474
Views
31
CrossRef citations to date
0
Altmetric
Review

Developments with 3D bioprinting for novel drug discovery

, , , , &
Pages 1115-1129 | Received 30 Jul 2018, Accepted 26 Oct 2018, Published online: 01 Nov 2018

References

  • DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ. 2016 May;47:20–33. PubMed PMID: 26928437.
  • Kannt A, Wieland T. Managing risks in drug discovery: reproducibility of published findings. Naunyn Schmiedebergs Arch Pharmacol. 2016 Apr;389(4):353–360. 10.1007/s00210-016-1216-8. PubMed PMID: 26883784; PubMed Central PMCID: PMCPMC4785199.
  • Michelini E, Cevenini L, Mezzanotte L, et al. Cell-based assays: fuelling drug discovery. Anal Bioanal Chem. 2010 Sep;398(1):227–238. PubMed PMID: 20623273.
  • Hughes JP, Rees S, Kalindjian SB, et al. Principles of early drug discovery. Br J Pharmacol. 2011 Mar;162(6):1239–1249. PubMed PMID: 21091654; PubMed Central PMCID: PMCPMC3058157.
  • Gintant GA, George CH. Introduction to biological complexity as a missing link in drug discovery. Expert Opin Drug Discov. 2018 Jun 6:1–11 PubMed PMID: 29871539. DOI:10.1080/17460441.2018.1480608.
  • L Berg E, Hsu YC, Lee JA. Consideration of the cellular microenvironment: physiologically relevant co-culture systems in drug discovery. Adv Drug Deliv Rev. 2014 Apr;69-70:190–204. PubMed PMID: 24524933.
  • Duval K, Grover H, Han LH, et al. Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology (Bethesda). 2017 Jul;32(4):266–277. PubMed PMID: 28615311; PubMed Central PMCID: PMCPMC5545611.
  • Fang Y, Eglen RM. Three-dimensional cell cultures in drug discovery and development. SLAS Discov. 2017 Jun;22(5):456–472. . PubMed PMID: 28520521; PubMed Central PMCID: PMCPMC5448717.
  • Kimlin L, Kassis J, Virador V. 3D in vitro tissue models and their potential for drug screening. Expert Opin Drug Discov. 2013 Dec;8(12):1455–1466. PubMed PMID: 24144315.
  • Edmondson R, Broglie JJ, Adcock AF, et al. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol. 2014;12(4):207–218.
  • Baker BM, Chen CS. Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues. Journal of Cell Science. 2012;125(13):3015–3024.
  • Bonnier F, Keating ME, Wróbel TP, et al. Cell viability assessment using the Alamar blue assay: a comparison of 2D and 3D cell culture models. Toxicology in Vitro. 2015;29(1):124–131.
  • Barui A, Chowdhury F, Pandit A, et al. Rerouting mesenchymal stem cell trajectory towards epithelial lineage by engineering cellular niche. Biomaterials. 2018 Feb;156:28–44. PubMed PMID: 29190496.
  • Deli Maria A, Hongisto V, Jernström S, et al. High-throughput 3D screening reveals differences in drug sensitivities between culture models of jimt1 breast cancer cells. PLoS ONE. 2013;8:10.
  • Karlsson H, Fryknas M, Larsson R, et al. Loss of cancer drug activity in colon cancer HCT-116 cells during spheroid formation in a new 3-D spheroid cell culture system. Exp Cell Res. 2012 Aug 1;318(13):1577–1585. PubMed PMID: 22487097.
  • Laschke MW, Giebels C, Menger MD. Vasculogenesis: a new piece of the endometriosis puzzle. Hum Reprod Update. 2011 Sep-Oct:17(5): 628–636. PubMed PMID: 21586449.
  • Stampella A, Papi A, Rizzitelli G, et al. Synthesis and characterization of a novel poly(vinyl alcohol) 3D platform for the evaluation of hepatocytes’ response to drug administration. J Mater Chem B. 2013;1:24.
  • Pickl M, Ries CH. Comparison of 3D and 2D tumor models reveals enhanced HER2 activation in 3D associated with an increased response to trastuzumab. Oncogene. 2009 Jan 22;28(3):461–468. . PubMed PMID: 18978815.
  • Riedl A, Schlederer M, Pudelko K, et al. Comparison of cancer cells in 2D vs 3D culture reveals differences in AKT–mTOR–S6K signaling and drug responses. Journal of Cell Science. 2017;130(1):203–218.
  • He J, Xiong L, Li Q, et al. 3D modeling of cancer stem cell niche. Oncotarget. 2018 Jan 2;9(1):1326–1345. PubMed PMID: 29416698; PubMed Central PMCID: PMCPMC5787442.
  • Peng W, Unutmaz D, Ozbolat IT. Bioprinting towards physiologically relevant tissue models for pharmaceutics. Trends Biotechnol. 2016 Sep;34(9):722–732. . PubMed PMID: 27296078
  • Rezaei Kolahchi A, Khadem Mohtaram N, Pezeshgi Modarres H, et al. Microfluidic-based multi-organ platforms for drug discovery. Micromachines. 2016;7:9.
  • You C, Piehler J. Functional protein micropatterning for drug design and discovery. Expert Opin Drug Discov. 2015;11(1):105–119.
  • Peng W, Datta P, Wu Y, et al. Challenges in bio-fabrication of organoid cultures. Adv Exp Med Biol. 2018 Jun 1 PubMed PMID: 29855825. DOI:10.1007/5584_2018_216.
  • Frey O, Misun PM, Fluri DA, et al. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis. Nat Commun. 2014 Jun 30;5:4250. PubMed PMID: 24977495.
  • Vadivelu R, Kamble H, Shiddiky M, et al. Microfluidic technology for the generation of cell spheroids and their applications. Micromachines. 2017;8:4.
  • Manley P, Lelkes PI. A novel real-time system to monitor cell aggregation and trajectories in rotating wall vessel bioreactors. Journal of Biotechnology. 2006;125(3):416–424.
  • Souza GR, Molina JR, Raphael RM, et al. Three-dimensional tissue culture based on magnetic cell levitation. Nat Nanotechnol. 2010 Apr;5(4):291–296. PubMed PMID: 20228788; PubMed Central PMCID: PMCPMC4487889.
  • Gupta N, Liu JR, Patel B, et al. Microfluidics-based 3D cell culture models: utility in novel drug discovery and delivery research. Bioeng Transl Med. 2016 Mar;1(1):63–81. PubMed PMID: 29313007; PubMed Central PMCID: PMCPMC5689508.
  • Langhans SA. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front Pharmacol. 2018;9:6. PubMed PMID: 29410625; PubMed Central PMCID: PMCPMC5787088.
  • Liaw CY, Ji S, Guvendiren M. Engineering 3D hydrogels for personalized in vitro human tissue models. Adv Healthc Mater. 2018 Feb;7(4). PubMed PMID: 29345429. doi:10.1002/adhm.201701165
  • Ozbolat IT, Peng W, Ozbolat V. Application areas of 3D bioprinting. Drug Discov Today. 2016 Aug;21(8):1257–1271. PubMed PMID: 27086009.
  • Peng W, Datta P, Ayan B, et al. 3D bioprinting for drug discovery and development in pharmaceutics. Acta Biomater. 2017 Jul 15;57:26–46. PubMed PMID: 28501712.
  • Ozbolat IT, Yin Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng. 2013;60(3):691–699.
  • Dixit CK, Kadimisetty K, Rusling J. 3D-printed miniaturized fluidic tools in chemistry and biology. TrAC Trends Anal Chem. 2018;106:37–52.
  • Datta P, Barui A, Wu Y, et al. Essential steps in bioprinting: from pre- to post-bioprinting. Biotechnol Adv. 2018 Sep - Oct 36(5):1481–1504. PubMed PMID: 29909085
  • Haisler WL, Timm DM, Gage JA, et al. Three-dimensional cell culturing by magnetic levitation. Nat Protoc. 2013 Oct;8(10):1940–1949. PubMed PMID: 24030442.
  • Trenfield SJ, Awad A, Goyanes A, et al. 3D printing pharmaceuticals: drug development to frontline care. Trends Pharmacol Sci. 2018 May;39(5):440–451. PubMed PMID: 29534837.
  • Awad A, Trenfield SJ, Goyanes A, et al. Reshaping drug development using 3D printing. Drug Discov Today. 2018 Aug;23(8):1547–1555. PubMed PMID: 29803932.
  • Pedde RD, Mirani B, Navaei A, et al. Emerging biofabrication strategies for engineering complex tissue constructs. Adv Mater. 2017 May;29(19). PubMed PMID: 28370405. doi:10.1002/adma.201606061.
  • Memic A, Navaei A, Mirani B, et al. Bioprinting technologies for disease modeling. Biotechnol Lett. 2017 Sep;39(9):1279–1290. 10.1007/s10529-017-2360-z. PubMed PMID: 28550360.
  • Hospodiuk M, Dey M, Sosnoski D, et al. The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv. 2017 Mar - Apr 35(2):217–239. PubMed PMID: 28057483
  • Ferris CJ, Gilmore KJ, Beirne S, et al. Bio-ink for on-demand printing of living cells. Biomater Sci. 2013;1(2):224–230.
  • Lee K, Kim C, Young Yang J, et al. Gravity-oriented microfluidic device for uniform and massive cell spheroid formation. Biomicrofluidics. 2012;6:1.
  • Kucukgul C, Ozler SB, Inci I, et al. 3D bioprinting of biomimetic aortic vascular constructs with self-supporting cells. Biotechnol Bioeng. 2015 Apr;112(4):811–821. PubMed PMID: 25384685.
  • Leberfinger AN, Ravnic DJ, Dhawan A, et al. Concise review: bioprinting of stem cells for transplantable tissue fabrication. Stem Cells Transl Med. 2017;6(10):1940–1948.
  • Ozbolat IT. Scaffold-based or scaffold-free bioprinting: competing or complementing approaches? J Nanotechnol Eng Med. 2015;6(2). DOI:10.1115/1.4030414
  • Hongbo Z, Ke Y, Gongcheng L, et al. 3D bioprinting of multi-biomaterial/crosslinked bioink for skin tissue engineering. Front Bioeng Biotechnol. 2016;4. DOI:10.3389/conf.FBIOE.2016.01.02354.
  • Ouyang L, Highley CB, Rodell CB, et al. 3D printing of shear-thinning hyaluronic acid hydrogels with secondary cross-linking. ACS Biomater Sci Eng. 2016;2(10):1743–1751.
  • Ozbolat IT. 3D bioprinting: Fundamentals, principles and applications. 2016.
  • Cytoscribing: KR. A method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Exp Cell Res. 1988;179(2):362–373.
  • Gudapati H, Dey M, Ozbolat I. A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials. 2016 Sep;102:20–42. PubMed PMID: 27318933.
  • Graham AD, Olof SN, Burke MJ, et al. High-resolution patterned cellular constructs by droplet-based 3D printing. Sci Rep. 2017 Aug 1;7(1):7004. 10.1038/s41598-017-06358-x. PubMed PMID: 28765636; PubMed Central PMCID: PMCPMC5539110.
  • Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016 Jan;76:321–343. PubMed PMID: 26561931.
  • Schiele NR, Corr DT, Huang Y, et al. Laser-based direct-write techniques for cell printing. Biofabrication. 2010 Sep;2(3):032001. PubMed PMID: 20814088; PubMed Central PMCID: PMCPMC4887083.
  • Hospodiuk M, Dey M, Sosnoski D, et al. The bioink: a comprehensive review on bioprintable materials. Biotechnology Advances. 2017;35(2):217–239.
  • Colosi C, Costantini M, Barbetta A, et al. Microfluidic bioprinting of heterogeneous 3D tissue constructs. Methods Mol Biol. 2017;1612:369–380. PubMed PMID: 28634956.
  • Miri AK, Nieto D, Iglesias L, et al. Microfluidics-enabled multimaterial maskless stereolithographic bioprinting. Adv Mater. 2018 Jul;30(27):e1800242. PubMed PMID: 29737048; PubMed Central PMCID: PMCPMC6133710.
  • Rocca M, Fragasso A, Liu W, et al. Embedded multimaterial extrusion bioprinting. SLAS Technol. 2018 Apr;23(2):154–163. PubMed PMID: 29132232; PubMed Central PMCID: PMCPMC5906133.
  • De Moor L, Merovci I, Baetens S, et al. High-throughput fabrication of vascularized spheroids for bioprinting. Biofabrication. 2018 Jun 12;10(3):035009. PubMed PMID: 29798932.
  • Ling K, Huang G, Liu J, et al. Bioprinting-based high-throughput fabrication of three-dimensional mcf-7 human breast cancer cellular spheroids. Engineering. 2015;1(2): 269–274. .
  • Mordwinkin NM, Lee AS, Wu JC. Patient-specific stem cells and cardiovascular drug discovery. JAMA. 2013 Nov 20;310(19):2039–2040. PubMed PMID: 24240927; PubMed Central PMCID: PMCPMC4033311.
  • Ma X, Liu J, Zhu W, et al. 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Adv Drug Deliv Rev. 2018 Jun 21. PubMed PMID: 29935988. DOI:10.1016/j.addr.2018.06.011.
  • Dai X, Ma C, Lan Q, et al. 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility. Biofabrication. 2016 Oct 11;8(4):045005. PubMed PMID: 27725343.
  • Hribar KC, Finlay D, Ma X, et al. Nonlinear 3D projection printing of concave hydrogel microstructures for long-term multicellular spheroid and embryoid body culture. Lab Chip. 2015 Jun 7;15(11):2412–2418. PubMed PMID: 25900329; PubMed Central PMCID: PMCPMC4439309.
  • Xu F, Celli J, Rizvi I, et al. A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol J. 2011 Feb;6(2):204–212. PubMed PMID: 21298805; PubMed Central PMCID: PMCPMC3780785.
  • King SM, Vg S, Presnell C, et al. Development of 3D bioprinted human breast cancer for in vitro screening of therapeutics targeted against cancer progression.
  • Zhao Y, Yao R, Ouyang L, et al. Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication. 2014 Sep;6(3):035001. PubMed PMID: 24722236.
  • Zhou X, Zhu W, Nowicki M, et al. 3D bioprinting a cell-laden bone matrix for breast cancer metastasis study. ACS Appl Mater Interfaces. 2016 Nov 9;8(44):30017–30026. PubMed PMID: 27766838.
  • Bakhtiar SM, Butt HA, Zeb S, et al. 3D printing technologies and their applications in biomedical science. Omics Technologies and Bio-Engineering. D. Barh, V. Azevedo (Eds). Academic Press. 2018;1:167–189.
  • Min D, Lee W, Bae IH, et al. Bioprinting of biomimetic skin containing melanocytes. Exp Dermatol. 2018 May;27(5):453–459. PubMed PMID: 28453913.
  • Lee V, Singh G, Trasatti JP, et al. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods. 2014 Jun;20(6):473–484. PubMed PMID: 24188635; PubMed Central PMCID: PMCPMC4024844.
  • Koch L, Deiwick A, Schlie S, et al. Skin tissue generation by laser cell printing. Biotechnol Bioeng. 2012 Jul;109(7):1855–1863. PubMed PMID: 22328297.
  • Rimann M, Bono E, Annaheim H, et al. Standardized 3D bioprinting of soft tissue models with human primary cells. J Lab Autom. 2016 Aug;21(4):496–509. PubMed PMID: 25609254.
  • Chahal D, Ahmadi A, Cheung KC. Improving piezoelectric cell printing accuracy and reliability through neutral buoyancy of suspensions. Biotechnol Bioeng. 2012 Nov;109(11):2932–2940. . PubMed PMID: 22627805.
  • Kim BS, Lee JS, Gao G, et al. Direct 3D cell-printing of human skin with functional transwell system. Biofabrication. 2017 Jun 6;9(2):025034. PubMed PMID: 28586316.
  • Tseng H, Gage JA, Shen T, et al. A spheroid toxicity assay using magnetic 3D bioprinting and real-time mobile device-based imaging. Sci Rep. 2015 Sep 14;5:13987. PubMed PMID: 26365200; PubMed Central PMCID: PMCPMC4568483.
  • Reichl S. Human corneal equivalent as cell culture model for in vitro drug permeation studies. Br J Ophthalmol. 2004;88(4):560–565.
  • Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9:4. PubMed PMID: 25866560; PubMed Central PMCID: PMCPMC4392469.
  • Isaacson A, Swioklo S, Connon CJ. 3D bioprinting of a corneal stroma equivalent. Exp Eye Res. 2018 Aug;173:188–193. PubMed PMID: 29772228.
  • Madden LR, Nguyen TV, Garcia-Mojica S, et al. Bioprinted 3d primary human intestinal tissues model aspects of native physiology and adme/tox functions. iScience. 2018;2:156–167.
  • Datta P, Ayan B, Ozbolat IT. Bioprinting for vascular and vascularized tissue biofabrication. Acta Biomater. 2017 Mar 15;51:1–20.
  • Ma J, Wang Y, Liu J. Bioprinting of 3D tissues/organs combined with microfluidics. RSC Advances. 2018;8(39):21712–21727.
  • Ji S, Guvendiren M. Recent advances in bioink design for 3d bioprinting of tissues and organs. Front Bioeng Biotechnol. 2017;5:23. PubMed PMID: 28424770; PubMed Central PMCID: PMCPMC5380738. .
  • Hong S, Lee JY, Hwang C, et al. Inhibition of rho-associated protein kinase increases the angiogenic potential of mesenchymal stem cell aggregates via paracrine effects. Tissue Eng Part A. 2016 Feb;22(3–4):233–243. PubMed PMID: 26592750.
  • Hong S, Sj S, Lee JY, et al. Cellular behavior in micropatterned hydrogels by bioprinting system depended on the cell types and cellular interaction. J Biosci Bioeng. 2013 Aug;116(2):224–230. PubMed PMID: 23562089.
  • Mozetic P, Giannitelli SM, Gori M, et al. Engineering muscle cell alignment through 3D bioprinting. J Biomed Mater Res A. 2017 Sep;105(9):2582–2588. PubMed PMID: 28544472.
  • Choi YJ, Kim TG, Jeong J, et al. 3D cell printing of functional skeletal muscle constructs using skeletal muscle-derived bioink. Adv Healthc Mater. 2016 Oct;5(20):2636–2645. PubMed PMID: 27529631.
  • Agrawal G, Aung A, Varghese S. Skeletal muscle-on-a-chip: an in vitro model to evaluate tissue formation and injury. Lab Chip. 2017 Oct 11;17(20):3447–3461. PubMed PMID: 28871305.
  • Forte JM, Fidanza AM, Page RL Development of a cell self-assembled 3-dimensional in vitro skeletal muscle tissue model. 40th Annual Northeast Bioengineering Conference (NEBEC). Boston, Massachusetts, USA. 2014; 2014. p. 1–2.
  • Gholobova D, Gerard M, Decroix L, et al. Human tissue-engineered skeletal muscle: a novel 3D in vitro model for drug disposition and toxicity after intramuscular injection. Sci Rep. 2018 Aug 15;8(1):12206. 10.1038/s41598-018-30123-3. PubMed PMID: 30111779; PubMed Central PMCID: PMCPMC6093918.
  • Cornelissen D-J, Faulkner-Jones A, Shu W. Current developments in 3D bioprinting for tissue engineering. Curr Opin Biomed Eng. 2017;2:76–82.
  • Wang Z, Lee SJ, Cheng HJ, et al. 3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomater. 2018 Apr 1:70:48–56. PubMed PMID: 29452273; PubMed Central PMCID: PMCPMC6022829.
  • Choi Y-H, Stamm C, Hammer PE, et al. Cardiac conduction through engineered tissue. Am J Pathol. 2006;169(1):72–85.
  • Zhou XL, Liu JC. Role of notch signaling in the mammalian heart. Braz J Med Biol Res. 2013;47(1):1–10.
  • Zhang YS, Arneri A, Bersini S, et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials. 2016 Dec;110:45–59. PubMed PMID: 27710832; PubMed Central PMCID: PMCPMC5198581.
  • Kizawa H, Nagao E, Shimamura M, et al. Scaffold-free 3D bio-printed human liver tissue stably maintains metabolic functions useful for drug discovery. Biochem Biophys Rep. 2017 Jul;10:186–191. PubMed PMID: 28955746; PubMed Central PMCID: PMCPMC5614670.
  • March S, Graupera M, Rosa Sarrias M, et al. Identification and functional characterization of the hepatic stellate cell cd38 cell surface molecule. Am J Pathol. 2007;170(1):176–187.
  • Nguyen DG, Funk J, Robbins JB, et al. Bioprinted 3d primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro. PLoS One . 2016;11(7):e0158674. PubMed PMID: 27387377; PubMed Central PMCID: PMCPMC4936711. .
  • Underhill GH, Khetani SR. Bioengineered liver models for drug testing and cell differentiation studies.. Cell Mol Gastroenterol Hepatology.. 2018;5(3):426–439.e1.
  • Jeon H, Kang K, Park SA, et al. Generation of multilayered 3d structures of hepg2 cells using a bio-printing technique. Gut Liver. 2017 Jan 15;11(1):121–128. PubMed PMID: 27559001; PubMed Central PMCID: PMCPMC5221869.
  • Massa S, Ma S, Seo J, et al. Bioprinted 3D vascularized tissue model for drug toxicity analysis. Biomicrofluidics. 2017 Jul;11(4):044109. PubMed PMID: 28852429; PubMed Central PMCID: PMCPMC5552405.
  • Bertassoni LE, Cardoso JC, Manoharan V, et al. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication. 2014;6:2.
  • Ma X, Qu X, Zhu W, et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2206–2211. PubMed PMID: 26858399; PubMed Central PMCID: PMCPMC4776497.
  • Chang R, Emami K, Wu H, et al. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication. 2010 Dec;2(4):045004. PubMed PMID: 21079286.
  • Snyder JE, Hamid Q, Wang C, et al. Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip. Biofabrication. 2011 Sep;3(3):034112. PubMed PMID: 21881168.
  • Huh D, Matthews BD, Mammoto A, et al. Reconstituting organ-level lung functions on a chip. Science. 2010 Jun 25;328(5986):1662–1668. PubMed PMID: 20576885.
  • Horvath L, Umehara Y, Jud C, et al. Engineering an in vitro air-blood barrier by 3D bioprinting. Sci Rep. 2015 Jan 22;5:7974. PubMed PMID: 25609567; PubMed Central PMCID: PMCPMC4303938.
  • Harrison RK. Phase II and phase III failures: 2013–2015. Nat Rev Drug Discov. 2016;15(12):817–818.
  • Homan KA, Kolesky DB, Skylar-Scott MA, et al. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci Rep. 2016 Oct 11;6:34845. PubMed PMID: 27725720; PubMed Central PMCID: PMCPMC5057112 applications WO2015069619 and 62157239, which are based, in part, on the research reported herein. A.M. works for Roche Pharmaceutical Sciences, who provided partial funding for this work. The other authors declare that they have no competing interests.
  • King SM, Higgins JW, Nino CR, et al. 3D proximal tubule tissues recapitulate key aspects of renal physiology to enable nephrotoxicity testing. Front Physiol. 2017;8:123. PubMed PMID: 28337147; PubMed Central PMCID: PMCPMC5340751.
  • Ahamed MJ, Gubarenko SI, Ben-Mrad R, et al. A piezoactuated droplet-dispensing microfluidic chip. J Microelectromechanical Syst. 2010;19(1):110–119.
  • Rodriguez-Devora JI, Zhang B, Reyna D, et al. High throughput miniature drug-screening platform using bioprinting technology. Biofabrication. 2012 Sep;4(3):035001. PubMed PMID: 22728820.
  • Misun PM, Rothe J, Schmid YRF, et al. Multi-analyte biosensor interface for real-time monitoring of 3D microtissue spheroids in hanging-drop networks. Microsystems & Nanoengineering. 2016;2:1.
  • Zanoni M, Piccinini F, Arienti C, et al. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep. 2016 Jan 11;6:19103. PubMed PMID: 26752500; PubMed Central PMCID: PMCPMC4707510.
  • Cui X, Dean D, Ruggeri ZM, et al. Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnol Bioeng. 2010;106(6):963–969.
  • Cui X, Gao G, Qiu Y. Accelerated myotube formation using bioprinting technology for biosensor applications. Biotechnol Lett. 2013 Mar;35(3):315–321. . PubMed PMID: 23160742.
  • Srinivasan B, Kolli AR, Esch MB, et al. TEER measurement techniques for in vitro barrier model systems. J Lab Autom. 2015 Apr;20(2):107–126. PubMed PMID: 25586998; PubMed Central PMCID: PMCPMC4652793.
  • Zhang Q, Sito L, Mao M, et al. Current advances in skin-on-a-chip models for drug testing. Microphysiological Systems. 2018;2:4.
  • Briggs K, Barber C, Cases M, et al. Value of shared preclinical safety studies - The eTOX database. Toxicol Rep. 2015;2:210–221. PubMed PMID: 28962354; PubMed Central PMCID: PMCPMC5598263.
  • Chen B, Aj B. Leveraging big data to transform target selection and drug discovery. Clin Pharmacol Ther. 2016 Mar;99(3):285–297. . PubMed PMID: 26659699; PubMed Central PMCID: PMCPMC4785018.
  • Geerts H, Dacks PA, Devanarayan V, et al. Big data to smart data in Alzheimer’s disease: the brain health modeling initiative to foster actionable knowledge. Alzheimers Dement. 2016 Sep;12(9):1014–1021. PubMed PMID: 27238630.
  • Griffen EJ, Dossetter AG, Leach AG, et al. Can we accelerate medicinal chemistry by augmenting the chemist with Big Data and artificial intelligence? Drug Discov Today. 2018 Mar 22 PubMed PMID: 29577971. DOI:10.1016/j.drudis.2018.03.011.
  • Sun Y, Liu Y, Li S, et al. Novel compound-forming technology using bioprinting and electrospinning for patterning a 3D scaffold construct with multiscale channels. Micromachines. 2016;7:12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.