841
Views
49
CrossRef citations to date
0
Altmetric
Review

Using artificial intelligence methods to speed up drug discovery

ORCID Icon & ORCID Icon
Pages 769-777 | Received 13 Dec 2018, Accepted 16 May 2019, Published online: 29 May 2019

References

  • DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ. 2016;47:20–33. doi: 10.1016/j.jhealeco.2016.01.012.
  • Cook D, Brown D, Alexander R, et al. Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat Rev Drug Discov. 2014;13:419–431.
  • Fernández-Martínez JL, Pallero J, Fernández Muniz Z. The effect of noise and Tikhonov’s regularization in inverse problems. Part I: the linear case. J Appl Geophys. 2014a;108:176–185.
  • Fernández-Martínez JL, Pallero J, Fernández Muniz Z. The effect of noise and Tikhonov’s regularization in inverse problems. Part II: the nonlinear case. J Appl Geophys. 2014b;108:186–193.
  • De Andrés-Galiana EJ, Fernández-Martínez JL, Sonis S. Sensitivity analysis of gene ranking methods in phenotype prediction. J Biomed Inf. 2016b;64:255–264.
  • De Andrés-Galiana EJ, Fernández-Martínez JL, Saligan LN, et al. Impact of microarray preprocessing techniques in unraveling biological pathways. J Comp Bio. 2016c;23:957–968.
  • Cernea A, Fernández-Martínez JL, deAndrés-Galiana EJ, et al. Sampling defective pathways in phenotype prediction problems via the Fisher’s Ratio sampler. International Conference on Bioinformatics and Biomedical Engineering, Granada, Spain. 2018, pp. 15–23.
  • Cernea A, Fernández-Martínez JL, deAndrés-Galiana EJ, et al. Comparison of different sampling algorithms for phenotype prediction. International Conference on Bioinformatics and Biomedical Engineering, Granada, Spain. 2018, pp. 33–45.
  • Fernández-Martínez JL, deAndrés-Galiana EJ, Sonis ST. Genomic data integration in chronic lymphocytic leukemia. J Gene Med. 2017a;19:2936.
  • Chen P, Mancini M, Sonis ST, et al. A novel peptide for simultaneously enhanced treatment of head and neck cancer and mitigation of oral mucositis. PloS One. 2016;11:e0152995.
  • Saligan LN, deAndrés-Galiana EJ, Fernández-Martínez JL, et al. Supervised classification by filter methods and recursive feature elimination predicts risk of radiotherapy-related fatigue in patients with prostate cancer. Cancer Inform. 2014;13:141–152.
  • Hashemi S, Fernandez Martinez JL, Saligan L, et al. Exploring genetic attributions underlying radiotherapy-induced fatigue in prostate cancer patients. J Pain Symptom Manage. 2017;54:326–339.
  • Reinbolt RE, Sonis S, Timmers CD, et al. Genomic risk prediction of aromatase inhibitor-related arthralgia in patients with breast cancer using a novel machine-learning algorithm. Cancer Med. 2017;7:240–253.
  • Feng LR, Fernández-Martínez JL, Zaal KJM, et al. mGluR5 mediates post-radiotherapy fatigue development in cancer patients. Transl Psychiatry. 2018;8:110.
  • Fernández-Martínez JL, Fernández-Muñiz MZ, Tompkins MJ. On the topography of the cost functional in linear and nonlinear inverse problems. Geophys. 2012;77:W1–W15.
  • Fernández-Martínez JL, Pallero JLG, Fernández-Muñiz Z, et al. From Bayes to Tarantola: new insights to understand uncertainty in inverse problems. J App Geophys. 2013;98:62–72.
  • De Andrés-Galiana EJ, Fernández-Martínez JL, Sonis S. Design of biomedical robots for phenotype prediction problems. J Comp Bio. 2016a;23:678–692.
  • Fernández-Martínez JL, Cernea A, Fernández-Ovies FJ, et al., others. Sampling defective pathways in phenotype prediction problems via the Holdout sampler. International Conference on Bioinformatics and Biomedical Engineering, Granada, Spain. 2018. p. 24–32.
  • Fernández-Martínez JL, deAndrés-Galiana EJ, Cernea A, et al. Robust sampling of defective pathways in Parkinson disease. J Med Inf Decis Mak. 2019a;1:37–52.
  • Altman NS. An introduction to kernel and nearest-neighbour nonparametric regression. Am Stat. 1992;46:175–185.
  • Breiman L. Random Forests. Mach Learn. 2001;45:5–32.
  • Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: theory and applications. Neurocomputing. 2006;70:489–501.
  • Cortes C, Vapnik VN. Support-vector networks. Mach Learn. 1995;20:273–297.
  • Zaccone G, Karim MR, Menshawy A. Deep Learning with TensorFlow. Birmingham (UK): Packt Publishing Ltd; 2017.
  • Scannel JW, Blanckley A, Boldon H, et al. Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov. 2012;11:191–200.
  • Speck-Planche A, Cordeiro MNDS. Chemoinformatics for medicinal chemistry: in silico model to enable the discovery of potent and safer anti-cocci agents. Future Med Chem. 2014;6:2013–2028.
  • Speck-Planche A, Cordeiro MNDS. Enabling virtual screening of potent and safer antimicrobial agents against noma: mtk-QSBER model for simultaneous prediction of antibacterial activities and ADMET properties. Mini Rev Med Chem. 2015;15:194–202.
  • Tenorio-Borroto E, Ramirez FR, Speck-Planche A, et al. QSPR and flow cytometry analysis (QSPR-FCA): review and new findings on parallel study of multiple interactions of chemical compounds with immune cellular and molecular targets. Curr Drug Metab. 2014;15:414–428.
  • Speck-Planche A, Kleandrova VV, Luan F, et al. Computational modeling in nanomedicine: prediction of multiple antibacterial profiles of nanoparticles using a quantitative structure-activity relationship perturbation model. Nanomedicine (Lond). 2015;10:193–204.
  • Speck-Planche A, Cordeiro MNDS. Computer-aided discovery in antimicrobial research: in silico model for virtual screening of potent and safe anti-Pseudomonas agents. Comb Chem High Throughput Screen. 2015;18:305–314.
  • Martínez-Arzate SG, Tenorio-Borroto E, Barbabosa Pliego A, et al. PTML model for proteome mining of B-cell epitopes and theoretical-experimental study of Bm86 protein sequences from Colima, Mexico. J Proteome Res. 2017;16:4093–4103.
  • Tenorio-Borroto E, Ramírez FR, Speck-Planche A, et al. QSPR and flow cytometry analysis (QSPR-FCA): review and new findings on parallel study of multiple interactions of chemical compounds with immune cellular and molecular targets. Curr Drug Metab. 2014;15:414–428.
  • Ferreira Da Costa J, Silva D, Caamaño O, et al. Perturbation theory/machine learning model of ChEMBL data for dopamine targets: docking, synthesis, and assay of New l-Prolyl-l-leucyl-glycinamide Peptidomimetics. ACS Chem Neurosci. 2018;9:2572–2587.
  • Romero-Duran FJ, Alonso N, Yanez M, et al. Brain-inspired cheminformatics of drug-target brain interactome, synthesis, and assay of TVP1022 derivatives. Neuropharmacology. 2016;103:270–278.
  • Molina E, Sobarzo-Sanchez E, Speck-Planche A, et al. Monoamino oxidase a: an interesting pharmacological target for the development of multi-target QSAR. Mini Rev Med Chem. 2012;12:947–958.
  • Speck-Planche A. Multicellular target QSAR model for simultaneous prediction and design of anti-pancreatic cancer agents. ACS Omega. 2009;4:3122–3132.
  • Bediaga H, Arrasate S, Gonzalez-Diaz H. PTML combinatorial model of ChEMBL compounds assays for multiple types of cancer. ACS Comb Sci. 2018;20:621–632.
  • Speck-Planche A, Cordeiro MNDS. De novo computational design of compounds virtually displaying potent antibacterial activity and desirable in vitro ADMET profiles. Med Chem Res. 2017;26:2345–2356.
  • Speck-Planche A, Cordeiro MNDS. Speeding up early drug discovery in antiviral research: A fragment-based in silico approach for the design of virtual anti-hepatitis C leads. ACS Comb Sci. 2017;19:501–512.
  • Kleandrova VV, Speck Planche A. Multitasking model for computer-aided design and virtual screening of compounds with high anti-HIV activity and desirable ADMET properties. In: Speck-Planche A, editor. Multi-scale approaches in drug discovery: from empirical knowledge to in silico experiments and back. Vol. 2017. 1st ed. Oxford, UK: Elsevier; 2017. p. 55–81.
  • Kleandrova VV, Ruso JM, Speck-Planche A, et al. Enabling the discovery and virtual screening of potent and safe antimicrobial peptides. simultaneous prediction of antibacterial activity and cytotoxicity. ACS Comb Sci. 2016;18:490–498.
  • Swinney DC, Jason TI. How were new medicines discovered? Nat Rev Drug Discov. 2011;10:507–519.
  • Berger SI, Iyengar R. Network analyses in systems pharmacology. Bioinformatics. 2009;25:2466–2472.
  • Xie L, Ge X, Tan H, et al. Towards structural systems pharmacology to study complex diseases and personalized medicine. PLOS Comp Bio. 2009;10:e1003554.
  • Arrell DK, Terzic A. Network systems biology for drug discovery. Clin Pharmacol Ther. 2010;88:120–125.
  • Gottlieb A, Stein GY, Ruppin E, et al. PREDICT: a method for inferring novel drug indications with application to personalized medicine. Mol Syst Biol. 2011;7:496.
  • Lee J-H, Kim DG, Bae TJ, et al. CDA: combinatorial drug discovery using transcriptional response modules. PLoS One. 2012;7:e42573.
  • Lee CS, Nagy PG, Weaver SJ, et al. Cognitive and system factors contributing to diagnostic errors in radiology. AJR Am J Roentgenol. 2013;201:611–617.
  • Wu Z, Li W, Liu G, et al. Network-based methods for prediction of drug-target interactions. Front Pharmacol. 2018;9:1134. [Published 2018 Oct 9]
  • Campillos M, Kuh M, Gavin AC, et al. Drug target identification using side effect similarity. Science. 2008;321:263–266.
  • Yang L, Agarwal P. Systematic drug repositioning based on clinical side-effects. PLos One. 2011;6:e0028025.
  • Wu Z, Li W, Liu G, et al. Network based methods for prediction of drug-target interactions. Front Pharmacol. 2018;9:1134.
  • Greenberg SA, Sanoudou D, Haslett JN, et al. Molecular profiles of inflammatory myopathies. Neurology. 2002;59:1170–1182.
  • Fernández-Martínez JL, Alvarez O, De Andrés EJ, et al. Robust sampling of altered pathways for drug repositioning reveals promising novel therapeutics for inclusion body Myositis. J Rare Dis Res Treat. 2019;4(2):7–15.
  • Lamb J, Crawford ED, Peck D, et al. The connectivity map: using gene-expression signatures to connect small molecules. Genes Dis Sci. 2006;313:1929–1935.
  • Setoain J, Franch M, Martínez M, et al. NFFinder: an online bioinformatics tool for searching similar transcriptomics experiments in the context of drug repositioning. Nucleic Acids Res. 2015;43:W193–199.
  • Kuhn M, Letunic I, Jensen LJ, et al. The SIDER database of drugs and side effects. Nucleic Acids Res. 2015;44:D1075–D1079.
  • Weingart SN, Wilson RM, Gibberd RW, et al. Epidemiology of medical error. Bmj. 2000;320:774–777.
  • Graber ML, Franklin N, Gordon R. Diagnostic error in internal medicine. Arch Intern Med. 2005;165:1493–1499.
  • Winters B, Custer J, Galvagno SM, et al. Diagnostic errors in the intensive care unit: a systematic review of autopsy studies. BMJ Qual Saf. 2012;21:894–902.
  • Taboureau O, Jørgensen FS. In silico predictions of hERG channel blockers in drug discovery: from ligand-based and target-based approaches to systems chemical biology. Comb Chem High Throughput Screen. 2011;14:375–387.
  • Marchant CA, Briggs KA, Long A. In silico tools for sharing data and knowledge on toxicity and metabolism: derek for Windows, Meteor, and Vitic. Toxicol Mech Methods. 2008;18:177–187.
  • Ekins S, Mestres J, Testa B. In silico pharmacology for drug discovery: applications to targets and beyond. Br J Pharmacol. 2007;152:21–37.
  • Jin G, Fu C, Zhao H, et al. A novel method of transcriptional response analysis to facilitate drug repositioning for cancer therapy. Cancer Res. 2012;72:33–44.
  • Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Trans Evol Comp. 1997;1:67–82.
  • Ezkurdia I, Juan D, Jm R, et al. Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes. Hum Mol Genet. 2014;23:5866–5878.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.