336
Views
10
CrossRef citations to date
0
Altmetric
Review

Screening drugs for myocardial disease in vivo with zebrafish: an expert update

, , &
Pages 343-353 | Received 20 Nov 2018, Accepted 30 Jan 2019, Published online: 06 Mar 2019

References

  • Roth GA, Johnson C, Abajobir A, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1–25.
  • Benjamin EJ, Virani SS, Callaway CW, et al. Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation. 2018;137(12):e67–492.
  • Townsend N, Bhatnagar P, Wilkins E, et al. Cardiovascular disease statistics 2015. London: British Heart Foundation; 2015.
  • Fuster V. Global burden of cardiovascular disease: time to implement feasible strategies and to monitor results. J Am Coll Cardiol. 2014;64:520–522.
  • Fuster V, Kelly BB, Vedanthan R. Promoting global cardiovascular health: moving forward. Circulation. 2011;123:1671–1678.
  • Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3:e442.
  • Bloom DE, Cafiero ET, Jane-Llopis E, et al. The global economic burden of noncommunicable diseases. Geneva: World Economic Forum; 2013.
  • Fordyce CB, Roe MT, Ahmad T, et al. Cardiovascular drug development: is it dead or just hibernating? J Am Coll Cardiol. 2015;65(15):1567–1582.
  • Pammolli F, Magazzini L, Riccaboni M. The productivity crisis in pharmaceutical R&D. Nat Rev Drug Discov. 2011;10:428¨C38.
  • Sacks LV, Shamsuddin HH, Yasinskaya YI, et al. Scientific and regulatory reasons for delay and denial of FDA approval of initial applications for new drugs, 2000–2012. JAMA. 2014;311:378–384.
  • Sayols-Baixeras S, Lluís-Ganella C, Lucas G, et al. Pathogenesis of coronary artery disease: focus on genetic risk factors and identification of genetic variants. Appl Clin Genet. 2014;7:15–32.
  • Swinney DC. Phenotypic vs. target-based drug discovery for first-in-class medicines. Clin Pharmacol Ther. 2013;93(4):299–301.
  • Zheng W, Thorne N, McKew JC. Phenotypic screens as a renewed approach for drug discovery. Drug Discov Today. 2013;18(21–22):1067–1073.
  • MacRae CA, Peterson RT. Zebrafish-based small molecule discovery. Chem Biol. 2003;10(10):901–908.
  • Macrae CA. Cardiac arrhythmia: in vivo screening in the zebrafish to overcome complexity in drug discovery. Expert Opin Drug Discov. 2010;5(7):619–632.
  • Kithcart A, MacRae CA. Using zebrafish for high-throughput screening of novel cardiovascular drugs. JACC Basic Transl Sci. 2017;2(1):1–12.
  • Li Y, Chen T, Miao X, et al. Zebrafish: a promising in vivo model for assessing the delivery of natural products, fluorescence dyes and drugs across the blood-brain barrier. Pharmacol Res. 2017;125(Pt B):246–257.
  • Wellens HJ. Cardiac arrhythmias: the quest for a cure: a historical perspective. J Am Coll Cardiol. 2004;44:1155–1163.
  • Vaduganathan M, Butler J, Pitt B, et al. Contemporary drug development in heart failure: call for hemodynamically neutral therapies. Circ Heart Fail. 2015;8:826–831.
  • Mueller RL, Scheidt S. History of drugs for thrombotic disease. Discovery, development, and directions for the future. Circulation. 1994;89(1):432–449.
  • Keeler RF. Teratogenic compounds of Veratrum californicum (Durand) X. Cyclopia in rabbits produced by cyclopamine. Teratology. 1970;3(2):175–180.
  • Kasten FH. Paul Ehrlich: pathfinder in cell biology. 1. Chronicle of his life and accomplishments in immunology, cancer research, and chemotherapy. Biotech Histochem. 1996;71(1):2–37.
  • Tweedy BL, Lesney MS. 1950s: prescriptions and polio. Washington, DC: The Pharmaceutical Century, American Chemical Society; 2000.
  • Ward AC, Lieschke GJ. The zebrafish as a model system for human disease. Front Biosci. 2002;7:d827–d833.
  • Kari G, Rodeck U, Dicker AP. Zebrafish: an emerging model system for human disease and drug discovery. Clin Pharmacol Ther. 2007;82(1):70–80.
  • Zon LI, Peterson RT. In vivo drug discovery in the zebrafish. Nat Rev Drug Discov. 2005;4(1):35–44.
  • Parng C, Seng WL, Semino C, et al. Zebrafish: a preclinical model for drug screening. Assay Drug Dev Technol. 2002;1(1 Pt 1):41–48.
  • Bakkers J. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res. 2011;91(2):279–288.
  • Barros TP, Alderton WK, Reynolds HM, et al. Zebrafish: an emerging technology for in vivo pharmacological assessment to identify potential safety liabilities in early drug discovery. Br J Pharmacol. 2008;154(7):1400–1413.
  • Chakraborty C, Hsu CH, Wen ZH, et al. Zebrafish: a complete animal model for in vivo drug discovery and development. Curr Drug Metab. 2009;10(2):116–124.
  • Huang CJ, Tu CT, Hsiao CD, et al. Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Dev Dyn. 2003;228(1):30–40.
  • Smith KA, Chocron S, von der Hardt S, et al. Rotation and asymmetric development of the zebrafish heart requires directed migration of cardiac progenitor cells. Dev Cell. 2008;14(2):287–297.
  • Wilson KS, Baily J, Tucker CS, et al. Early-life perturbations in glucocorticoid activity impacts on the structure, function and molecular composition of the adult zebrafish (Danio rerio) heart. Mol Cell Endocrinol. 2015;414:120–131.
  • Becker JR, Robinson TY, Sachidanandan C, et al. In vivo natriuretic peptide reporter assay identifies chemical modifiers of hypertrophic cardiomyopathy signalling. Cardiovasc Res. 2012;93(3):463–470.
  • Howe K, Clark MD, Torroja CF, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496(7446):498–503.
  • Koester R, Sassen WA. A molecular toolbox for genetic manipulation of zebrafish. Adv Genom Genet. 2015;5:151–163.
  • Gao Y, Liu J, Wang X, et al. Genetic manipulation in zebrafish. Sheng Wu Gong Cheng Xue Bao. 2017;33(10):1674–1692.
  • Summerton J. Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta. 1999;1489(1):141–158.
  • Stainier DYR, Raz E, Lawson ND, et al. Guidelines for morpholino use in zebrafish. PLoS Genet. 2017;13(10):e1007000.
  • Ledford H. CRISPR, the disruptor. Nature. 2015;522(7554):20–24.
  • Hendel A, Bak RO, Clark JT, et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol. 2015;33(9):985–989.
  • Zou J, Tran D, Baalbaki M, et al. An internal promoter underlies the difference in disease severity between N- and C-terminal truncation mutations of Titin in zebrafish. Elife. 2015;4:e09406.
  • Farr GH III, Imani K, Pouv D, et al. Functional testing of a human PBX3 variant in zebrafish reveals a potential modifier role in congenital heart defects. bioRxiv. 2018. DOI:10.1101/337832.
  • Stainier DYR. Zebrafish genetics and vertebrate heart formation. Nat Rev Genet. 2001;2:39–48.
  • Epstein FH, Epstein JA. A perspective on the value of aquatic models in biomedical research. Exp Biol Med. 2005;230(1):1–7.
  • Asnani A, Peterson RT. The zebrafish as a tool to identify novel therapies for human cardiovascular disease. Dis Model Mech. 2014;7(7):763–767.
  • Vornanen M, Hassinen M. Zebrafish heart as a model for human cardiac electrophysiology. Channels (Austin). 2016;10(2):101–110.
  • Burns CG, Milan DJ, Grande EJ, et al. High-throughput assay for small molecules that modulate zebrafish embryonic heart rate. Nat Chem Biol. 2005;1(5):263–264.
  • Chi NC, Shaw RM, Jungblut B, et al. Genetic and physiologic dissection of the vertebrate cardiac conduction system. PLoS Biol. 2008;6(5):e109.
  • Jagannathan-Bogdan M, Zon LI. Hematopoiesis. Development. 2013;140(12):2463–2467.
  • Paffett-Lugassy N, Hsia N, Fraenkel PG, et al. Functional conservation of erythropoietin signaling in zebrafish. Blood. 2007;110(7):2718–2726.
  • Childs S, Chen JN, Garrity DM, et al. Patterning of angiogenesis in the zebrafish embryo. Development. 2002;129(4):973–982.
  • Wang M, Sips P, Khin E, et al. Wars2 is a determinant of angiogenesis. Nat Commun. 2016;7:12061.
  • Hasan SS, Tsaryk R, Lange M, et al. Endothelial Notch signalling limits angiogenesis via control of artery formation. Nat Cell Biol. 2017;19(8):928–940.
  • Milan DJ, Peterson TA, Ruskin JN, et al. Drugs that induce repolarization abnormalities cause bradycardia in zebrafish. Circulation. 2003;107(10):1355–1358.
  • Ma X, Ding Y, Wang Y, et al. A doxorubicin-induced cardiomyopathy model in adult zebrafish. J Vis Exp. 2018;(136).
  • Yu PB, Deng DY, Lai CS, et al. BMP type I receptor inhibition reduces heterotopic ossification. Nat Med. 2008;14(12):1363–1369.
  • Ren B, Deng Y, Mukhopadhyay A, et al. ERK1/2-Akt1 crosstalk regulates arteriogenesis in mice and zebrafish. J Clin Invest. 2010;120(4):1217–1228.
  • Zhang Y, Wang J, Wheat J, et al. AML1-ETO mediates hematopoietic self-renewal and leukemogenesis through a COX/β-catenin signaling pathway. Blood. 2013;12:4906–4916.
  • Kokel D, Cheung CY, Mills R, et al. Photochemical activation of TRPA1 channels in neurons and animals. Nat Chem Biol. 2013;9(4):257–263.
  • Liu Y, Asnani A, Zou L, et al. Visnagin protects against doxorubicin-induced cardiomyopathy through modulation of mitochondrial malate dehydrogenase. Sci Transl Med. 2014;6(266):266ra170.
  • Asimaki A, Kapoor S, Plovie E, et al. Identification of a new modulator of the intercalated disc in a zebrafish model of arrhythmogenic cardiomyopathy. Sci Transl Med. 2014;6(240):240ra74.
  • Shin JT, Pomerantsev EV, Mably JD, et al. High-resolution cardiovascular function confirms functional orthology of myocardial contractility pathways in zebrafish. Physiol Genomics. 2010;42(2):300–309.
  • Rennekamp AJ, Peterson RT. 15 years of zebrafish chemical screening. Curr Opin Chem Biol. 2015;24:58–70.
  • MacRae CA, Peterson RT. Zebrafish as tools for drug discovery. Nat Rev Drug Discov. 2015;14(10):721–731.
  • Peterson RT, Shaw SY, Peterson TA, et al. Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat Biotechnol. 2004;22(5):595–599.
  • Hong CC, Peterson QP, Hong JY, et al. Artery/vein specification is governed by opposing phosphatidylinositol-3 kinase and MAP kinase/ERK signaling. Curr Biol. 2006;16(13):1366–1372.
  • Tran TC, Sneed B, Haider J, et al. Automated, quantitative screening assay for antiangiogenic compounds using transgenic zebrafish. Cancer Res. 2007;67(23):11386–11392.
  • Alvarez Y, Astudillo O, Jensen L, et al. Selective inhibition of retinal angiogenesis by targeting PI3 kinase. PLoS One. 2009;4(11):e7867.
  • Wang C, Tao W, Wang Y, et al. Rosuvastatin, identified from a zebrafish chemical genetic screen for antiangiogenic compounds, suppresses the growth of prostate cancer. Eur Urol. 2010;58(3):418–426.
  • Peal DS, Mills RW, Lynch SN, et al. Novel chemical suppressors of long QT syndrome identified by an in vivo functional screen. Circulation. 2011;123(1):23–30.
  • Huang CC, Monte A, Cook JM, et al. Zebrafish heart failure models for the evaluation of chemical probes and drugs. Assay Drug Dev Technol. 2013;11(9–10):561–572.
  • Tang C, Xie D, Feng B. Zebrafish as a new model for phenotype-based screening of positive inotropic agents. Chem Biol Drug Des. 2015;85(3):253–258.
  • Shimizu H, Schredelseker J, Huang J, et al. Mitochondrial Ca(2+) uptake by the voltage-dependent anion channel 2 regulates cardiac rhythmicity. Elife. 2015;4:e04801.
  • Reynolds AL, Alvarez Y, Sasore T, et al. Phenotype-based discovery of 2-[(E)-2-(Quinolin-2-yl)vinyl]phenol as a novel regulator of ocular angiogenesis. J Biol Chem. 2016;291(14):7242–7255.
  • Otten C, Knox J, Boulday G, et al. Systematic pharmacological screens uncover novel pathways involved in cerebral cavernous malformations. EMBO Mol Med. 2018;10(10):piie9155.
  • Sergeeva IA, Christoffels VM. Regulation of expression of atrial and brain natriuretic peptide, biomarkers for heart development and disease. Biochim Biophys Acta. 2013;1832(12):2403–2413.
  • Chelko SP, Asimaki A, Andersen P, et al. Central role for GSK3β in the pathogenesis of arrhythmogenic cardiomyopathy. JCI Insight. 2016;1(5).
  • Pott A, Rottbauer W, Just S. Functional genomics in zebrafish as a tool to identify novel antiarrhythmic targets. Curr Med Chem. 2014;21(11):1320–1329.
  • Chen JN, Haffter P, Odenthal J, et al. Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development. 1996;123:293–302.
  • Langheinrich U, Vacun G, Wagner T. Zebrafish embryos express an orthologue of HERG and are sensitive toward a range of QT-prolonging drugs inducing severe arrhythmia. Toxicol Appl Pharmacol. 2003;193(3):370–382.
  • Hassel D, Scholz EP, Trano N, et al. Deficient zebrafish ether-à-go-go-related gene channel gating causes short-QT syndrome in zebrafish reggae mutants. Circulation. 2008;117(7):866–875.
  • Arnaout R, Ferrer T, Huisken J, et al. Zebrafish model for human long QT syndrome. Proc Natl Acad Sci USA. 2007;104(27):11316–11321.
  • Pott A, Bock S, Berger IM, et al. Mutation of the Na+/K+-ATPase Atp1a1a.1 causes QT interval prolongation and bradycardia in zebrafish. J Mol Cell Cardiol. 2018;120:42–52.
  • Leong IU, Skinner JR, Shelling AN, et al. Identification and expression analysis of kcnh2 genes in the zebrafish. Biochem Biophys Res Commun. 2010;396(4):817–824.
  • Roden DM. Drug-induced prolongation of the QT interval. N Engl J Med. 2004;350(10):1013–1022.
  • Lee SH, Kim HR, Han RX, et al. Cardiovascular risk assessment of atypical antipsychotic drugs in a zebrafish model. J Appl Toxicol. 2013;33(6):466–470.
  • Dhillon SS, Dóró E, Magyary I, et al. Optimisation of embryonic and larval ECG measurement in zebrafish for quantifying the effect of QT prolonging drugs. PLoS One. 2013;8(4):e60552.
  • Milan DJ, Kim AM, Winterfield JR, et al. Drug-sensitized zebrafish screen identifies multiple genes, including GINS3, as regulators of myocardial repolarization. Circulation. 2009;120(7):553–559.
  • Langenbacher AD, Dong Y, Shu X, et al. Mutation in sodium-calcium exchanger 1 (NCX1) causes cardiac fibrillation in zebrafish. Proc Natl Acad Sci USA. 2005;102(49):17699–17704.
  • Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov. 2007;6(4):273–286.
  • Bandorski D, Hoeltgen R, Becker N, et al. Follow-up (measurement) of corrected QT interval in adult patients before and after lung transplantation. Biomed Res Int. 2017;2017:4519796.
  • Winterfield JR, Milan DJ. Dexamethasone suppresses long QT phenotype in patient with acute promyelocytic leukemia treated with arsenic. Heart Rhythm Case Rep. 2015;2(4):280–282.
  • White RM, Cech J, Ratanasirintrawoot S, et al. DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature. 2011;471(7339):518–522.
  • Owens KN, Santos F, Roberts B, et al. Identification of genetic and chemical modulators of zebrafish mechanosensory hair cell death. PLoS Genet. 2008;4(2):e1000020.
  • Chowdhury S, Owens KN, Herr RJ, et al. Phenotypic optimization of urea-thiophene carboxamides to yield potent, well tolerated, and orally active protective agents against aminoglycoside-induced hearing loss. J Med Chem. 2018;61(1):84–97.
  • Santoriello C, Zon LI. Hooked! Modeling human disease in zebrafish. J Clin Invest. 2012;122(7):2337–2343.
  • Postlethwait J, Amores A, Cresko W, et al. Subfunction partitioning, the teleost radiation and the annotation of the human genome. Trends Genet. 2004;20(10):481–490.
  • Mathias JR, Saxena MT, Mumm JS. Advances in zebrafish chemical screening technologies. Future Med Chem. 2012;4(14):1811–1822.
  • Berghmans S, Butler P, Goldsmith P, et al. Zebrafish based assays for the assessment of cardiac, visual and gut function–potential safety screens for early drug discovery. J Pharmacol Toxicol Methods. 2008;58(1):59–68.
  • Nath AK, Roberts LD, Liu Y, et al. Chemical and metabolomic screens identify novel biomarkers and antidotes for cyanide exposure. FASEB J. 2013;27(5):1928–1938.
  • Nath AK, Shi X, Harrison DL, et al. Cisplatin analogs confer protection against cyanide poisoning. Cell Chem Biol. 2017;24(5):565–575.
  • Sips PY, Shi X, Musso G, et al. Identification of specific metabolic pathways as druggable targets regulating the sensitivity to cyanide poisoning. PLoS One. 2018;13(6):e0193889.
  • Schenone M, Dančík V, Wagner BK, et al. Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol. 2013;9(4):232–240.
  • MacRae CA. Recent advances in in vivo screening for antiarrhythmic drugs. Expert Opin Drug Discov. 2013;8(2):131–141.
  • Dow LE. Modeling disease in vivo with CRISPR/Cas9. Trends Mol Med. 2015;21(10):609–621.
  • Liu J, Zhou Y, Qi X, et al. CRISPR/Cas9 in zebrafish: an efficient combination for human genetic diseases modeling. Hum Genet. 2017;136(1):1–12.
  • Zhang Y, Qin W, Lu X, et al. Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system. Nat Commun. 2017;8(1):118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.