578
Views
12
CrossRef citations to date
0
Altmetric
Review

Animal models of major depressive disorder and the implications for drug discovery and development

, , , , , , , , , , , , , , , , , & show all
Pages 365-378 | Received 14 Nov 2018, Accepted 24 Jan 2019, Published online: 22 Feb 2019

References

  • WHO. Depression and other common mental disorders: global health estimates. 2017.
  • Drysdale AT, Grosenick L, Downar J, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med. 2017;23(1):28–38.
  • Koukopoulos A, Sani G. DSM‐5 criteria for depression with mixed features: a farewell to mixed depression. Acta Psychiatr Scand. 2014;129(1):4–16.
  • Fava M, Rankin MA, Wright EC, et al. Anxiety disorders in major depression. Compr Psychiatry. 2000;41(2):97–102.
  • Ohayon MM, Schatzberg AF. Prevalence of depressive episodes with psychotic features in the general population. Am J Psychiatry. 2002;159(11):1855–1861.
  • Posternak MA, Zimmerman M. Partial validation of the atypical features subtype of major depressive disorder. Arch Gen Psychiatry. 2002;59(1):70–76.
  • Bobo WV, Yawn BP, editors. Concise review for physicians and other clinicians: postpartum depression. Mayo Clinic Proceedings; 2014;89(6):835–844.
  • Sullivan B, Payne TW. Affective disorders and cognitive failures: a comparison of seasonal and nonseasonal depression. Am J Psychiatry. 2007;164(11):1663–1667.
  • Cryan JF, Mombereau C. In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry. 2004;9(4):326–357.
  • Blanco C, Okuda M, Markowitz JC, et al. The epidemiology of chronic major depressive disorder and dysthymic disorder: results from the national epidemiologic survey on alcohol and related conditions. J Clin Psychiatry. 2010;71(12):1645–1656.
  • Julien RM. A primer of drug action: A concise nontechnical guide to the actions, uses, and side effects of psychoactive drugs, revised and updated. New York: Holt Paperbacks; 2013.
  • Papakostas GI. Tolerability of modern antidepressants. J Clin Psychiatry. 2008;69:8–13.
  • McIntyre RS, Soczynska JK, Konarski JZ, et al. The effect of antidepressants on glucose homeostasis and insulin sensitivity: synthesis and mechanisms. Expert Opin Drug Saf. 2006;5(1):157–168.
  • Andrews PW, Thomson JA Jr, Amstadter A, et al. Primum non nocere: an evolutionary analysis of whether antidepressants do more harm than good. Front Psychol. 2012;3:117.
  • Roberts R, Joyce P, Mulder R, et al. A common P-glycoprotein polymorphism is associated with nortriptyline-induced postural hypotension in patients treated for major depression. Pharmacogenomics J. 2002;2(3):191.
  • Gregorian RS Jr, Golden KA, Bahce A, et al. Antidepressant-induced sexual dysfunction. Ann Pharmacother. 2002;36(10):1577–1589.
  • Bridge JA, Iyengar S, Salary CB, et al. Clinical response and risk for reported suicidal ideation and suicide attempts in pediatric antidepressant treatment: a meta-analysis of randomized controlled trials. JAMA. 2007;297(15):1683–1696.
  • Verhamme KM, Sturkenboom MC, Stricker BHC, et al. Drug-induced urinary retention. Drug Saf. 2008;31(5):373–388.
  • Zabegalov KN, Kolesnikova TO, Khatsko SL, et al. Understanding antidepressant discontinuation syndrome (ADS) through preclinical experimental models. Eur J Pharmacol. 2018;829:129–140.
  • Duman RS, Aghajanian GK, Sanacora G, et al. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med. 2016;22(3):238–249.
  • Tecoult E, Nathan N. Morbidity in electroconvulsive therapy. Eur J Anaesthesiol. 2001;18(8):511–518.
  • Weiner SJ, Ward TN, Ravaris CL. Headache and electroconvulsive therapy. Headache. 1994;34(3):155–159.
  • Lisanby SH. Electroconvulsive therapy for depression. N Engl J Med. 2007;357(19):1939–1945.
  • Crouse ELB. Transcranial magnetic stimulation for major depressive disorder: what a pharmacist should know. Mental Health Clinician. 2012;2(6):152–155.
  • Bennabi D, Haffen E. Transcranial Direct Current Stimulation (tDCS): a promising treatment for major depressive disorder? Brain Sci. 2018;8(5).
  • Antal A, Paulus W. Transcranial alternating current stimulation (tACS). Front Hum Neurosci. 2013;7(317).
  • Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16(1):22.
  • Slavich GM, Irwin MR. From stress to inflammation and major depressive disorder: a social signal transduction theory of depression. Psychol Bull. 2014;140(3):774–815.
  • Brand SJ, Moller M, Harvey BH. A review of biomarkers in mood and psychotic disorders: a dissection of clinical vs. Preclinical Correlates. Curr Neuropharmacol. 2015;13:324-368.
  • Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701.
  • Mayer EA. Gut feelings: the emerging biology of gut–brain communication. Nat Rev Neurosci. 2011;12(8):453.
  • Rajkowska G, Stockmeier CA. Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets. 2013;14(11):1225–1236.
  • Wang Q, Timberlake II MA, Prall K, et al. The recent progress in animal models of depression. Prog Neuro Psychopharmacol Biol Psychiatry. 2017;77:99–109.
  • Pace TW, Hu F, Miller AH. Cytokine-effects on glucocorticoid receptor function: relevance to glucocorticoid resistance and the pathophysiology and treatment of major depression. Brain Behav Immun. 2007;21(1):9–19.
  • Cowen PJ. Not fade away: the HPA axis and depression. Psychol Med. 2010;40(1):1–4.
  • Su W-J, Peng W, Gong H, et al. Antidiabetic drug glyburide modulates depressive-like behavior comorbid with insulin resistance. J Neuroinflammation. 2017;14(1):210.
  • Milaneschi Y, Lamers F, Bot M, et al. Leptin dysregulation is specifically associated with major depression with atypical features: evidence for a mechanism connecting obesity and depression. Biol Psychiatry. 2017;81(9):807–814.
  • Ma L, Demin KA, Kolesnikova TO, et al. Animal inflammation-based models of depression and their application to drug discovery. Expert Opin Drug Discov. 2017;12(10):995–1009.
  • Willner P, Mitchell PJ. The validity of animal models of predisposition to depression. Behav Pharmacol. 2002;13(3):169–188.
  • Krishnan V, Han MH, Graham DL, et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell. 2007;131(2):391–404.
  • Lira A, Zhou M, Castanon N, et al. Altered depression-related behaviors and functional changes in the dorsal raphe nucleus of serotonin transporter-deficient mice. Biol Psychiatry. 2003;54(10):960–971.
  • Perona MT, Waters S, Hall FS, et al. Animal models of depression in dopamine, serotonin, and norepinephrine transporter knockout mice: prominent effects of dopamine transporter deletions. Behav Pharmacol. 2008;19(5–6):566–574.
  • Muller MB, Holsboer F. Mice with mutations in the HPA-system as models for symptoms of depression. Biol Psychiatry. 2006;59(12):1104–1115.
  • Mesquita AR, Correia-Neves M, Roque S, et al. IL-10 modulates depressive-like behavior. J Psychiatr Res. 2008;43(2):89–97.
  • Couch Y, Trofimov A, Markova N, et al. Low-dose lipopolysaccharide (LPS) inhibits aggressive and augments depressive behaviours in a chronic mild stress model in mice. J Neuroinflammation. 2016;13(1):108.
  • Malatynska E, Steinbusch HW, Redkozubova O, et al. Anhedonic-like traits and lack of affective deficits in 18-month-old C57BL/6 mice: implications for modeling elderly depression. Exp Gerontol. 2012;47(8):552–564.
  • Harrison AA, Liem YT, Markou A. Fluoxetine combined with a serotonin-1A receptor antagonist reversed reward deficits observed during nicotine and amphetamine withdrawal in rats. Neuropsychopharmacology. 2001;25(1):55–71.
  • Cryan JF, Hoyer D, Markou A. Withdrawal from chronic amphetamine induces depressive-like behavioral effects in rodents. Biol Psychiatry. 2003;54(1):49–58.
  • Willner P, Belzung C. Treatment-resistant depression: are animal models of depression fit for purpose?. Psychopharmacol (Berl). 2015;232:3478-3495.
  • Brand SJ, Harvey BH. Exploring a post-traumatic stress disorder paradigm in flinders sensitive line rats to model treatment resistant depression I: bio-behavioural validation and response to imipramine. Acta Neuropsychiatrica. 2017;29:193-206. DOI: 10.1017/neu.2016.44
  • Brand SJ, Harvey BH. Exploring a post-traumatic stress disorder paradigm in flinders sensitive line rats to model treatment-resistant depression II: response to antidepressant augmentation strategies. Acta Neuropsychiatrica. 2017;29:207-221. DOI: 10.1017/neu.2016.50
  • Schmidt MV, Wang XD, Meijer OC. Early life stress paradigms in rodents: potential animal models of depression? Psychopharmacology (Berl). 2011;214(1):131–140.
  • Rice CJ, Sandman CA, Lenjavi MR, et al. A novel mouse model for acute and long-lasting consequences of early life stress. Endocrinology. 2008;149(10):4892–4900.
  • Fulcher N, Tran S, Shams S, et al. Neurochemical and behavioral responses to unpredictable chronic mild stress following developmental isolation: the zebrafish as a model for major depression. Zebrafish. 2017;14(1):23–34.
  • Golden SA, Covington HE 3rd, Berton O, et al. A standardized protocol for repeated social defeat stress in mice. Nat Protoc. 2011;6(8):1183–1191.
  • Granger DA, Hood KE, Dreschel NA, et al. Developmental effects of early immune stress on aggressive, socially reactive, and inhibited behaviors. Dev Psychopathol. 2001;13(3):599–610.
  • Liu X, Wu R, Tai F, et al. Effects of group housing on stress induced emotional and neuroendocrine alterations. Brain Res. 2013;1502:71–80.
  • Shi CG, Wang LM, Wu Y, et al. Intranasal administration of nerve growth factor produces antidepressant-like effects in animals. Neurochem Res. 2010;35(9):1302–1314.
  • Leith NJ, Barrett RJ. Effects of chronic amphetamine or reserpine on self-stimulation responding: animal model of depression? Psychopharmacology (Berl). 1980;72(1):9–15.
  • Sethy VH, Hodges JDH. Antidepressant activity of alprazolam in a reserpine‐induced model of depression. Drug Dev Res. 1985;5(2):179–184.
  • Couch Y, Anthony DC, Dolgov O, et al. Microglial activation, increased TNF and SERT expression in the prefrontal cortex define stress-altered behaviour in mice susceptible to anhedonia. Brain Behav Immun. 2013;29:136–146.
  • Kudryavtseva N, Bakshtanovskaya I, Koryakina L. Social model of depression in mice of C57BL/6J strain. Pharmacol Biochem Behav. 1991;38(2):315–320.
  • Monteiro S, Roque S, de Sa-Calcada D, et al. An efficient chronic unpredictable stress protocol to induce stress-related responses in C57BL/6 mice. Front Psychiatry. 2015;6:6.
  • Jayatissa MN, Bisgaard C, Tingström A, et al. Hippocampal cytogenesis correlates to escitalopram-mediated recovery in a chronic mild stress rat model of depression. Neuropsychopharmacology. 2006;31(11):2395–2404.
  • Hodes GE, Kana V, Menard C, et al. Neuroimmune mechanisms of depression. Nat Neurosci. 2015;18(10):1386–1393.
  • Belzung C, Lemoine M. Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression. Biol Mood Anxiety Disord. 2011;1(1):9.
  • Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry. 2000;157(10):1552–1562.
  • Bosker FJ, Hartman CA, Nolte IM, et al. Poor replication of candidate genes for major depressive disorder using genome-wide association data. Mol Psychiatry. 2011;16(5):516–532.
  • Wray NR, Ripke S, Mattheisen M, et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat Genet. 2018;50(5):668.
  • Network, Pathway Analysis Subgroup of Psychiatric Genomics C. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat Neurosci. 2015;18(2):199–209.
  • Holmes A, Yang RJ, Murphy DL, et al. Evaluation of antidepressant-related behavioral responses in mice lacking the serotonin transporter. Neuropsychopharmacology. 2002;27(6):914–923.
  • Kalueff AV, Olivier JD, Nonkes LJ, et al. Conserved role for the serotonin transporter gene in rat and mouse neurobehavioral endophenotypes. Neurosci Biobehav Rev. 2010;34(3):373–386.
  • Lahdesmaki J, Sallinen J, MacDonald E, et al. Behavioral and neurochemical characterization of alpha(2A)-adrenergic receptor knockout mice. Neuroscience. 2002;113(2):289–299.
  • Schramm NL, McDonald MP, Limbird LE. The alpha(2a)-adrenergic receptor plays a protective role in mouse behavioral models of depression and anxiety. J Neurosci. 2001;21(13):4875–4882.
  • Spielewoy C, Roubert C, Hamon M, et al. Behavioural disturbances associated with hyperdopaminergia in dopamine-transporter knockout mice. Behav Pharmacol. 2000;11(3–4):279–290.
  • Holmes A, Hollon TR, Gleason TC, et al. Behavioral characterization of dopamine D5 receptor null mutant mice. Behav Neurosci. 2001;115(5):1129–1144.
  • Filliol D, Ghozland S, Chluba J, et al. Mice deficient for delta- and mu-opioid receptors exhibit opposing alterations of emotional responses. Nat Genet. 2000;25(2):195–200.
  • Ide S, Sora I, Ikeda K, et al. Reduced emotional and corticosterone responses to stress in mu-opioid receptor knockout mice. Neuropharmacology. 2010;58(1):241–247.
  • Walls AB, Eyjolfsson EM, Smeland OB, et al. Knockout of GAD65 has major impact on synaptic GABA synthesized from astrocyte-derived glutamine. J Cereb Blood Flow Metab. 2011;31(2):494–503.
  • Stork O, Ji FY, Kaneko K, et al. Postnatal development of a GABA deficit and disturbance of neural functions in mice lacking GAD65. Brain Res. 2000;865(1):45–58.
  • Miyamoto Y, Yamada K, Noda Y, et al. Lower sensitivity to stress and altered monoaminergic neuronal function in mice lacking the NMDA receptor epsilon 4 subunit. J Neurosci. 2002;22(6):2335–2342.
  • Cryan JF, Kelly PH, Neijt HC, et al. Antidepressant and anxiolytic-like effects in mice lacking the group III metabotropic glutamate receptor mGluR7. Eur J Neurosci. 2003;17(11):2409–2417.
  • Garcia-Garcia AL, Elizalde N, Matrov D, et al. Increased vulnerability to depressive-like behavior of mice with decreased expression of VGLUT1. Biol Psychiatry. 2009;66(3):275–282.
  • Oitzl MS, de Kloet ER, Joels M, et al. Spatial learning deficits in mice with a targeted glucocorticoid receptor gene disruption. Eur J Neurosci. 1997;9(11):2284–2296.
  • Ridder S, Chourbaji S, Hellweg R, et al. Mice with genetically altered glucocorticoid receptor expression show altered sensitivity for stress-induced depressive reactions. J Neurosci. 2005;25(26):6243–6250.
  • Kishimoto T, Radulovic J, Radulovic M, et al. Deletion of crhr2 reveals an anxiolytic role for corticotropin-releasing hormone receptor-2. Nat Genet. 2000;24(4):415–419.
  • Coste SC, Murray SE, Stenzel-Poore MP. Animal models of CRH excess and CRH receptor deficiency display altered adaptations to stress. Peptides. 2001;22(5):733–741.
  • Sallinen J, Haapalinna A, MacDonald E, et al. Genetic alteration of the alpha2-adrenoceptor subtype c in mice affects the development of behavioral despair and stress-induced increases in plasma corticosterone levels. Mol Psychiatry. 1999;4(5):443–452.
  • Bjorklund M, Sirvio J, Puolivali J, et al. Alpha2C-adrenoceptor-overexpressing mice are impaired in executing nonspatial and spatial escape strategies. Mol Pharmacol. 1998;54(3):569–576.
  • Wei Q, Lu XY, Liu L, et al. Glucocorticoid receptor overexpression in forebrain: a mouse model of increased emotional lability. Proc Natl Acad Sci USA. 2004;101(32):11851–11856.
  • Caspi A, Sugden K, Moffitt TE, et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science. 2003;301(5631):386–389.
  • Dantzer R, O’Connor JC, Freund GG, et al. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46–56.
  • Remus JL, Dantzer R. Inflammation models of depression in rodents: relevance to psychotropic drug discovery. Int J Neuropsychopharmacol. 2016;19(9).
  • Biesmans S, Matthews LJ, Bouwknecht JA, et al. Systematic analysis of the cytokine and anhedonia response to peripheral lipopolysaccharide administration in rats. Biomed Res Int. 2016;2016:9085273.
  • Gibney SM, McGuinness B, Prendergast C, et al. Poly I:C-induced activation of the immune response is accompanied by depression and anxiety-like behaviours, kynurenine pathway activation and reduced BDNF expression. Brain Behav Immun. 2013;28:170–181.
  • Orsal AS, Blois SM, Bermpohl D, et al. Administration of interferon-alpha in mice provokes peripheral and central modulation of immune cells, accompanied by behavioral effects. Neuropsychobiology. 2008;58(3–4):211–222.
  • Kentner AC, James JS, Miguelez M, et al. Investigating the hedonic effects of interferon-alpha on female rats using brain-stimulation reward. Behav Brain Res. 2007;177(1):90–99.
  • Paterson NE, Myers C, Markou A. Effects of repeated withdrawal from continuous amphetamine administration on brain reward function in rats. Psychopharmacology (Berl). 2000;152(4):440–446.
  • Güdük M, Erensoy İY, Ersümer F. Mania/hypomania associated with antidepressant discontinuation. J Psychiatry Neurol Sci. 2013;26(3):303–306.
  • Nunes EV, Levin FR. Treatment of depression in patients with alcohol or other drug dependence: a meta-analysis. JAMA. 2004;291(15):1887–1896.
  • Steru L, Chermat R, Thierry B, et al. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl). 1985;85(3):367–370.
  • O’Leary OF, Cryan JF. Towards translational rodent models of depression. Cell Tissue Res. 2013;354(1):141–153.
  • Strekalova T, Steinbusch HW. Measuring behavior in mice with chronic stress depression paradigm. Prog Neuro Psychopharmacol Biol Psychiatry. 2010;34(2):348–361.
  • Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977;266(5604):730–732.
  • Vollmayr B, Gass P. Learned helplessness: unique features and translational value of a cognitive depression model. Cell Tissue Res. 2013;354(1):171–178.
  • Commons KG, Cholanians AB, Babb JA, et al. The rodent forced swim test measures stress-coping strategy, not depression-like behavior. ACS Chem Neurosci. 2017;8(5):955–960.
  • Valvassori SS, Budni J, Varela RB, et al. Contributions of animal models to the study of mood disorders. Rev Bras Psiquiatr. 2013;35:S121–S131.
  • Carr GV, Lucki I. The role of serotonin receptor subtypes in treating depression: a review of animal studies. Psychopharmacology (Berl). 2011;213(2–3):265–287.
  • Willner P. Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology. 2005;52(2):90–110.
  • Anreiter I, Sokolowski HM, Sokolowski MB. Gene–environment interplay and individual differences in behavior. Mind Brain Educ. 2017. DOI:10.1111/mbe.12158.
  • West CH, Weiss JM. A selective test for antidepressant treatments using rats bred for stress-induced reduction of motor activity in the swim test. Psychopharmacology (Berl). 2005;182(1):9–23.
  • El Yacoubi M, Vaugeois JM. Genetic rodent models of depression. Curr Opin Pharmacol. 2007;7(1):3–7.
  • Weiss JM, Cierpial MA, West CH. Selective breeding of rats for high and low motor activity in a swim test: toward a new animal model of depression. Pharmacol Biochem Behav. 1998;61(1):49–66.
  • Mayorga AJ, Lucki I. Limitations on the use of the C57BL/6 mouse in the tail suspension test. Psychopharmacology (Berl). 2001;155(1):110–112.
  • Nestler EJ, Hyman SE. Animal models of neuropsychiatric disorders. Nat Neurosci. 2010;13(10):1161–1169.
  • Barr CS, Newman TK, Becker ML, et al. The utility of the non‐human primate model for studying gene by environment interactions in behavioral research. Genes Brain Behav. 2003;2(6):336–340.
  • Harro J. Animal models of depression vulnerability. Curr Top Behav Neurosci. 2013;14:29–54.
  • Worlein JM. Nonhuman primate models of depression: effects of early experience and stress. ILAR J. 2014;55(2):259–273.
  • Vellucci SV. Primate social behavior—anxiety or depression? Pharmacol Ther. 1990;47(2):167–180.
  • McKinney W, Moran E, Kramer G. Effects of drugs on the response to social separation in rhesus monkeys. In: Steklis HD and Kling AS, editors. Hormones, drugs and social behavior in primates. New York: Spectrum Publications; 1983. pp. 249–270.
  • Rasmussen KL, Reite M. Loss-induced depression in an adult macaque monkey. Am J Psychiatry. 1982;139(5):679–681.
  • Kraemer GW, Lin DH, Moran EC, et al. Effects of alcohol on the despair response to peer separation in rhesus monkeys. Psychopharmacology (Berl). 1981;73(4):307–310.
  • Redmond DE, Maas JW, Kling A, et al. Changes in primate social behavior after treatment with alpha-methyl-para-tyrosine. Psychosom Med. 1971;33(2):97–113.
  • Kalidindi A, Kelly SD, Singleton KS, et al. Reduced marker of vascularization in the anterior hippocampus in a female monkey model of depression. Physiol Behav. 2017;172:12–15.
  • Clarke AS, Hedeker DR, Ebert MH, et al. Rearing experience and biogenic amine activity in infant rhesus monkeys. Biol Psychiatry. 1996;40(5):338–352.
  • Clarke AS, Ebert MH, Schmidt DE, et al. Biogenic amine activity in response to fluoxetine and desipramine in differentially reared rhesus monkeys. Biol Psychiatry. 1999;46(2):221–228.
  • Higley JD, Suomi SJ, Linnoila M. A longitudinal assessment of CSF monoamine metabolite and plasma cortisol concentrations in young rhesus monkeys. Biol Psychiatry. 1992;32(2):127–145.
  • Winslow JT. Neuropeptides and non-human primate social deficits associated with pathogenic rearing experience. Int J Dev Neurosci. 2005;23(2–3):245–251.
  • Kraemer GW, McKinney WT. Interactions of pharmacological agents which alter biogenic amine metabolism and depression: an analysis of contributing factors within a primate model of depression. J Affect Disord. 1979;1(1):33–54.
  • Zhang Z-Y, Mao Y, Feng X-L, et al. Early adversity contributes to chronic stress induced depression-like behavior in adolescent male rhesus monkeys. Behav Brain Res. 2016;306:154–159.
  • Felger JC, Alagbe O, Hu F, et al. Effects of interferon-alpha on rhesus monkeys: a nonhuman primate model of cytokine-induced depression. Biol Psychiatry. 2007;62(11):1324–1333.
  • Suomi S, Harlow H. Production and alleviation of depressive behaviors in monkeys. San Francisco: WH Freeman; 1977.
  • Suomi SJ. Repetitive peer separation of young monkeys: effects of vertical chamber confinement during separations. J Abnorm Psychol. 1973;81(1):1.
  • Piato AL, Rosemberg DB, Capiotti KM, et al. Acute restraint stress in zebrafish: behavioral parameters and purinergic signaling. Neurochem Res. 2011;36(10):1876–1886.
  • Piato AL, Capiotti KM, Tamborski AR, et al. Unpredictable chronic stress model in zebrafish (Danio rerio): behavioral and physiological responses. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(2):561–567.
  • Kato T, Kubota M, Kasahara T. Animal models of bipolar disorder. Neurosci Biobehav Rev. 2007;31(6):832–842.
  • Kyzar E, Stewart AM, Landsman S, et al. Behavioral effects of bidirectional modulators of brain monoamines reserpine and d-amphetamine in zebrafish. Brain Res. 2013;1527:108–116.
  • Wang Y, Liu W, Yang J, et al. Parkinson’s disease-like motor and non-motor symptoms in rotenone-treated zebrafish. Neurotoxicology. 2017;58:103–109.
  • Li X, Liu X, Li T, et al. SiO 2 nanoparticles cause depression and anxiety-like behavior in adult zebrafish. RSC Adv. 2017;7(5):2953–2963.
  • Ziv L, Muto A, Schoonheim PJ, et al. An affective disorder in zebrafish with mutation of the glucocorticoid receptor. Mol Psychiatry. 2013;18(6):681–691.
  • Griffiths BB, Schoonheim PJ, Ziv L, et al. A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response. Front Behav Neurosci. 2012;6:68.
  • Demin KA, Meshalkina DA, Kysil EV, et al. Zebrafish models relevant to studying central opioid and endocannabinoid systems. Prog Neuropsychopharmacol Biol Psychiatry. 2018;86:301–312.
  • Khan KM, Collier AD, Meshalkina DA, et al. Zebrafish models in neuropsychopharmacology and CNS drug discovery. Br J Pharmacol. 2017;174(13):1925–1944.
  • Meshalkina DA, Kysil EV, Warnick JE, et al. Adult zebrafish in CNS disease modeling: a tank that’s half-full, not half-empty, and still filling. Lab Anim (NY). 2017;46(10):378–387.
  • de Abreu MS, Friend AJ, Demin KA, et al. Zebrafish models: do we have valid paradigms for depression? J Pharmacol Toxicol Methods. 2018;94(Pt 2):16–22.
  • do Nascimento GS, Walsh-Monteiro A, Gouveia A. A reliable depression-like model in zebrafish (Danio rerio): Learned helplessness. Psychol Neurosci. 2016;9(3):390–397. 
  • Manuel R, Gorissen M, Zethof J, et al. Unpredictable chronic stress decreases inhibitory avoidance learning in Tuebingen long-fin zebrafish: stronger effects in the resting phase than in the active phase. J Exp Biol. 2014;217(Pt 21):3919–3928.
  • Chakravarty S, Reddy BR, Sudhakar SR, et al. Chronic unpredictable stress (CUS)-induced anxiety and related mood disorders in a zebrafish model: altered brain proteome profile implicates mitochondrial dysfunction. PLoS One. 2013;8(5):e63302.
  • Song C, Liu BP, Zhang YP, et al. Modeling consequences of prolonged strong unpredictable stress in zebrafish: complex effects on behavior and physiology. Prog Neuropsychopharmacol Biol Psychiatry. 2018;81:384–394.
  • McCammon JM, Sive H. Addressing the genetics of human mental health disorders in model organisms. Annu Rev Genomics Hum Genet. 2015;16:173–197.
  • Zeng B, Li Y, Niu B, et al. Involvement of PI3K/Akt/FoxO3a and PKA/CREB signaling pathways in the protective effect of fluoxetine against corticosterone-induced cytotoxicity in PC12 cells. J Mol Neurosci. 2016;59(4):567–578.
  • Gong S, Zhang J, Guo Z, et al. senkyunolide a protects neural cells against corticosterone-induced apoptosis by modulating protein phosphatase 2a and α-synuclein signaling. Drug Des Devel Ther. 2018;12:1865.
  • He X, Yang L, Wang M, et al. Targeting the endocannabinoid/CB1 receptor system for treating major depression through antidepressant activities of curcumin and dexanabinol-loaded solid lipid nanoparticles. Cell Physiol Biochem. 2017;42(6):2281–2294.
  • Huys QJ, Moutoussis M, Williams J. Are computational models of any use to psychiatry? Neural Networks. 2011;24(6):544–551.
  • Eshel N, Roiser JP. Reward and punishment processing in depression. Biol Psychiatry. 2010;68(2):118–124.
  • Huys QJ, Vogelstein J, Dayan P, editors. Psychiatry: insights into depression through normative decision-making models. Adv Neural Inf Process Syst. 2009;1:1–5.
  • Mayorga AJ, Dalvi A, Page ME, et al. Antidepressant-like behavioral effects in 5-hydroxytryptamine(1A) and 5-hydroxytryptamine(1B) receptor mutant mice. J Pharmacol Exp Ther. 2001;298(3):1101–1107.
  • Hepgul N, Cattaneo A, Zunszain PA, et al. Depression pathogenesis and treatment: what can we learn from blood mRNA expression? BMC Med. 2013;11(1):28.
  • Yamada K, Iida R, Miyamoto Y, et al. Neurobehavioral alterations in mice with a targeted deletion of the tumor necrosis factor-alpha gene: implications for emotional behavior. J Neuroimmunol. 2000 ;111(1–2):131–138.
  • Köhler O, Benros ME, Nordentoft M, et al. Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry. 2014;71(12):1381–1391.
  • O’Connor J, Lawson M, Andre C, et al. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2, 3-dioxygenase activation in mice. Mol Psychiatry. 2009;14(5):511.
  • Grabert K, Michoel T, Karavolos MH, et al. Microglial brain region−dependent diversity and selective regional sensitivities to aging. Nat Neurosci. 2016;19(3):504.
  • De Biase LM, Schuebel KE, Fusfeld ZH, et al. Local cues establish and maintain region-specific phenotypes of basal ganglia microglia. Neuron. 2017;95(2):341–356.
  • Artigas F. Limitations to enhancing the speed of onset of antidepressants—are rapid action antidepressants possible? Hum Psychopharmacol Clin Exp. 2001;16(1):29–36.
  • Murrough JW, Iosifescu DV, Chang LC, et al. Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial. Am J Psychiatry. 2013;170(10):1134–1142.
  • Podkowa K, Podkowa A, Sałat K, et al. Antidepressant-like effects of scopolamine in mice are enhanced by the group II mGlu receptor antagonist LY341495. Neuropharmacology. 2016;111:169–179.
  • Li N, Lee B, Liu R-J, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010;329(5994):959–964.
  • Drevets WC, Zarate CA Jr, Furey ML. Antidepressant effects of the muscarinic cholinergic receptor antagonist scopolamine: a review. Biol Psychiatry. 2013;73(12):1156–1163.
  • Liu X-L, Luo L, Mu R-H, et al. Fluoxetine regulates mTOR signalling in a region-dependent manner in depression-like mice. Sci Rep. 2015;5:16024.
  • Fuchs E, Czéh B, Kole MH, et al. Alterations of neuroplasticity in depression: the hippocampus and beyond. Eur Neuropsychopharmacol. 2004;14:S481–S490.
  • Mucignat-Caretta C, Bondi M, Caretta A. Time course of alterations after olfactory bulbectomy in mice. Physiol Behav. 2006;89(5):637–643.
  • Jesberger J, Richardson J. Brain output dysregulation by olfactory bulbectomy: an approximation in the rat of major depressive disorder in humans. Int J Neurosci. 1988;388:241–265.
  • Kelly JP, Wrynn AS, Leonard BE. The olfactory bulbectomized rat as a model of depression: an update. Pharmacol Ther. 1997;74(3):299–316.
  • Song C, Leonard BE. The olfactory bulbectomised rat as a model of depression. Neurosci Biobehav Rev. 2005;29(4–5):627–647.
  • Croy I, Symmank A, Schellong J, et al. Olfaction as a marker for depression in humans. J Affect Disord. 2014;160:80–86.
  • Yuan T-F, Slotnick BM. Roles of olfactory system dysfunction in depression. Prog Neuro Psychopharmacol Biol Psychiatry. 2014;54:26–30.
  • Rajkowska G, Miguel-Hidalgo J. Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets. 2007;6(3):219–233.
  • Mucignat-Caretta C, Caretta A. Animal models of depression: olfactory lesions affect amygdala, subventricular zone, and aggression. Neurobiol Dis. 2004;16(2):386–395.
  • Serafini G. Neuroplasticity and major depression, the role of modern antidepressant drugs. World J Psychiatry. 2012;2(3):49.
  • Braun K, Antemano R, Helmeke C, et al. Juvenile separation stress induces rapid region-and layer-specific changes in S100ß-and glial fibrillary acidic protein–immunoreactivity in astrocytes of the rodent medial prefrontal cortex. Neuroscience. 2009;160(3):629–638.
  • Araya-Callís C, Hiemke C, Abumaria N, et al. Chronic psychosocial stress and citalopram modulate the expression of the glial proteins GFAP and NDRG2 in the hippocampus. Psychopharmacology (Berl). 2012;224(1):209–222.
  • Banasr M, Duman RS. Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry. 2008;64(10):863–870.
  • Bercik P, Denou E, Collins J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011;141(2):599–609. e3.
  • Zheng P, Zeng B, Zhou C, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry. 2016;21(6):786.
  • Heijtz RD, Wang S, Anuar F, et al. Normal gut microbiota modulates brain development and behavior. Proc Nat Acad Sci USA. 2011;108(7):3047–3052.
  • Savignac H, Kiely B, Dinan T, et al. B ifidobacteria exert strain‐specific effects on stress‐related behavior and physiology in BALB/c mice. Neurogastroenterol Motility. 2014;26(11):1615–1627.
  • Tillmann S, Abildgaard A, Winther G, et al. Altered fecal microbiota composition in the flinders sensitive line rat model of depression. Psychopharmacology (Berl). 2018, in press.
  • Dinan TG, Stanton C, Cryan JF. Psychobiotics: a novel class of psychotropic. Biol Psychiatry. 2013;74(10):720–726.
  • Bornstein SR, Schuppenies A, Wong ML, et al. Approaching the shared biology of obesity and depression: the stress axis as the locus of gene-environment interactions. Mol Psychiatry. 2006;11(10):892–902.
  • Petrak F, Röhrig B, Ismail K. Depression and diabetes. In: Feingold KR, Anawalt B, Boyce A, et al., editors. Endotext: MDText.com, Inc. 2018.
  • Strekalova T, Costa-Nunes JP, Veniaminova E, et al. Insulin receptor sensitizer, dicholine succinate, prevents both Toll-like receptor 4 (TLR4) upregulation and affective changes induced by a high-cholesterol diet in mice. J Affect Disord. 2016;196:109–116.
  • Pomytkin I, Costa‐Nunes JP, Kasatkin V, et al. Insulin receptor in the brain: mechanisms of activation and the role in the CNS pathology and treatment. CNS Neurosci Ther. 2018;24(9):763–774.
  • Sakimura K, Maekawa T, Sasagawa K, et al. Depression‐related behavioural and neuroendocrine changes in the Spontaneously Diabetic Torii (SDT) fatty rat, an animal model of type 2 diabetes mellitus. Clin Exp Pharmacol Physiol. 2018, in press.
  • Aswar U, Chepurwar S, Shintre S, et al. Telmisartan attenuates diabetes induced depression in rats. Pharmacol Rep. 2017;69(2):358–364.
  • Dos Santos MM, de Macedo GT, Prestes AS, et al. Hyperglycemia elicits anxiety-like behaviors in zebrafish: protective role of dietary diphenyl diselenide. Prog Neuropsychopharmacol Biol Psychiatry. 2018;85:128–135.
  • Dobolyi A, Dimitrov E, Palkovits M, et al. The neuroendocrine functions of the parathyroid hormone 2 receptor. Front Endocrinol. 2012;3:121.
  • Bhattacharya P, Yan YL, Postlethwait J, et al. Evolution of the vertebrate pth2 (tip39) gene family and the regulation of PTH type 2 receptor (pth2r) and its endogenous ligand pth2 by hedgehog signaling in zebrafish development. J Endocrinol. 2011;211(2):187–200.
  • Bayne K, Wurbel H. The impact of environmental enrichment on the outcome variability and scientific validity of laboratory animal studies. Rev Sci Tech. 2014;33(1):273–280.
  • Volgin AD, Yakovlev OV, Demin KA, et al. Understanding the role of environmental enrichment in zebrafish neurobehavioral models. Zebrafish. 2018;15(5):425–432.
  • Nilsson M, Perfilieva E, Johansson U, et al. Enriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memory. J Neurobiol. 1999;39(4):569–578.
  • Walker AK, Budac DP, Bisulco S, et al. NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice. Neuropsychopharmacology. 2013;38(9):1609.
  • Yang C, Hu Y-M, Zhou Z-Q, et al. Acute administration of ketamine in rats increases hippocampal BDNF and mTOR levels during forced swimming test. Ups J Med Sci. 2013;118(1):3–8.
  • Nierenberg AA, Amsterdam JD. Treatment-resistant depression: definition and treatment approaches. J Clin Psychiatry. 1990;Suppl:39–47.
  • Fava M. Diagnosis and definition of treatment-resistant depression. Biol Psychiatry. 2003;53649–659.
  • Rush AJ, Trivedi MH, Wisniewski, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry. 2006;163(11)1905–1917.
  • Kalueff, AV, Stewart AM, Nguyen M, et al. Targeting drug sensitivity predictors: New potential strategies to improve pharmacotherapy of human brain disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2015;63: 76–82
  • Denayer T, Stöhr T, Roy MV. Animal models in translational medicine: validation and prediction. Eur J Mol Clin Med. 2014;2(1):5.
  • Demin K, Meshalkina D, Lakstygal A, et al. Developing translational biological psychiatry: learning from history to build the future. Biol Commun. 2017;62(4):1–15.
  • Strekalova T, Markova N, Shevtsova E, et al. Individual differences in behavioural despair predict brain GSK-3beta expression in mice: the power of a modified swim test. Neural Plast. 2016;2016:5098591.
  • Engin E, Treit D, Dickson C. Anxiolytic-and antidepressant-like properties of ketamine in behavioral and neurophysiological animal models. Neuroscience. 2009;161(2):359–369.
  • Aragona M. The concept of mental disorder and the DSM-V. Dialog Philos Mental Neuro Sci. 2009;2(1):1–14.
  • Kato T. A renovation of psychiatry is needed. World Psychiatry. 2011;10(3):198–199.
  • Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry. 2003;160(4):636–645.
  • Kalueff AV, Ren-Patterson RF, LaPorte JL, et al. Domain interplay concept in animal models of neuropsychiatric disorders: a new strategy for high-throughput neurophenotyping research. Behav Brain Res. 2008;188(2):243–249.
  • Kalueff AV, Stewart AM. Modeling neuropsychiatric spectra to empower translational biological psychiatry. Behav Brain Res. 2015;276:1–7.
  • Kas MJ, Fernandes C, Schalkwyk LC, et al. Genetics of behavioural domains across the neuropsychiatric spectrum; of mice and men. Mol Psychiatry. 2007;12(4):324–330.
  • Kalueff AV, LaPorte JL, Murphy DL, et al. Hybridizing behavioral models: a possible solution to some problems in neurophenotyping research? Prog Neuro Psychopharmacol Biol Psychiatry. 2008;32(5):1172–1178.
  • Kalueff AV, Aldridge JW, LaPorte JL, et al. Analyzing grooming microstructure in neurobehavioral experiments. Nat Protoc. 2007;2(10):2538.
  • Cuthbert BN, Insel TR. Toward new approaches to psychotic disorders: the NIMH research domain criteria project. Schizophr Bull. 2010;36(6):1061–1062.
  • Insel T, Cuthbert B, Garvey M, et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry. 2010;167(7):748–751.
  • Garvey MA, Cuthbert BN. Developing a motor systems domain for the NIMH RDoC program. Schizophr Bull. 2017;43(5):935–936.
  • Cosgrove VE, Kelsoe JR, Suppes T. Toward a valid animal model of bipolar disorder: how the research domain criteria help bridge the clinical-basic science divide. Biol Psychiatry. 2016;79(1):62–70.
  • Kalueff AV, Stewart AM, Song C, et al. Neurobiology of rodent self-grooming and its value for translational neuroscience. Nat Rev Neurosci. 2016;17(1):45.
  • Reynolds S, Urruela M, Devine DP. Effects of environmental enrichment on repetitive behaviors in the BTBR T+ tf/J mouse model of autism. Autism Res. 2013;6(5):337–343.
  • Kalueff AV, Tuohimaa P. Grooming analysis algorithm for neurobehavioural stress research. Brain Res Protoc. 2004;13(3):151–158.
  • Kalueff AV, Tuohimaa P. The grooming analysis algorithm discriminates between different levels of anxiety in rats: potential utility for neurobehavioural stress research. J Neurosci Methods. 2005;143(2):169–177.
  • Ja K, Messenger T, Cf F. Seed finding in golden hamsters: a potential animal model for screening anxiolytic drugs. Neuropsychobiology. 2002;45(3):150–155.
  • Zoccolan D, Graham BJ, Cox DD. A self-calibrating, camera-based eye tracker for the recording of rodent eye movements. Front Neurosci. 2010;4:193.
  • Uhlhaas PJ, Singer W. Neuronal dynamics and neuropsychiatric disorders: toward a translational paradigm for dysfunctional large-scale networks. Neuron. 2012;75(6):963–980.
  • Marsh R, Gerber AJ, Peterson BS. Neuroimaging studies of normal brain development and their relevance for understanding childhood neuropsychiatric disorders. J Am Acad Child Adolesc Psychiatry. 2008;47(11):1233–1251.
  • Avgustinovich D, Alekseenko O, Bakshtanovskaia I, et al. Dynamic changes of brain serotonergic and dopaminergic activities during development of anxious depression: experimental study. Uspekhi fiziologicheskikh nauk. 2004;35(4):19–40.
  • Galyamina A, Kovalenko I, Smagin D, et al. Interaction of depression and anxiety in the development of mixed anxiety/depression disorder. Experimental studies of the mechanisms of comorbidity. Neurosci Behav Physiol. 2017;47(6):699–713.
  • Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3(8):711.
  • Pangalos MN, Schechter LE, Hurko O. Drug development for CNS disorders: strategies for balancing risk and reducing attrition. Nat Rev Drug Discov. 2007;6(7):521.
  • Choi DW, Armitage R, Brady LS, et al. Medicines for the mind: policy-based “Pull” incentives for creating breakthrough CNS drugs. Neuron. 2014;84(3):554–563.
  • Pankevich DE, Altevogt BM, Dunlop J, et al. Improving and accelerating drug development for nervous system disorders. Neuron. 2014;84(3):546–553.
  • Nestler EJ, Gould E, Manji H. Preclinical models: status of basic research in depression. Biol Psychiatry. 2002;52(6):503–528.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.