780
Views
1
CrossRef citations to date
0
Altmetric
Perspective

Targeting adenosine A2A receptor antagonism for treatment of cancer

, , &
Pages 997-1003 | Received 13 Aug 2018, Accepted 08 Oct 2018, Published online: 18 Oct 2018

References

  • de Lera Ruiz M, Lim Y-H, Zheng J. Adenosine A2A receptor as a drug discovery target. J Med Chem. 2014;57:3623–3650.
  • Franco R, Navarro G. Adenosine A2A receptor antagonists in neurodegenerative diseases: huge potential and huge challenges. Front Psychiatry. 2018;9:68.
  • Preti D, Baraldi PG, Moorman AR, et al. History and perspectives of A2A adenosine receptor antagonists as potential therapeutic agents. Med Res Rev. 2015;35:790−848.
  • Leone RD, Lo Y-C, Powell JD. A2aR antagonists: next generation checkpoint blockade for cancer immunotherapy. Comput Struct Biotechnol J. 2015;13:265–272.
  • Garnock-Jones KP, Curran MP. Regadenoson. Am J Cardiovasc Drugs. 2010;10:65–71.
  • Shook BC, Jackson PF. Adenosine A2A receptor antagonists and parkinson’s disease. ACS Chem Neurosci. 2011;2:555–567.
  • Alexander SP, Millns PJ. [(3)H]ZM241385–an antagonist radioligand for adenosine A(2A) receptors in rat brain. Eur J Pharmacol. 2001;411:205–210.
  • Uustare A, Vonk A, Terasmaa A, et al. Kinetic and functional properties of [3H]ZM241385, a high affinity antagonist for adenosine A2A receptors. Life Sci. 2005;76:1513–1526.
  • Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39:889–909.
  • Singh N, Pillay V, Choonara YE. Advances in the treatment of Parkinson’s disease. Prog Neurobiol. 2007;81:29–44.
  • Shah U, Hodgson R. Recent progress in the discovery of adenosine A(2A) receptor antagonists for the treatment of parkinson’s disease. Curr Opin Drug Discov Devel. 2010;13:466–480.
  • Gomes CV, Kaster MP, Tome AR, et al. Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta. 2011;1808:1380–1399.
  • Hodgson RA, Bedard PJ, Varty GB, et al. Preladenant, a selective A2A receptor antagonist, is active in primate models of movement disorders. Exp Neurol. 2010;225:384–390.
  • Dungo R, Deeks ED. Istradefylline: first global approval. Drugs. 2013;73:875−82.
  • Zarek PE, Powell JD. Adenosine and anergy. Autoimmunity. 2007;40:425–432.
  • Beavis PA, Stagg J, Darcy PK, et al. CD73: a potent suppressor of antitumor immune responses. Trends Immunol. 2012;33:231–237.
  • Chen L, Diao L, Yang Y, et al. Cd38-mediated immunosuppression as a mechanism of tumor cell escape from pd-1/pd-l1 blockade. Cancer Discov. 2018 cited 2018 Jul 15. DOI:10.1158/2159-8290.CD-17-1033.
  • Loi S, Pommey S, Haibe-Kains B, et al. CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proc Natl Acad Sci USA. 2013;110:11091–11096.
  • Lu XX, Chen YT, Feng B, et al. Expression and clinical significance of CD73 and hypoxia-inducible factor-1alpha in gastric carcinoma. World J Gastroenterol. 2013;19:1912–1918.
  • Wu XR, He XS, Chen YF, et al. High expression of CD73 as a poor prognostic biomarker in human colorectal cancer. J Surg Oncol. 2012;106:130–137.
  • Moser GH, Schrader J, Deussen A. Turnover of adenosine in plasma of human and dog blood. Am J Physiol. 1989;256(4 Pt 1):C799–806.
  • Blay J, White TD, Hoskin DW. The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res. 1997;57:2602–2605.
  • Hoskin DW, Mader JS, Furlong SJ, et al. Inhibition of T cell and natural killer cell function by adenosine and its contribution to immune evasion by tumor cells (Review). Int J Oncol. 2008;32:527–535.
  • Linnemann C, Schildberg FA, Schurich A, et al. Adenosine regulates CD8 T-cell priming by inhibition of membrane-proximal T-cell receptor signalling. Immunology. 2009;128(1 Suppl):e728–37.
  • Cekic C, Linden J. Adenosine A2A receptors intrinsically regulate CD8+ T cells in the tumor microenvironment. Cancer Res. 2014;74:7239–7249.
  • Stagg J, Divisekera U, Duret H, et al. CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis. Cancer Res. 2011;71:2892–2900.
  • Ohta A, Kini R, Ohta A, et al. The development and immunosuppressive functions of CD4(+) CD25(+) FoxP3(+) regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Frontiers Immunol. 2012;3:190.
  • Novitskiy SV, Ryzhov S, Zaynagetdinov R, et al. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood. 2008;112:1822–1831.
  • Panther E, Corinti S, Idzko M, et al. Adenosine affects expression of membrane molecules, cytokine and chemokine release, and the T-cell stimulatory capacity of human dendritic cells. Blood. 2003;101:3985–3990.
  • Young A, Ngiow SF, Gao Y, et al. A2aR adenosine signaling suppresses natural killer cell maturation in the tumor microenvironment. Cancer Res. 2017 [cited 2017 Dec 11]. DOI:10.1158/0008-5472.CAN-17-2826.
  • Ohta A, Gorelik E, Prasad SJ, et al. A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci USA. 2006;103:13132–13137.
  • Mittal D, Sinha D, Barkauskas D, et al. Adenosine 2b receptor expression on cancer cells promotes metastasis. Cancer Res. 2016;76:4372–4382.
  • Allard B, Pommey S, Smyth MJ, et al. Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clin Cancer Res. 2013;19:5626–5635.
  • Hay CM, Sult E, Huang Q, et al. Targeting CD73 in the tumor microenvironment with MEDI9447. Oncoimmunology. 2016;5:e1208875.
  • Young A, Ngiow SF, Barkauskas DS, et al. Co-inhibition of CD73 and A2AR adenosine signaling improves anti-tumor immune responses. Cancer Cell. 2016;30:391–403.
  • Vijayan D, Barkauskas DS, Stannard K, et al. Selective activation of anti-CD73 mechanisms in control of primary tumors and metastases. OncoImmunology. 2017;6:e1312044.
  • Jaakola V-P, Griffith MT, Hanson MA, et al. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science. 2008;322:1211−17.
  • Doré AS, Robertson N, Errey JC, et al. Structure of the adenosine A(2A) receptor in complex with ZM241385 and the xanthines XAC and caffeine. Structure. 2011;19:1283−93.
  • Xu F, Wu H, Katritch V, et al. Structure of an agonist-bound human A2A adenosine receptor. Science. 2011;332:322−7.
  • Lebon G, Warne T, Edwards PC, et al. Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature. 2011;474:521−525.
  • Hino T, Arakawa T, Iwanari H, et al. G protein-coupled receptor inactivation by an allosteric inverse- agonist antibody. Nature. 2012;482:237−40.
  • Congreve M, Andrews SP, Doré AS, et al. Discovery of 1,2,4-triazine derivatives as adenosine A(2A) antagonists using structure based drug design. J Med Chem. 2012;55:1898−1903.
  • Liu W, Chun E, Thompson AA, et al. Structural basis for allosteric regulation of GPCRs by sodium ions. Science. 2012;337:232−6.
  • Lebon G, Edwards PC, Leslie AGW, et al. Molecular determinants of CGS21680 binding to the human adenosine A2A receptor. Mol Pharmacol. 2015;87:907−915.
  • Sun B, Bachhawata P, Chua ML-H, et al. Crystal structure of the adenosine A2A receptor bound to an antagonist reveals a potential allosteric pocket. Proc Natl Acad Sci USA. 2017;114:2066–2071.
  • Cooke RM, Brown AJH, Marshall FH, et al. Structures of G protein-coupled receptors reveal new opportunities for drug discovery. Drug Discovery Today. 2015;20:1355−1364.
  • Dal Ben D, Lambertucci C, Marucci G, et al. Adenosine receptor modeling: what does the A2A crystal structure tell us? Curr Top Med Chem. 2010;10:993–1018.
  • Ivanov AA, Barak D, Jacobson KA. Evaluation of homology modeling of G-protein-coupled receptors in light of the A(2A) adenosine receptor crystallographic structure. J Med Chem. 2009;52:3284–3292.
  • Carlsson J, Yoo L, Gao ZG, et al. Structure-based discovery of A2A adenosine receptor ligands. J Med Chem. 2010;53:3748–3755.
  • Katritch V, Jaakola VP, Lane JR, et al. Structure-based discovery of novel chemotypes for adenosine A(2A) receptor antagonists. J Med Chem. 2010;53:1799–1809.
  • Jespers W, Oliveira A, Prieto-Díaz R, et al. Structure-based design of potent and selective ligands at the four adenosine receptors. Molecules. 2017;22:E1945.
  • Andrews SP, Tehan B. Stabilised G protein-coupled receptors in structure-based drug design: a case study with adenosine A2A receptor. Med Chem Commun. 2013;4:52–67.
  • Jazayeri A, Andrews SP, Marshall FH. Structurally enabled discovery of adenosine A2A receptor antagonists. Chem Rev. 2017;117:21–37.
  • Wei J, Qu W, Ye Y, et al. 3D pharmacophore based virtual screening of A(2A) adenosine receptor antagonists. Protein Pept Lett. 2010;17:332−339.
  • Rataj K, Witek J, Mordalski S, et al. Impact of template choice on homology model efficiency in virtual screening. J Chem Inf Model. 2014;54:1661−1668.
  • Katritch V, Kufareva I, Abagyan R. Structure based prediction of subtype-selectivity for adenosine receptor antagonists. Neuropharmacology. 2011;60:108−115.
  • Sirci F, Goracci L, Rodriguez D, et al. Ligand-, structure- and pharmacophore-based molecular fingerprints: a case study on adenosine A(1), A(2A), A(2B), and A(3) receptor antagonists. J Comput-Aided Mol Des. 2012;26:1247−1266.
  • Sabbadin D, Ciancetta A, Moro S. Bridging molecular docking to membrane molecular dynamics to investigate GPCR ligand recognition: the human A2A adenosine receptor as a key study. J Chem Inf Model. 2014;54:169−183.
  • Bortolato A, Tehan BG, Bodnarchuk MS, et al. Water network perturbation in ligand binding: adenosine, A2A antagonists as a case study. J Chem Inf Model. 2013;53:1700−13.
  • Higgs C, Beuming T, Sherman W. Hydration site thermodynamics explain SARs for triazolylpurines analogues binding to the A2A receptor. ACS Med Chem Lett. 2010;1:160−4.
  • Mason JS, Bortolato A, Weiss DR, et al. High end GPCR design: crafted ligand design and druggability analysis using protein structure, lipophilic hotspots and explicit water networks. Silico Pharmacol. 2013;1:23.
  • Mason JS, Bortolato A, Congreve M, et al. New insights from structural biology into the druggability of G protein-coupled receptors. Trends Pharmacol Sci. 2012;33:249−60.
  • Andrews SP, Mason JS, Hurrell E, et al. Structure-based drug design of chromone antagonists of the adenosine A2A receptor. MedChemComm. 2014;5:571−5.
  • Congreve M, Rich RL, Myszka DG, et al. Fragment screening of stabilized G-protein-coupled receptors using biophysical methods. Meth Enzymol. 2011;493:115–136.
  • Rich RL, Errey J, Marshall F, et al. Biacore analysis with stabilized G-protein-coupled receptors. Anal Biochem. 2011;409:267–7263.
  • Chen D, Errey J, Heitman L, et al. Fragment screening of GPCRs using biophysical methods: identification of ligands of the adenosine A2A receptor with novel biological activity. ACS Chemical Biology. 2012;7:2064–2073.
  • Walker MK, unpublished results
  • Igonet S, Raingeval C, Cecon E, et al. Enabling STD-NMR fragment screening using stabilized native GPCR: a case study of adenosine receptor. Sci Rep. 2018;8:8142.
  • Fredriksson K, Lottmann P, Hinz S, et al. Nanodiscs for INPHARMA NMR characterization of GPCRs: ligand binding to the human A2A adenosine receptor. Angew Chem Int Ed Engl. 2017;56:5750‐5754.
  • Zhukov A, Andrews SP, Errey JC, et al. Biophysical mapping of the adenosine A2A receptor. J Med Chem. 2011;54:4312–4323.
  • Langmead CJ, Andrews SP, Congreve M, et al. Identification of novel adenosine A(2A) receptor antagonists by virtual screening. J Med Chem. 2012;55:1904–1909.
  • Borodovsky A, Wang Y, Ye M, et al. Preclinical pharmacodynamics and antitumor activity of AZD4635, a novel adenosine 2A receptor inhibitor that reverses adenosine mediated T cell suppression [abstract]. In: Proceedings of the American association for cancer research annual meeting 2017. Washington, DC. Philadelphia (PA): AACR; 2017 Apr 1-5. Cancer Res 2017; 77(13Suppl):Abstract nr 5580.
  • Borodovsky A, Wang Y, Ye M, et al. Inhibition of A2AR by AZD4635 induces anti-tumor immunity alone and in combination with anti-PD-L1 in preclinical models [abstract]. In: Proceedings of the annual meeting of the American association for cancer research. Chicago, IL. Philadelphia (PA): AACR; 2018 April 14–18. Cancer Res 2018; 78 (13 Suppl): Abstract nr 3751.
  • Rucktooa P, Cheng RKY, Segala E, et al. Towards high throughput GPCR crystallography: in meso soaking of adenosine A2A receptor crystals. Sci Rep. 2018;8:41.
  • Deflorian F, Kumar TS, Phan K, et al. Evaluation of molecular modeling of agonist binding in light of the crystallographic structure of an agonist-bound A₂A adenosine receptor. J Med Chem. 2012;55:538–552.
  • Tosh DK, Phan K, Gao ZG, et al. Optimization of adenosine 5ʹ-carboxamide derivatives as adenosine receptor agonists using structure-based ligand design and fragment screening. J Med Chem. 2012;55:4297–4308.
  • Carpenter B, Nehmé R, Warne T, et al. Structure of the adenosine A2A receptor bound to an engineered G protein. Nature. 2016;536:104–107.
  • Carpenter B, Tate CG. Expression, purification and crystallisation of the adenosine A2A receptor bound to an engineered mini G protein. Bio-Protocol. 2017;7:e2234/1-e2234/13.
  • Garcia-Nafria J, Lee Y, Bai X, et al. Cryo-EM structure of the adenosine A2A receptor coupled to an engineered heterotrimeric G protein. eLife. 2018;7:e35946.
  • AstraZeneca. A phase I, open-label, multicenter study to assess safety, tolerability, pharmacokinetics, and preliminary anti-tumor activity of ascending doses of AZD4635 both as monotherapy and in combination with durvalumab in patients with advanced solid malignancies. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2000 [cited 2018 Jul 24]. NLM Identifier: NCT02740985. Available from: https://clinicaltrials.gov/ct2/show/NCT02740985
  • Emens L. CPI-444, an oral adenosine A2A receptor (A2AR) antagonist, demonstrates clinical activity in patients with advanced solid tumors. American association for cancer research (AACR) annual meeting. Washington, DC; 2017 April 4 [cited 2018 Jul 6]. Abstract CT119. Available from: http://www.corvuspharma.com/file.cfm/100/docs/AACR%20Presentation_April.4.2017.pdf
  • Willingham S, Ho P, Leone R, et al. The adenosine A2A receptor antagonist CPI-444 blocks adenosine-mediated T-cell suppression and exhibits antitumor activity alone and in combination with anti-PD-1 and anti-PD-L1. [abstract]. In: Proceedings of the 107th annual meeting of the American association for cancer research. New Orleans, LA. Philadelphia (PA): AACR; 2016 Apr 16–20. Cancer Res 2016; 76(14Suppl):Abstract nr 2337.
  • Corvus Pharmaceuticals, Inc. A phase 1/1b, open-label, multicenter, repeat-dose, dose-selection study of CPI-444 as single agent and in combination with atezolizumab in patients with selected incurable cancers. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2000 [cited 2018 Jul 24]. NLM Identifier: NCT02655822. Available from: https://clinicaltrials.gov/ct2/show/NCT02655822
  • Hoffmann-La R. A phase Ib/II, open-label, multicenter, randomized umbrella study evaluating the efficacy and safety of multiple immunotherapy-based treatment combinations in patients with metastatic non-small cell lung cancer (morpheus-lung). In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2000 [cited 2018 Jul 24]. NLM Identifier: NCT03337698. Available from: https://clinicaltrials.gov/ct2/show/NCT03337698
  • Mediavilla-Varela M, Castro J, Chiappori A, et al. A novel antagonist of the immune checkpoint protein adenosine a2a receptor restores tumor-infiltrating lymphocyte activity in the context of the tumor microenvironment. Neoplasia. 2017;19:530–536.
  • Novartis AG, Palobiofarma SL 5-Bromo-2,6-di-(1H-pyrazol-1-yl)pyrimidin-4-amine for use in the treatment of cancer. WO2017025918 (2017)
  • Chiappori A, Williams CC, Creelan BC, et al. Phase I/II study of the A2AR antagonist NIR178 (PBF-509), an oral immunotherapy, in patients (pts) with advanced NSCLC. J Clin Oncol. 2018;36(suppl; abstr 9089). Available from: https://meetinglibrary.asco.org/record/160857/abstract.
  • Palobiofarma SL. Phase I/Ib trial of single agent PBF-509 and in combination with PDR001 for patients with advanced NSCLC. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2000 [cited 2018 Jul 24]. NLM Identifier: NCT02403193. Available from: https://clinicaltrials.gov/ct2/show/NCT02403193
  • Novartis Pharmaceuticals. A phase 2, multi-center, open label study of NIR178 in combination with PDR001 in patients with selected advanced solid tumors and non-hodgkin lymphoma. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2000 [cited 2018 Jul 24]. Available from: https://clinicaltrials.gov/ct2/show/NCT03207867.
  • Merck Sharp & Dohme Corp. A phase Ib/II study to evaluate the safety and tolerability of preladenant as a single agent and in combination with pembrolizumab in subjects with advanced malignancies. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2000 [cited 2018 Jul 24]. NLM Identifier: NCT03099161. Available from: https://clinicaltrials.gov/ct2/show/NCT03099161
  • MedImmune LLC. A multiarm, open-label, multicenter, phase 1b/2 study to evaluate novel combination therapies in subjects with previously treated advanced EGFRm NSCLC. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2000 [cited 2018 Jul 24]. NLM Identifier: NCT03381274. Available from: https://clinicaltrials.gov/ct2/show/NCT03381274
  • Corvus Pharmaceuticals, Inc. A phase 1/1b multicenter study to evaluate the humanized anti-CD73 antibody, CPI-006, as a single agent, in combination with CPI-444, and in combination with pembrolizumab in adult subjects with advanced cancers. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2000 [cited 2018 Jul 24]. NLM Identifier: NCT03454451. Available from: https://clinicaltrials.gov/ct2/show/NCT03454451
  • Novartis Pharmaceuticals. A phase I/Ib, open-label, multi-center, study of NZV930 as a single agent and in combination with PDR001 and/or NIR178 in patients with advanced malignancies. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2000 [cited 2018 Jul 24]. NLM Identifier: NCT03549000. Available from: https://clinicaltrials.gov/ct2/show/NCT03549000
  • Leone RD, Sun I-M, Oh MH, et al. Inhibition of the adenosine A2a receptor modulates expression of T cell coinhibitory receptors and improves effector function for enhanced checkpoint blockade and ACT in murine cancer models. Cancer Immunol Immunother. 2018 [cited 2018 Jun 19]. DOI:10.1007/s00262-018-2186-0.
  • Hodgson RA, Bertorelli R, Varty GB, et al. Characterization of the potent and highly selective A2A receptor antagonists preladenant and SCH 412348 [7-[2-[4-2,4-Difluorophenyl]-1-piperazinyl]ethyl]-2-(2-furanyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine] in rodent models of movement disorders and depression. J Pharmacol Exp Ther. 2009;330:294–303.
  • Houthuys E, Marillier R, Deregnaucourt T, et al. EOS100850, an insurmountable and non-brain penetrant A2A receptor antagonist, inhibits adenosine-mediated T cell suppression, demonstrates anti-tumor activity and exhibits best-in class characteristics [abstract]. In: Proceedings of the American Association for Cancer Research annual meeting 2018. Chicago, IL. Philadelphia (PA): AACR; 2018 April 14-18. Cancer Res 2018;78(13 Suppl): Abstract nr LB-291.
  • Palobiofarma SL. Phase I trial of PBF-1129 in patients with advanced non-small cell lung cancer (NSCLC). In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2000 [cited 2018 Jul 24]. NLM Identifier: NCT03274479. Available from: https://clinicaltrials.gov/show/NCT03274479
  • Derivatives of 2-aminopyridine as adenosine A2b receptor antagonists and ligands of the melatonin MT3 receptor. WO2016135048 (2016)
  • Walters MJ, Piovesan D, Tan J, et al. Combining adenosine receptor inhibition with AB928 and chemotherapy results in greater immune activation and tumor control [abstract]. In: Proceedings of the American Association for Cancer Research annual meeting 2018. Chicago, IL. Philadelphia (PA): AACR; 2018 April 14-18. Cancer Res 2018;78(13 Suppl): Abstract nr 5556.
  • Seitz L, Ashok D, Leleti MR, et al. Clinical pharmacokinetic-pharmacodynamic relationship for AB928, a dual antagonist of the A2aR and A2bR adenosine receptors [abstract]. In: Proceedings of the American Association for Cancer Research annual meeting 2018. Chicago, IL. Philadelphia (PA): AACR; 2018 April 14-18. Cancer Res 2018;78(13 Suppl): Abstract nr 3769.
  • Arcus Bioscience presentation to Goldman Sachs. 2018 Jun 12[cited 2018 Jul 6] Available from: https://s22.q4cdn.com/243592055/files/doc_presentations/2018/06/Arcus-Corporate-Non-Confidential-(2018-06)-June-_GS_Conference.pdf
  • Galezowski M, Wegrzyn P, Bobowska A, et al. Characterization of novel dual A2A/A2B adenosine receptor antagonists for cancer immunotherapy [abstract]. In: Proceedings of the American Association of Cancer Research annual meeting 2018. Chicago, IL (Philadelphia (PA): AACR; 2018 April 14–18. Cancer Res 2018;78(13 Suppl): Abstract nr 3770.
  • https://investors.arcusbio.com/investors/press-releases/press-release-details/2018/Arcus-Biosciences-Presents-Phase-1-Data-for-AB928-in-Healthy-Volunteers-at-2018-AACR-Annual-Meeting/default.aspx. 2018 Jul 6
  • https://investors.arcusbio.com/investors/press-releases/press-release-details/2018/Arcus-Biosciences-and-Infinity-Pharmaceuticals-Announce-Clinical-Collaboration-to-Evaluate-Lead-Programs-in-Triple-Combination-Studies/default.aspx 2018 Jul 6
  • Lawson KV, Jin L, Jeffrey JL, et al. Discovery and characterization of AB680, a potent and selective small-molecule CD73 inhibitor for cancer immunotherapy [abstract]. In: Proceedings of the American Association of Cancer Research annual meeting 2018. Chicago, IL. Philadelphia (PA): AACR; April 14–18, 2018. Cancer Res 2018; 78 (13 Suppl): Abstract nr 1756.
  • Fons P, Bell A, Esquerre M, et al. Identification of a novel non-brain penetrant A2AR inhibitor and proof-of-concept of CD73 and A2AR/CD73 small-molecule inhibitors for cancer immunotherapy [abstract]. In: Proceedings of the American Association of Cancer Research annual meeting 2018. Chicago, IL. Philadelphia (PA): AACR; 2018 April 14–18. Cancer Res 2018;78(13 Suppl): Abstract nr 3768.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.