex with human serum albumin: a spectroscopic, thermodynamic and molecular docking approach. J Photochem Photobiol B. 2017;173:1–11.
  • Abdollahpour N, Soheili V, Saberi MR, et al. Investigation of the interaction between human serum albumin and two drugs as binary and ternary systems. Eur J Drug Metab Pharmacokinet. 2016;41(6):705–721.
  • Lee W, Fon W, Axelrod BW, et al. High-sensitivity microfluidic calorimeters for biological and chemical applications. Proc Natl Acad Sci USA. 2009;106(36):15225–15230.
  • Torres FE, Recht MI, Coyle JE, et al. Higher throughput calorimetry: opportunities, approaches and challenges. Curr Opin Struct Biol. 2010;20(5):598–605.
  • Baker MA, Schneider EK, Xh J, et al. The plasma protein binding proteome of ertapenem: a novel compound-centric proteomic approach for elucidating drug-plasma protein binding interactions. ACS Chem Biol. 2016;11(12):3353–3364.
  • Rich RL, Day YS, Morton TA, et al. High-resolution and high-throughput protocols for measuring drug/human serum albumin interactions using biacore. Anal Biochem. 2001;296(2):197–207.
  • Yu Y, Huang Y, Jin Y, et al. Dual-targeting peptide probe for sequence- and structure-sensitive sensing of serum albumin. Biosens Bioelectron. 2017;94:657–662.
  • Zadravec P, Mareckova L, Petrokova H, et al. Development of recombinant lactococcus lactis displaying albumin-binding domain variants against shiga toxin 1 b subunit. PLoS One. 2016;11(9):e0162625.
  • Maynard JA, Lindquist NC, Sutherland JN, et al. Surface plasmon resonance for high-throughput ligand screening of membrane-bound proteins. Biotechnol J. 2009;4(11):1542–1558.
  • Wang Y-R, Feng L, Xu L, et al. An ultrasensitive and conformation sensitive fluorescent probe for sensing human albumin in complex biological samples. Sensors Actuators B: Chemical. 2017;245:923–931.
  • McCallum MM, Pawlak AJ, Shadrick WR, et al. A fluorescence-based high throughput assay for the determination of small molecule-human serum albumin protein binding. Anal Bioanal Chem. 2014;406(7):1867–1875.
  • Hall MD, Yasgar A, Peryea T, et al. Fluorescence polarization assays in high-throughput screening and drug discovery: a review. Methods Appl Fluoresc. 2016;4(2):022001.
  • Yasgar A, Furdas SD, Maloney DJ, et al. High-throughput 1,536-well fluorescence polarization assays for alpha(1)-acid glycoprotein and human serum albumin binding. PLoS One. 2012;7(9):e45594.
  • Green AM, Cj A. Dual-sensor fluorescent probes of surfactant-induced unfolding of human serum albumin. J Phys Chem B. 2015;119(10):3912–3919.
  • Samanta S, Halder S, Das G. A TICT based turn-on fluorogenic nano-probe for realtime detection of serum albumin in physiological condition. Anal Chem. 2018.
  • Ding D, Li K, Liu B, et al. Bioprobes based on AIE fluorogens. Acc Chem Res. 2013;46(11):2441–2453.
  • Liu C, Yang W, Du J, et al. A boron 2-(2ʹ-pyridyl) imidazole fluorescence probe for bovine serum albumin: discrimination over other proteins and identification of its denaturation. Photochem Photobiol. 2017;93(6):1414–1422.
  • Reja SI, Khan IA, Bhalla V, et al. A TICT based NIR-fluorescent probe for human serum albumin: a pre-clinical diagnosis in blood serum. Chem Commun (Camb). 2016;52(6):1182–1185.
  • Yang W, Liu C, Lu S, et al. Red-emitting benzo[e]indolium probes for HSA based on the TICT characteristics. J Lumin. 2017;192:478–485.
  • Li P, Wang Y, Zhang S, et al. An ultrasensitive rapid-response fluorescent probe for highly selective detection of HSA. Tetrahedron Lett. 2018;59(14):1390–1393.
  • Li W, Chen D, Wang H, et al. Quantitation of albumin in serum using “turn-on” fluorescent probe with aggregation-enhanced emission characteristics. ACS Appl Mater Interfaces. 2015;7(47):26094–26100.
  • Yu Y, Huang Y, Hu F, et al. Self-assembled nanostructures based on activatable red fluorescent dye for site-specific protein probing and conformational transition detection. Anal Chem. 2016;88(12):6374–6381.
  • Shen P, Hua J, Jin H, et al. Recognition and quantification of HSA: a fluorescence probe across α-helices of site i and site ii. Sensors Actuators B: Chemical. 2017;247:587–594.
  • Gabr MT, Pigge FC. Rhenium tricarbonyl complexes of AIE active tetraarylethylene ligands: tuning luminescence properties and HSA-specific binding. Dalton Trans. 2017;46(43):15040–15047.
  • Hrvoje R, Željko D, Mirza B, et al. Displacement of drugs from human serum albumin: from molecular interactions to clinical significance. Curr Med Chem. 2017;24(18):1930–1947.
  • Baaske P, Wienken CJ, Reineck P, et al. Optical thermophoresis for quantifying the buffer dependence of aptamer binding. Angew Chem Int Ed Engl. 2010;49(12):2238–2241.
  • Seidel SA, Dijkman PM, Lea WA, et al. Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods. 2013;59(3):301–315.
  • Jerabek-Willemsen M, Wienken CJ, Braun D, et al. Molecular interaction studies using microscale thermophoresis. Assay Drug Dev Technol. 2011;9(4):342–353.
  • Pant K, Pufe J, Zarschler K, et al. Surface charge and particle size determine the metabolic fate of dendritic polyglycerols. Nanoscale. 2017;9(25):8723–8739.
  • Wagner MC, Myslinski J, Pratap S, et al. Mechanism of increased clearance of glycated albumin by proximal tubule cells. Am J Physiol Renal Physiol. 2016;310(10):F1089–F1102.
  • Minic S, Stanic-Vucinic D, Radomirovic M, et al. Characterization and effects of binding of food-derived bioactive phycocyanobilin to bovine serum albumin. Food Chem. 2018;239:1090–1099.
  • Linke P, Amaning K, Maschberger M, et al. An automated microscale thermophoresis screening approach for fragment-based lead discovery. J Biomol Screen. 2016;21(4):414–421.
  • Rainard JM, Pandarakalam GC, McElroy SP. Using microscale thermophoresis to characterize hits from high-throughput screening: a European lead factory perspective. SLAS Discov. 2018;23(3):225–241.
  • Kieltyka K, McAuliffe B, Cianci C, et al. Application of cassette ultracentrifugation using non-labeled compounds and liquid chromatography-tandem mass spectrometry analysis for high-throughput protein binding determination. J Pharm Sci. 2016;105(3):1036–1042.
  • Zhu J, Yi X, Huang P, et al. Drug-protein binding of Danhong injection and the potential influence of drug combination with aspirin: insight by ultrafiltration LC-MS and molecular modeling. J Pharm Biomed Anal. 2017;134:100–107.
  • Patsalos PN, Zugman M, Lake C, et al. Serum protein binding of 25 antiepileptic drugs in a routine clinical setting: a comparison of free non-protein-bound concentrations. Epilepsia. 2017;58(7):1234–1243.
  • Takenaka M, Okumura Y, Amino T, et al. DNA-duplex linker for AFM-SELEX of DNA aptamer against human serum albumin. Bioorg Med Chem Lett. 2017;27(4):954–957.
  • Panman W, Japrung D, Pongprayoon P. Exploring the interactions of a DNA aptamer with human serum albumins: simulation studies. J Biomol Struct Dyn. 2017;35(11):2328–2336.
  • Chen Z, Li Q, Chen J, et al. Immobilization of serum albumin and peptide aptamer for EPC on polydopamine coated titanium surface for enhanced in-situ self-endothelialization. Mater Sci Eng C Mater Biol Appl. 2016;60:219–229.
  • Ling I, Taha M, Al-Sharji NA, et al. Selective binding of pyrene in subdomain IB of human serum albumin: combining energy transfer spectroscopy and molecular modelling to understand protein binding flexibility. Spectrochim Acta A Mol Biomol Spectrosc. 2018;194:36–44.
  • Maiti J, Biswas S, Chaudhuri A, et al. Environment sensitive fluorescent analogue of biologically active oxazoles differentially recognizes human serum albumin and bovine serum albumin: photophysical and molecular modeling studies. Spectrochim Acta A Mol Biomol Spectrosc. 2017;175:191–199.
  • Rahnama E, Mahmoodian-Moghaddam M, Khorsand-Ahmadi S, et al. Binding site identification of metformin to human serum albumin and glycated human serum albumin by spectroscopic and molecular modeling techniques: a comparison study. J Biomol Struct Dyn. 2015;33(3):513–533.
  • Capuzzi SJ, Politi R, Isayev O, et al. QSAR modeling of tox21 challenge stress response and nuclear receptor signaling toxicity assays. Front Environ Sci. 2016;4(3).
  • Liu J, Mansouri K, Judson RS, et al. Predicting hepatotoxicity using ToxCast in vitro bioactivity and chemical structure. Chem Res Toxicol. 2015;28(4):738–751.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.