511
Views
27
CrossRef citations to date
0
Altmetric
Review

Carbohydrate–protein interactions and multivalency: implications for the inhibition of influenza A virus infections

&
Pages 387-395 | Received 29 Nov 2018, Accepted 21 Jan 2019, Published online: 05 Feb 2019

References

  • Wittmann V, Pieters RJ. Bridging lectin binding sites by multivalent carbohydrates. Chem Soc Rev. 2013;42:4492–4503.
  • Lee YC. Biochemistry of carbohydrate-proteuin interactions. FASEB J. 1992;13:3193–3200.
  • Lee YC, Lee RT. Carbohydrate-protein interactions: basis of glycobiology. Acc Chem Res. 1995;28:321–327.
  • Webster R, Bean W, Gorman O, et al. Evolution and ecology of influenza A viruses. Microbiol Rev. 1992;56:152–179.
  • Mammen M, Choi SK, Whitesides GM. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed Engl. 1998;37:2755–2794.
  • Gestwicki JE, Cairo CW, Strong LE, et al. Influencing receptor-ligand binding mechanisms with multivalent ligand architecture. J Am Chem Soc. 2002;124:14922–14933.
  • Kiessling LL, Gestwicki JE, Strong LE. Synthetic multivalent ligands as probes of signal transduction. Angew Chem Int Ed Engl. 2006;45:2348–2368.
  • Jencks WP. On the attribution and additivity of binding energies. Proc Natl Acad Sci. 1981;78:4046–4050.
  • Pieters RJ. Toward multivalent carbohydrate drugs. Drug Discov Today Technol. 2009;6:e27–31.
  • Banerjee AL, Eiler D, Roy BC, et al. Spacer-based selectivity in the binding of ‘two-prong’ ligands to recombinant human carbonic anhydrase I. Biochemistry. 2005;44:3211–3224.
  • Bertozzi CR, Kiessling LL. Chemical glycobiology. Science. 2001;291:2357–2364.
  • De Schutter K, Van Damme EJM. Protein-carbohydrate interactions as part of plant defense and animal immunity. Molecules. 2015;20:9029–9053.
  • Holgersson J, Gustafsson A, Breimer ME. Characteristics of protein-carbohydrate interactions as a basis for developing novel carbohydrate-based antirejection therapies. Immunol Cell Biol. 2005;83:694–708.
  • Grishin AV, Krivozubov MS, Karyagina AS, et al. Pseudomonas aeruginosa lectins as targets for novel antibacterials. Acta Naturae. 2015;7:51–63.
  • Kadam RU, Bergmann M, Hurley M, et al. A glycopeptide dendrimer inhibitor of the galactose-specific lectin LecA and of Pseudomonas aeruginosa biofilms. Angew Chem Int Ed Eng. 2011;50:10631–10635.
  • Cecioni S, Lalor R, Blanchard B, et al. Achieving high affinity towards a bacterial lectin through multivalent topological isomers of calix[4]arene glycoconjugates. Chem Eur J. 2009;15:13232–13240.
  • Soomro ZH, Cecioni S, Blanchard H, et al. CuAAC synthesis of resorcin[4]arene-based glycoclusters as multivalent ligands of lectins. Org Biomol Chem. 2011;9:6587–6597.
  • Cecioni S, Oerthel V, Iehl J, et al. Synthesis of dodecavalent fullerene-based glycoclusters and evaluation of their binding properties towards a bacterial lectin. Chem Eur J. 2011;17:3252–3261.
  • Gening ML, Titov DV, Cecioni S, et al. Synthesis of multivalent carbohydrate-centered glycoclusters as nanomolar ligands of the bacterial lectin LecA from Pseudomonas aeruginosa. Chem Eur J. 2013;19:9272–9285.
  • Pertici F, Pieters RJ. Potent divalent inhibitors with rigid glucose click spacers for Pseudomonas aeruginosa lectin LecA. Chem Commun. 2012;48:4008–4010.
  • Pertici F, De Mol NJ, Kemmink J, et al. Optimizing divalent inhibitors of Pseudomonas aeruginosa lectin LecA by using a rigid spacer. Chem Eur J. 2013;19:16923–16927.
  • Visini R, Jin X, Bergmann M, et al. Structural insight into multivalent galactoside binding to Pseudomonas aeruginosa lectin LecA. ACS Chem Biol. 2015;2455–2462.
  • Heggelund JE, Mackenzie A, Martinsen T, et al. Towards new cholera prophylactics and treatment: crystal structures of bacterial enterotoxins in complex with GM1 mimics. Sci Rep. 2017;7:1–11.
  • Fan E, Merritt EA, Verlinde CLMJ, et al. AB 5 toxins : structures and inhibitor design. Curr Opin Struct Biol. 2000;10:680–686.
  • Merritt EA, Zhang Z, et al. Characterization and crystal structure of a high-affinity pentavalent receptor-binding inhibitor for cholera toxin and E coli heat-labile enterotoxin. J Am Chem Soc. 2002;124:8818–8824.
  • Garcia-Hartjes J, Bernardi S, Weijers CAGM, et al. Picomolar inhibition of cholera toxin by a pentavalent ganglioside GM1os-calix[5]arene. Org Biomol Chem. 2013;11:4340–4349.
  • Mattarella M, Garcia-Hartjes J, Wennekes T, et al. Nanomolar cholera toxin inhibitors based on symmetrical pentavalent ganglioside GM1os-sym-corannulenes. Org Biomol Chem. 2013;11:4333–4339.
  • Branson TR, Mcallister TE, Garcia-Hartjes J, et al. Multivalent inhibitors very important paper a protein-based pentavalent inhibitor of the cholera toxin B-. Angew Chem Int Ed. 2014;53:8323–8327.
  • Pukin AV, Branderhorst HM, Sisu C, et al. Strong inhibition of cholera toxin by multivalent GM1 derivatives. ChemBioChem. 2007;8:1500–1503.
  • Branderhorst HM, Liskamp RMJ, Visser GM, et al. Strong inhibition of cholera toxin binding by galactose dendrimers. Chem Commun. 2007;5043–5045.
  • Zomer-van Ommen DD, Pukin AV, Fu O, et al. Functional characterization of cholera toxin inhibitors using human intestinal organoids. J Med Chem. 2016;59:6968–6972.
  • Muñoz A, Sigwalt D, Illescas BM, et al. Synthesis of giant globular multivalent glycofullerenes as potent inhibitors in a model of Ebola virus infection. Nat Chem. 2016;8:50–57.
  • Kaarsholm NC, Lin S, Yan L, et al. Engineering glucose responsiveness into insulin. Diabetes. 2018;67:299–308.
  • Krug AW, Visser SAG, Tsai K, et al. Clinical evaluation of MK-2640: an insulin analog with glucose-responsive properties. Clin Pharmacol Ther. 2019. doi:org/10.1002/cpt.1215.
  • Nishikawa K, Matsuoka K, Kita E, et al. A therapeutic agent with oriented carbohydrates for treatment of infections by shiga toxin-producing Escherichia coli O157: H7. Proc Natl Acad Sci U S A. 2002;99:7669–7674.
  • Mulvey GL, Marcato P, Kitov PI, et al. Assessment in mice of the therapeutic potential of tailored, multivalent shiga toxin carbohydrate ligands. J Infect Dis. 2003;187:640–649.
  • Pieters RJ, Slotved H-C-C, Mortensen HM, et al. Use of tetravalent galabiose for inhibition of streptococcus suis serotype 2 infection in a mouse model. Biology (Basel). 2013;2:702–718.
  • Palese P. Influenza: old and new threats. Nat Med. 2004;10:S82–7.
  • Pöhlmann S. Viral entry into host cells. New York (NY): Springer New York; 2013. DOI:10.1007/978-1-4614-7651-1.
  • de Graaf M, Fouchier RA. Role of receptor binding specificity in influenza A virus transmission and pathogenesis. Embo J. 2014;33:823–841.
  • Ji Y, White YJ, Hadden JA, et al. New insights into influenza A specificity: an evolution of paradigms. Curr Opin Struct Biol. 2017;44:219–231.
  • von Itzstein M. The war against influenza: discovery and development of sialidase inhibitors. Nat Rev Drug Discov. 2007;6:967–974.
  • Moscona A. Oseltamivir resistance — disabling our influenza defenses. N Engl J Med. 2005;353:2633–2636.
  • Loregian A, Mercorelli B, Nannetti G, et al. Antiviral strategies against influenza virus: towards new therapeutic approaches. Cell Mol Life Sci. 2014;71:3659–3683.
  • Bandlow V, Liese S, Lauster D, et al. Spatial screening of hemagglutinin on influenza a virus particles: sialyl-LacNAc displays on dna and peg scaffolds reveal the requirements for bivalency enhanced interactions with weak monovalent binders. J Am Chem Soc. 2017;139:16389–16397.
  • Sauter NK, Bednarski MD, Wurzburg BA, et al. Hemagglutinins from two influenza virus variants bind to sialic acid derivatives with millimolar dissociation constants: A 500-MHz proton nuclear magnetic resonance study. Biochemistry. 1989;28:8388–8396.
  • Matrosovich MN, Mochalova LV, Marinina VP, et al. Synthetic polymeric inhibitors of influenza virus receptor-binding activity suppress virus replication. FEBS Lett. 1990;272:209–221.
  • Lees WJ, Spaltenstein A, Kingery-Wood JE, et al. Polyacrylamides bearing pendant a-sialoside groups strongly inhibit agglutination of erythrocytes by influenza A virus: multivalency and steric stabilization of particulate biological systems. J Med Chem. 1994;37:3419–3433.
  • Choi SK, Mammen M, Whitesides GM. Generation and in situ evaluation of libraries of poly(acrylic acid) presenting sialosides as side chains as polyvalent inhibitors of influenza- mediated hemagglutination. J Am Chem Soc. 1997;119:4103–4111.
  • Sigal GB, Mammen M, Dahmann G, et al. Polyacrylamides bearing pendant a-sialoside groups strongly inhibit agglutination of erythrocytes by influenza virus: the strong inhibition reflects enhanced binding through cooperative polyvalent interactions. J Am Chem Soc. 1996;118:3789–3800.
  • Kamitakahara H, Suzuki T, Suzuki Y, et al. A lysoganglioside/poly- L -glutamic acid. Angew Chemie Int Ed. 1998;37:1524–1528.
  • Papp I, Sieben C, Sisson AL, et al. Inhibition of influenza virus activity by multivalent glycoarchitectures with matched sizes. ChemBioChem. 2011;12:887–895.
  • Bhatia S, Lauster D, Bardua M, et al. Linear polysialoside outperforms dendritic analogs for inhibition of influenza virus infection in vitro and in vivo. Biomaterials. 2017;138:22–34.
  • Li X, Wu P, Gao GF, et al. Carbohydrate-functionalized chitosan fiber for influenza virus capture. Biomacromolecules. 2011;12:3962–3969.
  • Yeh HW, Lin TS, Wang HW, et al. S-linked sialyloligosaccharides bearing liposomes and micelles as influenza virus inhibitors. Org Biomol Chem. 2015;13:11518–11528.
  • Sun X-L, Kanie Y, Guo C-T, et al. Syntheses of C-3-modified sialylglycosides as selective inhibitors of influenza hemagglutinin and neuraminidase. European J Org Chem. 2000;2000:2643–2653.
  • Roy R, Zanini D, Meunier SJ, et al. Solid-phase synthesis of dendritic sialoside inhibitors of influenza a virus hemagglutin. Chem Commun. 1993;1869–1872.
  • Kamitakahara H, Suzuki T, Nishigori N, et al. A lysoganglioside poly-L-glutamic acid conjugate as a picomolar inhibitor of influenza hemagglutinin. Angew Chemie Int Ed. 1998;37:1524–1528.
  • Papp I, Sieben C, Ludwig K, et al. Inhibition of influenza virus infection by multivalent sialic-acid- functionalized gold nanoparticles. Small. 2010;6:2900–2906.
  • Kwon SJ, Na DH, Kwak JH, et al. Nanostructured glycan architecture is important in the inhibition of influenza A virus infection. Nat Nanotechnol. 2017;12:48–54.
  • Reuter JD, Myc A, Hayes MM, et al. Inhibition of viral adhesion and infection by sialic-acid-conjugated dendritic polymers. Bioconjug Chem. 1999;10:271–278.
  • Xiao S, Si L, Tian Z, et al. Biomaterials pentacyclic triterpenes grafted on CD cores to interfere with in fl uenza virus entry : a dramatic multivalent effect. Biomaterials. 2016;78:74–85.
  • Kale RR, Mukundan H, Price DN, et al. Detection of intact influenza viruses using biotinylated biantennary S-sialosides. J Am Chem Soc. 2008;130:8169–8171.
  • Marra A, Moni L, Pazzi D, et al. Synthesis of sialoclusters appended to calix[4]arene platforms via multiple azide-alkyne cycloaddition new inhibitors of hemagglutination and cytopathic effect mediated by BK and influenza A viruses. Org Biomol Chem. 2008;6:1396–1409.
  • Yang Y, Liu HP, Yu Q, et al. Multivalent S-sialoside protein conjugates block influenza hemagglutinin and neuraminidase. Carbohydr Res. 2016;435:68–75.
  • Kiran P, Bhatia S, Lauster D, et al. Exploring rigid and flexible core trivalent sialosides for influenza virus inhibition. Chem Eur J. 2018;24:1–14.
  • Kitov PI, Sadowska JM, Mulvey G, et al. Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands. Nature. 2000;403:669–672.
  • Glick GD, Knowles JR. Molecular recognition of bivalent sialosides by influenza virus. J Am Chem Soc. 1991;113:4701–4703.
  • Sabesan S, Duus JO, Domaille P, et al. Synthesis of cluster sialoside inhibitors for influenza virus. J Am Chem Soc. 1991;113:5865–5866.
  • Ohta T, Miura N, Fujitani N, et al. Glycotentacles: synthesis of cyclic glycopeptides, toward a tailored blocker of influenza virus hemagglutinin. Angew Chem Int Ed Engl. 2003;42:5186–5189.
  • Feng F, Miura N, Isoda N, et al. Novel trivalent anti-influenza reagent. Bioorg Med Chem Lett. 2010;12:3772–3776.
  • Waldmann M, Hoelscher K, Wienke M, et al. A nanomolar multivalent ligand as entry inhibitor of the hemagglutinin of avian In fl uenza. J Am Chem Soc. 2014;136:783–788.
  • Yamabe M, Kaihatsu K, Ebara Y. Sialyllactose-modified three-way junction DNA as binding inhibitor of influenza virus hemagglutinin. Bioconjug Chem. 2018;29:1490–1494.
  • Krammer F, Palese P. Influenza virus hemagglutinin stalk-based antibodies and vaccines. Curr Opin Virol. 2013;3:521–530.
  • Dilillo DJ, Tan GS, Palese P, et al. Broadly neutralizing hemagglutinin stalk-specific antibodies require FcR interactions for protection against influenza virus in vivo. Nat Med. 2014;20:143–151.
  • Memczak H, Lauster D, Kar P, et al. Anti-hemagglutinin antibody derived lead peptides for inhibitors of influenza virus binding. PLoS One. 2016;11:1–24.
  • Feng E, Ye D, Li J, et al. Recent advances in neuraminidase inhibitor development as anti-influenza drugs. ChemMedChem. 2012;7:1527–1536.
  • Yang Z-L, Zeng X-F, Liu H-P, et al. Synthesis of multivalent difluorinated zanamivir analogs as potent antiviral inhibitors. Tetrahedron Lett. 2016;57:2579–2582.
  • Fu L, Bi Y, Wu Y, et al. Structure-based tetravalent zanamivir with potent inhibitory activity against drug-resistant influenza viruses. J Med Chem. 2016;59:6303–6312.
  • Heise T, Büll C, Beurskens DM, et al. Metabolic oligosaccharide engineering with alkyne sialic acids confers neuraminidase resistance and inhibits influenza reproduction. Bioconjug Chem. 2017;28:1811–1815.
  • Meng X, Yang M, Li Y, et al. Multivalent neuraminidase hydrolysis resistant triazole-sialoside protein conjugates as influenza-adsorbents. Chinese Chem Lett. 2018;29:76–80.
  • Krammer F, Smith GJD, Fouchier RAM, et al. Influenza. Nat Rev Dis Prim. 2018;4:3.
  • Ernst B, Magnani JL. From carbohydrate leads to glycomimetic drugs. Nat Rev Drug Discov. 2009;8:661–677.
  • Zeng LY, Yang J, Liu S. Investigational hemagglutinin-targeted influenza virus inhibitors. Expert Opin Investig Drugs. 2017;26:63–73.
  • Kiso M, Lopes TJS, Yamayoshi S, et al. Combination therapy with neuraminidase and polymerase inhibitors in nude mice infected with influenza virus. J Infect Dis. 2018;217:887–896.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.