461
Views
30
CrossRef citations to date
0
Altmetric
Review

Inkjet dispensing technologies: recent advances for novel drug discovery

, &
Pages 101-113 | Received 04 Sep 2018, Accepted 18 Dec 2018, Published online: 24 Jan 2019

References

  • Chameettachal S, Pati F. Inkjet-based 3D bioprinting. In: Khademhosseini A, Camci-Unal G, editors. 3D Bioprinting in regenerative engineering: principles and applications. CRC Press; 2018. p. 99–113.
  • Campbell PG, Miller ED, Fisher GW, et al. Engineered spatial patterns of FGF-2 immobilized on fibrin direct cell organization. Biomaterials. 2005;26(33):6762–6770.
  • Phillippi JA, Miller E, Weiss L, et al. Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle‐and bone‐like subpopulations. Stem Cells. 2008;26(1):127–134.
  • Klebe RJ. Cytoscribing: a method for micropositioning cells and the construction of two-and three-dimensional synthetic tissues. Exp Cell Res. 1988;179(2):362–373.
  • Lee VK, Dai G. Printing of three-dimensional tissue analogs for regenerative medicine. Ann Biomed Eng. 2017;45(1):115–131.
  • Hikita A, Chung U-I, Hoshi K, et al. Bone regenerative medicine in oral and maxillofacial region using a three-dimensional printer. Tissue Eng Part A. 2017;23(11–12):515–521.
  • Zohora FT, Azim AYMA. Inkjet printing: an emerging technology for 3D tissue or organ printing. Eur Sci J. 2014;10:30.
  • Nguyen DG, Pentoney JSL. Bioprinted three dimensional human tissues for toxicology and disease modeling. Drug Discov Today. 2017;23:37–44.
  • Goole J, Amighi K. 3D printing in pharmaceutics: a new tool for designing customized drug delivery systems. Int J Pharm. 2016;499(1–2):376–394.
  • Peng W, Datta P, Ayan B, et al. 3D bioprinting for drug discovery and development in pharmaceutics. Acta Biomater. 2017;57:26–46.
  • Prasad LK, Smyth H. 3D Printing technologies for drug delivery: a review. Drug Dev Ind Pharm. 2016;42(7):1019–1031.
  • Daly R, Harrington TS, Martin GD, et al. Inkjet printing for pharmaceutics–a review of research and manufacturing. Int J Pharm. 2015;494(2):554–567.
  • Le HP. Progress and trends in ink-jet printing technology. J Imaging Sci Technol. 1998;42(1):49–62.
  • Matsusaki M, Sakaue K, Kadowaki K, et al. Three‐dimensional human tissue chips fabricated by rapid and automatic inkjet cell printing. Adv Healthc Mater. 2013;2(4):534–539.
  • Inamura M, Kawabata K, Takayama K, et al. Efficient generation of hepatoblasts from human ES cells and iPS cells by transient overexpression of homeobox gene HEX. Mol Ther. 2011;19(2):400–407.
  • Zhu X, Zheng Q, Yang H, et al. Recent advances in inkjet dispensing technologies: applications in drug discovery. Expert Opin Drug Discov. 2012;7(9):761–770.
  • You M, Lin M, Wang S, et al. Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting. Nanoscale. 2016;8(19):10096–10104.
  • You M, Zhong J, Hong Y, et al. Inkjet printing of upconversion nanoparticles for anti-counterfeit applications. Nanoscale. 2015;7(10):4423–4431.
  • Park DH, Jeong W, Seo M, et al. Inkjet‐printable amphiphilic polydiacetylene precursor for hydrochromic imaging on paper. Adv Funct Mater. 2016;26(4):498–506.
  • Khan Y, Pavinatto FJ, Lin MC, et al. Inkjet‐printed flexible gold electrode arrays for bioelectronic interfaces. Adv Funct Mater. 2016;26(7):1004–1013.
  • Yakovlev AV, Milichko VA, Vinogradov VV, et al. Sol–Gel assisted inkjet hologram patterning. Adv Funct Mater. 2015;25(47):7375–7380.
  • Delannoy P-E, Riou B, Lestriez B, et al. Toward fast and cost-effective ink-jet printing of solid electrolyte for lithium microbatteries. J Power Sources. 2015;274:1085–1090.
  • Khaled SA, Burley JC, Alexander MR, et al. Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int J Pharm. 2014;461(1–2):105–111.
  • Gross BC, Erkal JL, Lockwood SY, et al. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal. Chem. 2014;86(7):3240–3253. doi: 10.1021/ac403397r
  • Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773.
  • Gomes T, Constantino C, Lopes E, et al. Thermal inkjet printing of polyaniline on paper. Thin Solid Films. 2012;520(24):7200–7204.
  • Okamoto T, Suzuki T, Yamamoto N. Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nat Biotechnol. 2000;18(4):438.
  • Goldmann T, Gonzalez JS. DNA-printing: utilization of a standard inkjet printer for the transfer of nucleic acids to solid supports. J Biochem Biophys Methods. 2000;42(3):105–110.
  • Calvert P. Inkjet printing for materials and devices. Chem Mater. 2001;13(10):3299–3305.
  • De Gans BJ, Duineveld PC, Schubert US. Inkjet printing of polymers: state of the art and future developments. Adv Mater. 2004;16(3):203–213.
  • Ballarin B, Fraleoni-Morgera A, Frascaro D, et al. Thermal inkjet microdeposition of PEDOT: PSS on ITO-coated glass and characterization of the obtained film. Synth Met. 2004;146(2):201–205.
  • Buanz AB, Saunders MH, Basit AW, et al. Preparation of personalized-dose salbutamol sulphate oral films with thermal ink-jet printing. Pharm Res. 2011;28(10):2386.
  • Meléndez PA, Kane KM, Ashvar CS, et al. Thermal inkjet application in the preparation of oral dosage forms: dispensing of prednisolone solutions and polymorphic characterization by solid-state spectroscopic techniques. J Pharm Sci. 2008;97(7):2619–2636.
  • Lee BK, Yun YH, Choi JS, et al. Fabrication of drug-loaded polymer microparticles with arbitrary geometries using a piezoelectric inkjet printing system. Int J Pharm. 2012;427(2):305–310.
  • Genina N, Janßen EM, Breitenbach A, et al. Evaluation of different substrates for inkjet printing of rasagiline mesylate. Eur J Pharm Biopharm. 2013;85(3):1075–1083.
  • Genina N, Fors D, Vakili H, et al. Tailoring controlled-release oral dosage forms by combining inkjet and flexographic printing techniques. Eur J Pharm Sci. 2012;47(3):615–623.
  • Nakamura M, Kobayashi A, Takagi F, et al. Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng. 2005;11(11–12):1658–1666.
  • Saunders RE, Gough JE, Derby B. Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials. 2008;29(2):193–203.
  • Cui X, Boland T, DD’Lima D, et al. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul. 2012;6(2):149–155.
  • Kunz-Schughart LA, Freyer JP, Hofstaedter F, et al. The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. J Biomol Screen. 2004;9(4):273–285.
  • Park T-M, Kang D, Jang I, et al. Fabrication of in vitro cancer microtissue array on fibroblast-layered nanofibrous membrane by inkjet printing. Int J Mol Sci. 2017;18(11):2348.
  • Lorber B, Hsiao W-K, Hutchings IM, et al. Adult rat retinal ganglion cells and glia can be printed by piezoelectric inkjet printing. Biofabrication. 2013;6(1):015001.
  • Planchette C, Pichler H, Wimmer-Teubenbacher M, et al. Printing medicines as orodispersible dosage forms: effect of substrate on the printed micro-structure. Int J Pharm. 2016;509(1–2):518–527.
  • Umezu S. Precision printing of gelatin utilizing electrostatic inkjet. Jpn J Appl Phys. 2014;53(5S3):05HC01.
  • Gasperini L, Maniglio D, Migliaresi C. Microencapsulation of cells in alginate through an electrohydrodynamic process. J Bioact Compat Polym. 2013;28(5):413–425.
  • Poellmann MJ, Barton KL, Mishra S, et al. Patterned hydrogel substrates for cell culture with electrohydrodynamic jet printing. Macromol Biosci. 2011;11(9):1164–1168.
  • Onses MS, Sutanto E, Ferreira PM, et al. Mechanisms, capabilities, and applications of high‐resolution electrohydrodynamic jet printing. Small. 2015;11(34):4237–4266.
  • Workman VL, Tezera LB, Elkington PT, et al. Controlled generation of microspheres incorporating extracellular matrix fibrils for three‐dimensional cell culture. Adv Funct Mater. 2014;24(18):2648–2657.
  • Gudapati H, Dey M, Ozbolat I. A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials. 2016;102:20–42.
  • Kim J, Oh H, Kim SS. Electrohydrodynamic drop-on-demand patterning in pulsed cone-jet mode at various frequencies. J Aerosol Sci. 2008;39(9):819–825.
  • Hartman R, Brunner D, Camelot D, et al. Electrohydrodynamic atomization in the cone–jet mode physical modeling of the liquid cone and jet. J Aerosol Sci. 1999;30(7):823–849.
  • Sweet RG, Fluid droplet recorder. Google Patents. 1971.
  • Li J, Rossignol F, Macdonald J. Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing. Lab Chip. 2015;15(12):2538–2558.
  • Wang C-C, Tejwani MR, Roach WJ, et al. Development of near zero-order release dosage forms using three-dimensional printing (3-DP™) technology. Drug Dev Ind Pharm. 2006;32(3):367–376.
  • Lee VK, Dias A, Ozturk MS, et al. 3D bioprinting and 3D imaging for stem cell engineering. In: Turksen K, editors. Bioprinting in regenerative medicine. Springer; 2015. 33–66.
  • Caviezel D, Narayanan C, Lakehal D. Adherence and bouncing of liquid droplets impacting on dry surfaces. Microfluid Nanofluidics. 2008;5(4):469–478.
  • Rioboo R, Tropea C, Marengo M. Outcomes from a drop impact on solid surfaces. Atomization Sprays. 2001;11:2.
  • Kuang M, Wang L, Song Y. Controllable printing droplets for high‐resolution patterns. Adv Mater. 2014;26(40):6950–6958.
  • Ko H-Y, Park J, Shin H, et al. Rapid self-assembly of monodisperse colloidal spheres in an ink-jet printed droplet. Chem Mater. 2004;16(22):4212–4215.
  • Wang J, Zheng Z, Li H, et al. Dewetting of conducting polymer inkjet droplets on patterned surfaces. Nat Mater. 2004;3(3):171.
  • Li Z, Wang J, Zhang Y, et al. Closed-air induced composite wetting on hydrophilic ordered nanoporous anodic alumina. Appl Phys Lett. 2010;97(23):233107.
  • Hendriks CE, Smith PJ, Perelaer J, et al. “Invisible” silver tracks produced by combining hot‐embossing and inkjet printing. Adv Funct Mater. 2008;18(7):1031–1038.
  • Latka A, Strandburg-Peshkin A, Driscoll MM, et al. Creation of prompt and thin-sheet splashing by varying surface roughness or increasing air pressure. Phys Rev Lett. 2012;109(5):054501.
  • Bolleddula D, Berchielli A, Aliseda A. Impact of a heterogeneous liquid droplet on a dry surface: application to the pharmaceutical industry. Adv Colloid Interface Sci. 2010;159(2):144–159.
  • Binder KW, Allen AJ, Yoo JJ, et al. Drop-on-demand inkjet bioprinting: a primer. Gene Therapy Regul. 2011;6(01):33–49.
  • Merrin J, Leibler S, Chuang JS. Printing multistrain bacterial patterns with a piezoelectric inkjet printer. PLoS One. 2007;2(7):e663.
  • Hoch E, Hirth T, Tovar GE, et al. Chemical tailoring of gelatin to adjust its chemical and physical properties for functional bioprinting. J Mat Chem B. 2013;1(41):5675–5685.
  • Munaz A, Vadivelu RK, John JS, et al. Three-dimensional printing of biological matters. J Sci. 2016;1(1):1–17.
  • Pereira RF, Bártolo PJ. 3D bioprinting of photocrosslinkable hydrogel constructs. J Appl Polym Sci. 2015;132:48.
  • Inzana JA, Olvera D, Fuller SM, et al. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials. 2014;35(13):4026–4034.
  • Selimović Š, Oh J, Bae H, et al. Microscale strategies for generating cell-encapsulating hydrogels. Polymers. 2012;4(3):1554–1579.
  • Murphy SV, Skardal A, Atala A. Evaluation of hydrogels for bio‐printing applications. J Biomed Mater Res A. 2013;101(1):272–284.
  • Khalil S, Sun W. Biopolymer deposition for freeform fabrication of hydrogel tissue constructs. Mater Sci Eng C. 2007;27(3):469–478.
  • Hennink WE, van Nostrum CF. Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev. 2012;64:223–236.
  • Teichler A, Perelaer J, Schubert US. Inkjet printing of organic electronics–comparison of deposition techniques and state-of-the-art developments. J Mater Chem C. 2013;1(10):1910–1925.
  • Oh Y, Kim J, Yoon YJ, et al. Inkjet printing of Al2O3 dots, lines, and films: from uniform dots to uniform films. Curr Appl Phys. 2011;11(3):S359–S363.
  • Kajiya T, Kobayashi W, Okuzono T, et al. Controlling profiles of polymer dots by switching between evaporation and condensation. Langmuir. 2010;26(13):10429–10432.
  • Park JS, Kim JP, Song C, et al. Control of inkjet printed profiles by solvent-vapor annealing. Displays. 2010;31(3):164–167.
  • Tekin E, de Gans B-J, Schubert US. Ink-jet printing of polymers–from single dots to thin film libraries. J Mater Chem. 2004;14(17):2627–2632.
  • Hu H, Larson RG. Marangoni effect reverses coffee-ring depositions. J Phys Chem A. 2006;110(14):7090–7094.
  • Zhou JX, Fuh JY, Loh HT, et al. Characterization of drop-on-demand microdroplet printing. Int J Adv Manuf Technol. 2010;48(1–4):243–250.
  • Lim JA, Lee WH, Lee HS, et al. Self‐organization of ink‐jet‐printed triisopropylsilylethynyl pentacene via evaporation‐induced flows in a drying droplet. Adv Funct Mater. 2008;18(2):229–234.
  • Xu T, Jin J, Gregory C, et al. Inkjet printing of viable mammalian cells. Biomaterials. 2005;26(1):93–99.
  • Skardal A, Zhang J, Prestwich GD. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials. 2010;31(24):6173–6181.
  • Saunders RE, Derby B. Inkjet printing biomaterials for tissue engineering: bioprinting. Int Mater Rev. 2014;59(8):430–448.
  • Rodríguez-Dévora JI, Zhang B, Reyna D, et al. High throughput miniature drug-screening platform using bioprinting technology. Biofabrication. 2012;4(3):035001.
  • Compaan AM, Christensen K, Huang Y. Inkjet bioprinting of 3D silk fibroin cellular constructs using sacrificial alginate. ACS Biomater Sci Eng. 2016;3(8):1519–1526.
  • Shu X, Zhu K. A novel approach to prepare tripolyphosphate/chitosan complex beads for controlled release drug delivery. Int J Pharm. 2000;201(1):51–58.
  • Wickström H, Hilgert E, Nyman JO, et al. Inkjet printing of drug-loaded mesoporous silica nanoparticles—a platform for drug development. Molecules. 2017;22(11):2020.
  • Choi M, Hwang J, Choi J, et al. Multicomponent high-throughput drug screening via inkjet printing to verify the effect of immunosuppressive drugs on immune T Lymphocytes. Sci Rep. 2017;7(1):6318.
  • Sandler N, Määttänen A, Ihalainen P, et al. Inkjet printing of drug substances and use of porous substrates‐towards individualized dosing. J Pharm Sci. 2011;100(8):3386–3395.
  • Acosta-Vélez GF, Zhu TZ, Linsley CS, et al. Photocurable poly (ethylene glycol) as a bioink for the inkjet 3D pharming of hydrophobic drugs. Int J Pharm. 2018;546(1–2):145–153.
  • Faulkner-Jones A, Fyfe C, Cornelissen D-J, et al. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication. 2015;7(4):044102.
  • Xu T, Zhao W, Zhu J-M, et al. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials. 2013;34(1):130–139.
  • Xu T, Binder KW, Albanna MZ, et al. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication. 2012;5(1):015001.
  • Skardal A, Mack D, Kapetanovic E, et al. Bioprinted amniotic fluid‐derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med. 2012;1(11):792–802.
  • Cui X, Breitenkamp K, Finn M, et al. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A. 2012;18(11–12):1304–1312.
  • Gao G, Yonezawa T, Hubbell K, et al. Inkjet‐bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnol J. 2015;10(10):1568–1577.
  • Khanarian NT, Jiang J, Wan LQ, et al. A hydrogel-mineral composite scaffold for osteochondral interface tissue engineering. Tissue Eng Part A. 2011;18(5–6):533–545.
  • Peng W, Unutmaz D, Ozbolat IT. Bioprinting towards physiologically relevant tissue models for pharmaceutics. Trends Biotechnol. 2016;34(9):722–732.
  • Billiet T, Gevaert E, De Schryver T, et al. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials. 2014;35(1):49–62.
  • Skardal A, Atala A. Biomaterials for integration with 3-D bioprinting. Ann Biomed Eng. 2015;43(3):730–746.
  • Scoutaris N, Hook AL, Gellert PR, et al. ToF-SIMS analysis of chemical heterogeneities in inkjet micro-array printed drug/polymer formulations. J Mater Sci. 2012;23(2):385–391.
  • Acosta-Vélez GF, Linsley CS, Craig MC, et al. Photocurable bioink for the inkjet 3D pharming of hydrophilic drugs. Bioengineering. 2017;4(1):11.
  • Di Prima M. Technical considerations for additive manufactured medical devices. Fed Regist. 2017 December 5;82(Issue 232), Silver Spring, MD.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.