410
Views
11
CrossRef citations to date
0
Altmetric
Perspective

Exciting advances in GPCR-based drugs discovery for treating metabolic disease and future perspectives

, , , &
Pages 421-431 | Received 16 Nov 2018, Accepted 13 Feb 2019, Published online: 01 Mar 2019

References

  • Olshansky SJ, Passaro DJ, Hershow RC, et al. A potential decline in life expectancy in the United States in the 21st century. N Engl J Med. 2005;352(11):1138–1145.
  • Brolin RE. Bariatric surgery and long-term control of morbid obesity. JAMA. 2002;288(22):2793–2796.
  • Cummings DE, Overduin J, Foster-Schubert KE. Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution. J Clin Endocrinol Metab. 2004;89(6):2608–2615.
  • Mechanick JI, Youdim A, Jones DB, et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient–2013 update: cosponsored by American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic & Bariatric Surgery. Surg Obes Relat Dis. 2013;9(2):159–191.
  • Srivastava G, Apovian CM. Current pharmacotherapy for obesity. Nat Rev Endocrinol. 2018;14(1):12–24.
  • Crowley VE, Yeo GS, O’Rahilly S. Obesity therapy: altering the energy intake-and-expenditure balance sheet. Nat Rev Drug Discov. 2002;1(4):276–286.
  • Hill JO, Peters JC. Environmental contributions to the obesity epidemic. Science. 1998;280(5368):1371–1374.
  • Lefkowitz RJ. Seven transmembrane receptors: something old, something new. Acta Physiol. 2007;190(1):9–19.
  • Alexander SP, Christopoulos A, Davenport AP, et al. The concise guide to pharmacology 2017/18: G protein-coupled receptors. Br J Pharmacol. 2017;174(Suppl 1):S17–S129.
  • Hauser AS, Chavali S, Masuho I, et al. Pharmacogenomics of gpcr drug targets. Cell. 2018;172(1–2):41–54 e19.
  • Hauser AS, Attwood MM, Rask-Andersen M, et al. Trends in gpcr drug discovery: new agents, targets and indications. Nat Rev Drug Discov. 2017;16(12):829–842.
  • Tschop MH, Finan B, Clemmensen C, et al. Unimolecular polypharmacy for treatment of diabetes and obesity. Cell Metab. 2016;24(1):51–62.
  • Muller TD, Clemmensen C, Finan B, et al. Anti-obesity therapy: from rainbow pills to polyagonists. Pharmacol Rev. 2018;70(4):712–746.
  • Nogueiras R, Romero-Pico A, Vazquez MJ, et al. The opioid system and food intake: homeostatic and hedonic mechanisms. Obes Facts. 2012;5(2):196–207.
  • Bodnar RJ. Endogenous opiates and behavior: 2016. Peptides. 2018;101:167–212.
  • Peng J, Sarkar S, Chang SL. Opioid receptor expression in human brain and peripheral tissues using absolute quantitative real-time RT-PCR. Drug Alcohol Depend. 2012;124(3):223–228.
  • Czyzyk TA, Nogueiras R, Lockwood JF, et al. Kappa-opioid receptors control the metabolic response to a high-energy diet in mice. FASEB J. 2010;24(4):1151–1159.
  • Czyzyk TA, Romero-Pico A, Pintar J, et al. Mice lacking delta-opioid receptors resist the development of diet-induced obesity. FASEB J. 2012;26(8):3483–3492.
  • Tabarin A, Diz-Chaves Y, Carmona Mdel C, et al. Resistance to diet-induced obesity in mu-opioid receptor-deficient mice: evidence for a “thrifty gene”. Diabetes. 2005;54(12):3510–3516.
  • Wen T, Peng B, Pintar JE. The mor-1 opioid receptor regulates glucose homeostasis by modulating insulin secretion. Mol Endocrinol. 2009;23(5):671–678.
  • Giugliano D, Cozzolino D, Ceriello A, et al. Beta-endorphin and islet hormone release in humans: evidence for interference with camp. Am J Physiol. 1989;257(3 Pt 1):E361–366.
  • Green IC, Perrin D, Pedley KC, et al. Effect of enkephalins and morphine on insulin secretion from isolated rat islets. Diabetologia. 1980;19(2):158–161.
  • Green IC, Perrin D, Penman E, et al. Effect of dynorphin on insulin and somatostatin secretion, calcium uptake, and c-amp levels in isolated rat islets of langerhans. Diabetes. 1983;32(8):685–690.
  • Tuduri E, Beiroa D, Stegbauer J, et al. Acute stimulation of brain mu opioid receptors inhibits glucose-stimulated insulin secretion via sympathetic innervation. Neuropharmacology. 2016;110(Pt A):322–332.
  • Bertino M, Beauchamp GK, Engelman K. Naltrexone, an opioid blocker, alters taste perception and nutrient intake in humans. Am J Physiol. 1991;261(1 Pt 2):R59–63.
  • MacIntosh CG, Sheehan J, Davani N, et al. Effects of aging on the opioid modulation of feeding in humans. J Am Geriatr Soc. 2001;49(11):1518–1524.
  • Halseth A, Shan K, Walsh B, et al. Method-of-use study of naltrexone sustained release (sr)/bupropion sr on body weight in individuals with obesity. Obesity. 2017;25(2):338–345.
  • Hollander P, Gupta AK, Plodkowski R, et al. Effects of naltrexone sustained-release/bupropion sustained-release combination therapy on body weight and glycemic parameters in overweight and obese patients with type 2 diabetes. Diabetes Care. 2013;36(12):4022–4029.
  • Lutz PE, Kieffer BL. Opioid receptors: distinct roles in mood disorders. Trends Neurosci. 2013;36(3):195–206.
  • Habegger KM, Heppner KM, Geary N, et al. The metabolic actions of glucagon revisited. Nat Rev Endocrinol. 2010;6(12):689–697.
  • Muller TD, Finan B, Clemmensen C, et al. The new biology and pharmacology of glucagon. Physiol Rev. 2017;97(2):721–766.
  • Sandoval DA, D’Alessio DA. Physiology of proglucagon peptides: role of glucagon and glp-1 in health and disease. Physiol Rev. 2015;95(2):513–548.
  • Quesada I, Tuduri E, Ripoll C, et al. Physiology of the pancreatic alpha-cell and glucagon secretion: role in glucose homeostasis and diabetes. J Endocrinol. 2008;199(1):5–19.
  • Lok S, Kuijper JL, Jelinek LJ, et al. The human glucagon receptor encoding gene: structure, cDNA sequence and chromosomal localization. Gene. 1994;140(2):203–209.
  • Svoboda M, Tastenoy M, Vertongen P, et al. Relative quantitative analysis of glucagon receptor mRNA in rat tissues. Mol Cell Endocrinol. 1994;105(2):131–137.
  • Kieffer TJ, Heller RS, Unson CG, et al. Distribution of glucagon receptors on hormone-specific endocrine cells of rat pancreatic islets. Endocrinology. 1996;137(11):5119–5125.
  • Quinones M, Al-Massadi O, Gallego R, et al. Hypothalamic camkkbeta mediates glucagon anorectic effect and its diet-induced resistance. Mol Metab. 2015;4(12):961–970.
  • Salter JM, Ezrin C, Laidlaw JC, et al. Metabolic effects of glucagon in human subjects. Metabolism. 1960;9:753–768.
  • Habegger KM, Stemmer K, Cheng C, et al. Fibroblast growth factor 21 mediates specific glucagon actions. Diabetes. 2013;62(5):1453–1463.
  • Billington CJ, Briggs JE, Link JG, et al. Glucagon in physiological concentrations stimulates brown fat thermogenesis in vivo. Am J Physiol. 1991;261(2 Pt 2):R501–507.
  • Nair KS. Hyperglucagonemia increases resting metabolic rate in man during insulin deficiency. J Clin Endocrinol Metab. 1987;64(5):896–901.
  • Schulman JL, Carleton JL, Whitney G, et al. Effect of glucagon on food intake and body weight in man. J Appl Physiol. 1957;11(3):419–421.
  • Geary N, Smith GP. Selective hepatic vagotomy blocks pancreatic glucagon’s satiety effect. Physiol Behav. 1983;31(3):391–394.
  • Kim T, Nason S, Holleman C, et al. Glucagon receptor signaling regulates energy metabolism via hepatic farnesoid x receptor and fibroblast growth factor 21. Diabetes. 2018;67(9):1773–1782.
  • Sloop KW, Cao JX, Siesky AM, et al. Hepatic and glucagon-like peptide-1-mediated reversal of diabetes by glucagon receptor antisense oligonucleotide inhibitors. J Clin Invest. 2004;113(11):1571–1581.
  • Conarello SL, Jiang G, Mu J, et al. Glucagon receptor knockout mice are resistant to diet-induced obesity and streptozotocin-mediated beta cell loss and hyperglycaemia. Diabetologia. 2007;50(1):142–150.
  • Gelling RW, Du XQ, Dichmann DS, et al. Lower blood glucose, hyperglucagonemia, and pancreatic alpha cell hyperplasia in glucagon receptor knockout mice. Proc Natl Acad Sci USA. 2003;100(3):1438–1443.
  • Gelling RW, Vuguin PM, Du XQ, et al. Pancreatic beta-cell overexpression of the glucagon receptor gene results in enhanced beta-cell function and mass. Am J Physiol Endocrinol Metab. 2009;297(3):E695–707.
  • Basolo A, Burkholder J, Osgood K, et al. Exenatide has a pronounced effect on energy intake but not energy expenditure in non-diabetic subjects with obesity: A randomized, double-blind, placebo-controlled trial. Metabolism. 2018;85:116–125.
  • Blundell J, Finlayson G, Axelsen M, et al. Effects of once-weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity. Diabetes Obes Metab. 2017;19(9):1242–1251.
  • Madsbad S. Review of head-to-head comparisons of glucagon-like peptide-1 receptor agonists. Diabetes Obes Metab. 2016;18(4):317–332.
  • Pearson MJ, Unger RH, Holland WL. Clinical trials, triumphs, and tribulations of glucagon receptor antagonists. Diabetes Care. 2016;39(7):1075–1077.
  • Kazda CM, Ding Y, Kelly RP, et al. Evaluation of efficacy and safety of the glucagon receptor antagonist ly2409021 in patients with type 2 diabetes: 12- and 24-week phase 2 studies. Diabetes Care. 2016;39(7):1241–1249.
  • Bullock BP, Heller RS, Habener JF. Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology. 1996;137(7):2968–2978.
  • Wei Y, Mojsov S. Distribution of glp-1 and pacap receptors in human tissues. Acta Physiol Scand. 1996;157(3):355–357.
  • Turton MD, O’Shea D, Gunn I, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature. 1996;379(6560):69–72.
  • Raun K, von Voss P, Gotfredsen CF, et al. Liraglutide, a long-acting glucagon-like peptide-1 analog, reduces body weight and food intake in obese candy-fed rats, whereas a dipeptidyl peptidase-iv inhibitor, vildagliptin, does not. Diabetes. 2007;56(1):8–15.
  • Sisley S, Gutierrez-Aguilar R, Scott M, et al. Neuronal glp1r mediates liraglutide’s anorectic but not glucose-lowering effect. J Clin Invest. 2014;124(6):2456–2463.
  • Beiroa D, Imbernon M, Gallego R, et al. Glp-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic ampk. Diabetes. 2014;63(10):3346–3358.
  • Finan B, Clemmensen C, Muller TD. Emerging opportunities for the treatment of metabolic diseases: glucagon-like peptide-1 based multi-agonists. Mol Cell Endcorinol. 2015;418(Pt 1):42–54.
  • Sanchez-Garrido MA, Brandt SJ, Clemmensen C, et al. Glp-1/glucagon receptor co-agonism for treatment of obesity. Diabetologia. 2017;60(10):1851–1861.
  • Painter NA, Morello CM, Singh RF, et al. An evidence-based and practical approach to using bydureon in patients with type 2 diabetes. J Am Board Fam Med. 2013;26(2):203–210.
  • Rosenstock J, Raccah D, Koranyi L, et al. Efficacy and safety of lixisenatide once daily versus exenatide twice daily in type 2 diabetes inadequately controlled on metformin: A 24-week, randomized, open-label, active-controlled study (getgoal-x). Diabetes Care. 2013;36(10):2945–2951.
  • Trujillo JM, Nuffer W, Ellis SL. Glp-1 receptor agonists: A review of head-to-head clinical studies. Ther Adv Endocrinol Metab. 2015;6(1):19–28.
  • Meier JJ. Glp-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2012;8(12):728–742.
  • Trujillo JM, Goldman J. Lixisenatide, a once-daily prandial glucagon-like peptide-1 receptor agonist for the treatment of adults with type 2 diabetes. Pharmacotherapy. 2017;37(8):927–943.
  • Larsen PJ, Fledelius C, Knudsen LB, et al. Systemic administration of the long-acting glp-1 derivative nn2211 induces lasting and reversible weight loss in both normal and obese rats. Diabetes. 2001;50(11):2530–2539.
  • Buse JB, Rosenstock J, Sesti G, et al. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: A 26-week randomised, parallel-group, multinational, open-label trial (lead-6). Lancet. 2009;374(9683):39–47.
  • Ahmann AJ, Capehorn M, Charpentier G, et al. Efficacy and safety of once-weekly semaglutide versus exenatide er in subjects with type 2 diabetes (sustain 3): A 56-week, open-label, randomized clinical trial. Diabetes Care. 2018;41(2):258–266.
  • O’Neil PM, Birkenfeld AL, McGowan B, et al. Efficacy and safety of semaglutide compared with liraglutide and placebo for weight loss in patients with obesity: A randomised, double-blind, placebo and active controlled, dose-ranging, phase 2 trial. Lancet. 2018;392(10148):637–649.
  • Gallwitz B, Dagogo-Jack S, Thieu V, et al. Effect of once-weekly dulaglutide on glycated haemoglobin (HbA1c) and fasting blood glucose in patient subpopulations by gender, duration of diabetes and baseline HbA1c. Diabetes Obes Metab. 2018;20(2):409–418.
  • Jendle J, Grunberger G, Blevins T, et al. Efficacy and safety of dulaglutide in the treatment of type 2 diabetes: A comprehensive review of the dulaglutide clinical data focusing on the award phase 3 clinical trial program. Diabetes Metab Res Rev. 2016;32(8):776–790.
  • Rosenstock J, Reusch J, Bush M, et al. Potential of albiglutide, a long-acting GLP-1 receptor agonist, in type 2 diabetes: A randomized controlled trial exploring weekly, biweekly, and monthly dosing. Diabetes Care. 2009;32(10):1880–1886.
  • Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–1844.
  • Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–322.
  • Pfeffer MA, Claggett B, Diaz R, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015;373(23):2247–2257.
  • Takeda J, Seino Y, Tanaka K, et al. Sequence of an intestinal cDNA encoding human gastric inhibitory polypeptide precursor. Proc Natl Acad Sci USA. 1987;84(20):7005–7008.
  • Fujita Y, Wideman RD, Asadi A, et al. Glucose-dependent insulinotropic polypeptide is expressed in pancreatic islet alpha-cells and promotes insulin secretion. Gastroenterology. 2010;138(5):1966–1975.
  • Nyberg J, Jacobsson C, Anderson MF, et al. Immunohistochemical distribution of glucose-dependent insulinotropic polypeptide in the adult rat brain. J Neurosci Res. 2007;85(10):2099–2119.
  • Usdin TB, Mezey E, Button DC, et al. Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain. Endocrinology. 1993;133(6):2861–2870.
  • Dupre J, Ross SA, Watson D, et al. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab. 1973;37(5):826–828.
  • Christensen M, Vedtofte L, Holst JJ, et al. Glucose-dependent insulinotropic polypeptide: A bifunctional glucose-dependent regulator of glucagon and insulin secretion in humans. Diabetes. 2011;60(12):3103–3109.
  • Finan B, Muller TD, Clemmensen C, et al. Reappraisal of GIP pharmacology for metabolic diseases. Trends Mol Med. 2016;22(5):359–376.
  • Tseng CC, Jarboe LA, Wolfe MM. Regulation of glucose-dependent insulinotropic peptide gene expression by a glucose meal. Am J Physiol. 1994;266(5 Pt 1):G887–G891.
  • Salera M, Giacomoni P, Pironi L, et al. Gastric inhibitory polypeptide release after oral glucose: relationship to glucose intolerance, diabetes mellitus, and obesity. J Clin Endocrinol Metab. 1982;55(2):329–336.
  • Eckel RH, Fujimoto WY, Brunzell JD. Gastric inhibitory polypeptide enhanced lipoprotein lipase activity in cultured preadipocytes. Diabetes. 1979;28(12):1141–1142.
  • Miyawaki K, Yamada Y, Ban N, et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med. 2002;8(7):738–742.
  • Nakamura T, Tanimoto H, Mizuno Y, et al. Gastric inhibitory polypeptide receptor antagonist, skl-14959, suppressed body weight gain on diet-induced obesity mice. Obes Sci Pract. 2018;4(2):194–203.
  • Pathak V, Gault VA, Flatt PR, et al. Antagonism of gastric inhibitory polypeptide (GIP) by palmitoylation of GIP analogues with N- and C-terminal modifications improves obesity and metabolic control in high fat fed mice. Mol Cell Endocrinol. 2015;401:120–129.
  • McClean PL, Irwin N, Cassidy RS, et al. Gip receptor antagonism reverses obesity, insulin resistance, and associated metabolic disturbances induced in mice by prolonged consumption of high-fat diet. Am J Physiol Endocrinol Metab. 2007;293(6):E1746–E1755.
  • Killion EA, Wang J, Yie J, et al. Anti-obesity effects of GIPR antagonists alone and in combination with GLP-1R agonists in preclinical models. Sci Transl Med. 2018;10(472):1–11.
  • Boylan MO, Glazebrook PA, Tatalovic M, et al. Gastric inhibitory polypeptide immunoneutralization attenuates development of obesity in mice. Am J Physiol Endocrinol Metab. 2015;309(12):E1008–1018.
  • Kim SJ, Nian C, Karunakaran S, et al. Gip-overexpressing mice demonstrate reduced diet-induced obesity and steatosis, and improved glucose homeostasis. PloS One. 2012;7(7):e40156.
  • Gault VA, Kerr BD, Harriott P, et al. Administration of an acylated GLP-1 and GIP preparation provides added beneficial glucose-lowering and insulinotropic actions over single incretins in mice with type 2 diabetes and obesity. Clin Sci (Lond). 2011;121(3):107–117.
  • Norregaard PK, Deryabina MA, Tofteng Shelton P, et al. A novel gip analogue, ZP4165, enhances glucagon-like peptide-1-induced body weight loss and improves glycaemic control in rodents. Diabetes Obes Metab. 2018;20(1):60–68.
  • Millar PJ, Pathak V, Moffett RC, et al. Beneficial metabolic actions of a stable GIP agonist following pre-treatment with a SGLT2 inhibitor in high fat fed diabetic mice. Mol Cell Endocrinol. 2016;420:37–45.
  • Finan B, Ma T, Ottaway N, et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci Transl Med. 2013;5(209):209ra151.
  • Schmitt C, Portron A, Jadidi S, et al. Pharmacodynamics, pharmacokinetics and safety of multiple ascending doses of the novel dual glucose-dependent insulinotropic polypeptide/glucagon-like peptide-1 agonist RG7697 in people with type 2 diabetes mellitus. Diabetes Obes Metab. 2017;19(10):1436–1445.
  • Frias JP, Bastyr EJ 3rd, Vignati L, et al. The sustained effects of a dual GIP/GLP-1 receptor agonist, NNC0090-2746, in patients with type 2 diabetes. Cell Metab. 2017;26(2):343–352e342.
  • Frias JP, Nauck MA, Van J, et al. Efficacy and safety of ly3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: A randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet. 2018;392(10160):2180–2193.
  • Sparre-Ulrich AH, Hansen LS, Svendsen B, et al. Species-specific action of (pro3)GIP - a full agonist at human GIP receptors, but a partial agonist and competitive antagonist at rat and mouse gip receptors. Br J Pharmacol. 2016;173(1):27–38.
  • Mroz PA, Finan B, Gelfanov V, et al. Optimized GIP analogs promote body weight lowering in mice through GIPR agonism not antagonism. Mol Metab. 2019;20:51–62.
  • Wellman PJ, Maher TJ. Synergistic interactions between fenfluramine and phentermine. Int J Obes Relat Metab. 1999;23(7):723–732.
  • Ambery P, Parker VE, Stumvoll M, et al. Medi0382, a GLP-1 and glucagon receptor dual agonist, in obese or overweight patients with type 2 diabetes: A randomised, controlled, double-blind, ascending dose and phase 2a study. Lancet. 2018;391(10140):2607–2618.
  • SMART: Servier Medical Art. [cited 13 Feb 2019] Available from: https://smart.servier.com/
  • Day JW, Ottaway N, Patterson JT, et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat Chem Biol. 2009;5(10):749–757.
  • Clemmensen C, Chabenne J, Finan B, et al. GLP-1/glucagon coagonism restores leptin responsiveness in obese mice chronically maintained on an obesogenic diet. Diabetes. 2014;63(4):1422–1427.
  • Day JW, Gelfanov V, Smiley D, et al. Optimization of co-agonism at GLP-1 and glucagon receptors to safely maximize weight reduction in dio-rodents. Biopolymers. 2012;98(5):443–450.
  • Pocai A, Carrington PE, Adams JR, et al. Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes. 2009;58(10):2258–2266.
  • Lao J, Hansen BC, DImarchi R, et al. Effect of GLP-1/GCGR dual agonist in monkeys. Diabetes. 2013;62:A257–A257.
  • Evers A, Haack T, Lorenz M, et al. Design of novel exendin-based dual glucagon-like peptide 1 (GLP-1)/glucagon receptor agonists. J Med Chem. 2017;60(10):4293–4303.
  • Henderson SJ, Konkar A, Hornigold DC, et al. Robust anti-obesity and metabolic effects of a dual GLP-1/glucagon receptor peptide agonist in rodents and non-human primates. Diabetes Obes Metab. 2016;18(12):1176–1190.
  • Tillner J, Posch MG, Wagner F, et al. A novel dual glucagon-like peptide and glucagon receptor agonist sar425899: results of randomized, placebo-controlled first-in-human and first-in-patient trials. Diabetes Obes Metab. 2019;21(1):120–128.
  • Nauck MA, Heimesaat MM, Orskov C, et al. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest. 1993;91(1):301–307.
  • Coskun T, Sloop KW, Loghin C, et al. Ly3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept. Mol Metab. 2018;18:3–14.
  • NamKoong C, Kim MS, Jang BT, et al. Central administration of GLP-1 and GIP decreases feeding in mice. Biochem Biophys Res Commun. 2017;490(2):247–252.
  • Bhat VK, Kerr BD, Flatt PR, et al. A novel gip-oxyntomodulin hybrid peptide acting through GIP, glucagon and GLP-1 receptors exhibits weight reducing and anti-diabetic properties. Biochem Pharmacol. 2013;85(11):1655–1662.
  • Gault VA, Bhat VK, Irwin N, et al. A novel glucagon-like peptide-1 (GLP-1)/glucagon hybrid peptide with triple-acting agonist activity at glucose-dependent insulinotropic polypeptide, GLP-1, and glucagon receptors and therapeutic potential in high fat-fed mice. J Biol Chem. 2013;288(49):35581–35591.
  • Bhat VK, Kerr BD, Vasu S, et al. A dpp-iv-resistant triple-acting agonist of GIP, GLP-1 and glucagon receptors with potent glucose-lowering and insulinotropic actions in high-fat-fed mice. Diabetologia. 2013;56(6):1417–1424.
  • Finan B, Yang B, Ottaway N, et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat Med. 2015;21(1):27–36.
  • Jall S, Sachs S, Clemmensen C, et al. Monomeric GLP-1/GIP/glucagon triagonism corrects obesity, hepatosteatosis, and dyslipidemia in female mice. Mol Metab. 2017;6(5):440–446.
  • Finan B, Yang B, Ottaway N, et al. Targeted estrogen delivery reverses the metabolic syndrome. Nat Med. 2012;18(12):1847–1856.
  • Quarta C, Clemmensen C, Zhu Z, et al. Molecular integration of incretin and glucocorticoid action reverses immunometabolic dysfunction and obesity. Cell Metab. 2017;26(4):620–632. e626.
  • Finan B, Clemmensen C, Zhu Z, et al. Chemical hybridization of glucagon and thyroid hormone optimizes therapeutic impact for metabolic disease. Cell. 2016;167(3):843–857. e814.
  • Fitzpatrick S, Gilbert S, Serpell L. Systematic review: are overweight and obese individuals impaired on behavioural tasks of executive functioning? Neuropsychol Rev. 2013;23(2):138–156.
  • Smith E, Hay P, Campbell L, et al. A review of the association between obesity and cognitive function across the lifespan: implications for novel approaches to prevention and treatment. Obes Rev. 2011;12(9):740–755.
  • Crichton GE, Elias MF, Buckley JD, et al. Metabolic syndrome, cognitive performance, and dementia. J Alzheimers Dis. 2012;30(Suppl 2):S77–87.
  • Palleria C, Leporini C, Maida F, et al. Potential effects of current drug therapies on cognitive impairment in patients with type 2 diabetes. Front Neuroendocrinol. 2016;42:76–92.
  • McClean PL, Jalewa J, Holscher C. Prophylactic liraglutide treatment prevents amyloid plaque deposition, chronic inflammation and memory impairment in app/ps1 mice. Behav Brain Res. 2015;293:96–106.
  • McClean PL, Holscher C. Lixisenatide, a drug developed to treat type 2 diabetes, shows neuroprotective effects in a mouse model of Alzheimer’s disease. Neuropharmacology. 2014;86:241–258.
  • Gault VA, Lennox R, Flatt PR. Sitagliptin, a dipeptidyl peptidase-4 inhibitor, improves recognition memory, oxidative stress and hippocampal neurogenesis and upregulates key genes involved in cognitive decline. Diabetes Obes Metab. 2015;17(4):403–413.
  • Aviles-Olmos I, Dickson J. Motor and cognitive advantages persist 12 months after exenatide exposure in Parkinson’s disease. J Parkinsons Dis. 2014;4(3):337–344.
  • Palleria C, Leo A, Andreozzi F, et al. Liraglutide prevents cognitive decline in a rat model of streptozotocin-induced diabetes independently from its peripheral metabolic effects. Behav Brain Res. 2017;321:157–169.
  • Kamei N, Okada N, Ikeda T, et al. Effective nose-to-brain delivery of exendin-4 via coadministration with cell-penetrating peptides for improving progressive cognitive dysfunction. Sci Rep. 2018;8(1):17641.
  • Mansur RB, Lee Y, Subramaniapillai M, et al. Cognitive dysfunction and metabolic comorbidities in mood disorders: A repurposing opportunity for glucagon-like peptide 1 receptor agonists? Neuropharmacology. 2018;136(Pt B):335–342.
  • Porter DW, Irwin N, Flatt PR, et al. Prolonged gip receptor activation improves cognitive function, hippocampal synaptic plasticity and glucose homeostasis in high-fat fed mice. Eur J Pharmacol. 2011;650(2–3):688–693.
  • Pathak NM, Pathak V, Gault VA, et al. Novel dual incretin agonist peptide with antidiabetic and neuroprotective potential. Biochem Pharmacol. 2018;155:264–274.
  • Faivre E, Holscher C. D-ala2gip facilitated synaptic plasticity and reduces plaque load in aged wild type mice and in an alzheimer’s disease mouse model. J Alzheimers Dis. 2013;35(2):267–283.
  • Feng P, Zhang X, Li D, et al. Two novel dual GLP-1/GIP receptor agonists are neuroprotective in the MPTP mouse model of Parkinson’s disease. Neuropharmacology. 2018;133:385–394.
  • Cao Y, Holscher C, Hu MM, et al. Da5-ch, a novel GLP-1/GIP dual agonist, effectively ameliorates the cognitive impairments and pathology in the APP/PS1 mouse model of Alzheimer’s disease. Eur J Pharmacol. 2018;827:215–226.
  • Tai J, Liu W, Li Y, et al. Neuroprotective effects of a triple GLP-1/GIP/glucagon receptor agonist in the APP/PS1 transgenic mouse model of Alzheimer’s disease. Brain Res. 2018;1678:64–74.
  • Li T, Jiao JJ, Holscher C, et al. A novel GLP-1/GIP/GCG triagonist reduces cognitive deficits and pathology in the 3xtg mouse model of Alzheimer’s disease. Hippocampus. 2018;28(5):358–372.
  • Athauda D, Maclagan K, Skene SS, et al. Exenatide once weekly versus placebo in parkinson’s disease: A randomised, double-blind, placebo-controlled trial. Lancet. 2017;390(10103):1664–1675.
  • Bain SC, Mosenzon O, Arechavaleta R, et al. Cardiovascular safety of oral semaglutide in patients with type 2 diabetes: rationale, design and patient baseline characteristics for the pioneer 6 trial. Diabetes Obes Metab. 2019;21(3):499–508.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.