523
Views
53
CrossRef citations to date
0
Altmetric
Review

Developments with multi-target drugs for Alzheimer’s disease: an overview of the current discovery approaches

ORCID Icon, ORCID Icon, &
Pages 879-891 | Received 31 Mar 2019, Accepted 21 May 2019, Published online: 05 Jun 2019

References

  • Masters CL, Bateman R, Blennow K, et al. Alzheimer’s disease. Nat Rev Dis Primers. 2015;1:18.
  • Ulep MG, Saraon SK, McLea S. Alzheimer disease. JNP-J Nurse Pract. 2018;14(3):129–135.
  • Mullane K, Williams M. Alzheimer’s disease (AD) therapeutics-1: repeated clinical failures continue to question the amyloid hypothesis of AD and the current understanding of AD causality. Biochem Pharmacol. 2018;158:359–375.
  • Scheltens P, Blennow K, Breteler MMB, et al. Alzheimer’s disease. Lancet. 2016;388(10043):505–517.
  • Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol. 2007;8(2):101–112.
  • Knowles TPJ, Vendruscolo M, Dobson CM. The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol. 2014;15(6):384–396.
  • Alvarez A, Opazo C, Alarcon R, et al. Acetylcholinesterase promotes the aggregation of amyloid-beta-peptide fragments by forming a complex with the growing fibrils. J Mol Biol. 1997;272(3):348–361.
  • Lindsley CW, Hooker JM. Beyond the amyloid hypothesis of Alzheimer’s disease: tau pathology takes center stage. ACS Chem Neurosci. 2018;9(11):2519.
  • Desai A, Grossberg G. Review of rivastigmine and its clinical applications in Alzheimer’s disease and related disorders. Expert Opin Pharmacother. 2001;2(4):653–666.
  • Scott LJ, Goa KL. Galantamine - A review of its use in Alzheimer’s disease. Drugs. 2000;60(5):1095–1122.
  • Holmes C, Wilkinson D, Dean C, et al. The efficacy of donepezil in the treatment of neuropsychiatric symptoms in Alzheimer disease. Neurology. 2004;63(2):214–219.
  • Matsunaga S, Kishi T, Iwata N. Memantine monotherapy for Alzheimer’s disease: a systematic review and meta-analysis. PLoS One. 2015;10(4):16.
  • Deardorff WJ, Grossberg GT. A fixed-dose combination of memantine extended-release and donepezil in the treatment of moderate-to-severe Alzheimer’s disease. Drug Des Dev Ther. 2016;10:13.
  • Cummings J, Lee G, Ritter A, et al. Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement. 2018;4:195–214.
  • Tarana U, Nasimul H. Alzheimer’s disease: a systemic review of substantial therapeutic targets and the leading multi-functional molecules. Curr Top Med Chem. 2017;17(31):3370–3389.
  • Oset-Gasque MJ, Marco-Contelles J. Alzheimer’s disease, the “one-molecule, one-target” paradigm, and the multitarget directed ligand approach. ACS Chem Neurosci. 2018;9(3):401–403.
  • Agis-Torres A, Sölhuber M, Fernandez M, et al. Multi-target-directed ligands and other therapeutic strategies in the search of a real solution for Alzheimer’s disease. Curr Neuropharmacol. 2014;12(1):2–36.
  • Cavalli A, Bolognesi ML, Minarini A, et al. Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem. 2008;51(3):347–372.
  • Jadhav S, Avila J, Scholl M, et al. A walk through tau therapeutic strategies. Acta Neuropathol Commun. 2019;7:31.
  • Iqbal K, Liu F, Gong CX. Recent developments with tau-based drug discovery. Expert Opin Drug Discov. 2018;13(5):399–410.
  • Hampel H, Mesulam MM, Cuello AC, et al. Revisiting the cholinergic hypothesis in Alzheimer’s disease: emerging evidence from translational and clinical research. J Prev Alzheimers Dis. 2019;6(1):2–15.
  • Gauthier S, Herrmann N, Rosa-Neto P. Optimal use of cholinergic drugs in Alzheimer’s disease. Brain. 2018;141:1.
  • Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci. 2019;20(3):148–160.
  • Zadori D, Veres G, Szalardy L, et al. Alzheimer’s disease: recent concepts on the relation of mitochondrial disturbances, excitotoxicity, neuroinflammation, and kynurenines. J Alzheimers Dis. 2018;62(2):523–547.
  • Rajasekhar K, Mehta K, Govindaraju T. Hybrid multifunctional modulators inhibit multifaceted a beta toxicity and prevent mitochondrial damage. ACS Chem Neurosci. 2018;9(6):1432–1440.
  • Giau VV, An SSA, Hulme JP. Mitochondrial therapeutic interventions in Alzheimer’s disease. J Neurol Sci. 2018;395:62–70.
  • Obulesu M, Lakshmi MJ. Apoptosis in Alzheimer’s disease: an understanding of the physiology, pathology and therapeutic avenues. Neurochem Res. 2014;39(12):2301–2312.
  • Balez R, Ooi L. Getting to NO Alzheimer’s disease: neuroprotection versus neurotoxicity mediated by nitric oxide. OxidMed Cell Longevity. 2016;8. doi: 10.1155/2016/3806157
  • Magi S, Castaldo P, Macri ML, et al. Intracellular calcium dysregulation: implications for Alzheimer’s disease. Biomed Res Int. 2016;14. doi: 10.1155/2016/6701324
  • Adlard PA, Bush AI. Metals and Alzheimer’s disease: how far have we come in the clinic? J Alzheimers Dis. 2018;62(3):1369–1379.
  • Tzioras M, Davies C, Newman A, et al. Invited review: APOE at the interface of inflammation, neurodegeneration and pathological protein spread in Alzheimer’s disease. Neuropathol Appl Neurobiol. 2018;45(4):327–346.
  • Wang T, Liu X-H, Guan J, et al. Advancement of multi-target drug discoveries and promising applications in the field of Alzheimer’s disease. Eur J Med Chem. 2019;169:200–223 .
  • Alcaro S, Bolognesi ML, Garcia-Sosa AT, et al. Editorial: Multi-Target-Directed Ligands (MTDL) as challenging research tools in drug discovery: from design to pharmacological evaluation. Front Chem. 2019;7:2.
  • Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41–58.
  • Morphy R, Rankovic Z. Designing multiple ligands - medicinal chemistry strategies and challenges. Curr Pharm Des. 2009;15(6):587–600 .
  • Schneider P, Schneider G. Privileged structures revisited. Angew Chem (Int Ed in English). 2017;56(27):7971–7974.
  • Gonzalez JF, Ortin I, de la Cuesta E, et al. Privileged scaffolds in synthesis: 2,5-piperazinediones as templates for the preparation of structurally diverse heterocycles. Chem Soc Rev. 2012;41(21):6902–6915.
  • Zhao H, Dietrich J. Privileged scaffolds in lead generation. Expert Opin Drug Discov. 2015;10(7):781–790.
  • Hann MM, Leach AR, Harper G. Molecular complexity and its impact on the probability of finding leads for drug discovery. J Chem Inf Model. 2001;41(3):856–864.
  • Rankovic Z. CNS drug design: balancing physicochemical properties for optimal brain exposure. J Med Chem. 2015;58(6):2584–2608.
  • Hampel H, Mesulam MM, Cuello AC, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain. 2018;141:1917–1933.
  • Wang H, Zhang HY. Reconsideration of anticholinesterase therapeutic strategies against Alzheimer’s disease. ACS Chem Neurosci. 2019;10(2):852–862.
  • Xiao SF, Wang T, Ma XQ, et al. Efficacy and safety of a novel acetylcholinesterase inhibitor octohydroaminoacridine in mild-to-moderate Alzheimer’s disease: a Phase II multicenter randomised controlled trial. Age Ageing. 2017;46(5):767–773.
  • Garay RP, Grossberg GT. AVP-786 for the treatment of agitation in dementia of the Alzheimer’s type. Expert Opin Investig Drugs. 2017;26(1):121–132.
  • Porsteinsson AP, Antonsdottir IM. An update on the advancements in the treatment of agitation in Alzheimer’s disease. Expert Opin Pharmacother. 2017;18(6):611–620.
  • Rosenberg PB, Lanctot KL, Drye LT, et al. Safety and efficacy of methylphenidate for apathy in Alzheimer’s disease: a randomized, placebo-controlled trial. J Clin Psychiatry. 2013;74(8):810–816.
  • Nobis L, Husain M. Apathy in Alzheimer’s disease. Curr Opin Behav Sci. 2018;22:7–13.
  • DeToma AS, Salamekh S, Ramamoorthy A, et al. Misfolded proteins in Alzheimer’s disease and type II diabetes. Chem Soc Rev. 2012;41(2):608–621 .
  • De Strooper B, Vassar R, Golde T. The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol. 2010;6(2):99–107.
  • Voytyuk I, De Strooper B, Chavez-Gutierrez L. Modulation of γ- and β-secretases as early prevention against Alzheimer’s disease. Biol Psychiatry. 2018;83(4):320–327.
  • Timmers M, Barao S, Van Broeck B, et al. BACE1 dynamics upon inhibition with a BACE inhibitor and correlation to downstream Alzheimer’s disease markers in elderly healthy participants. J Alzheimers Dis. 2017;56(4):1437–1449.
  • Prati F, Bottegoni G, Bolognesi ML, et al. BACE-1 inhibitors: from recent single-target molecules to multitarget compounds for Alzheimer’s disease. J Med Chem. 2018;61(3):619–637 .
  • Hsiao CC, Rombouts F, Gijsen HJM. New evolutions in the BACE1 inhibitor field from 2014 to 2018. Bioorg Med Chem Lett. 2019;29(6):761–777.
  • Panza F, Lozupone M, Solfrizzi V, et al. BACE inhibitors in clinical development for the treatment of Alzheimer’s disease. Expert Rev Neurother. 2018;18(11):847–857.
  • Neumann U, Ufer M, Jacobson LH, et al. The BACE-1 inhibitor CNP520 for prevention trials in Alzheimer’s disease. EMBO Mol Med. 2018;10(11):18.
  • Doig AJ, Del Castillo-Frias MP, Berthoumieu O, et al. Why Is research on amyloid-beta failing to give new drugs for Alzheimer’s disease? ACS Chem Neurosci. 2017;8(7):1435–1437.
  • Fichou Y, Al-Hilaly YK, Devred F, et al. The elusive tau molecular structures: can we translate the recent breakthroughs into new targets for intervention? Acta Neuropathol Commun. 2019;7:17.
  • Medina M. An overview on the clinical development of tau-based therapeutics. Int J Mol Sci. 2018;19(4):14.
  • Congdon EE, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease. Nat Rev Neurol. 2018;14(7):399–415.
  • Avila J, Wandosell F, Hernandez F. Role of glycogen synthase kinase-3 in Alzheimer’s disease pathogenesis and glycogen synthase kinase-3 inhibitors. Expert Rev Neurother. 2010;10(5):703–710.
  • Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther. 2015;148:114–131.
  • Liu SL, Wang C, Jiang T, et al. The role of Cdk5 in Alzheimer’s disease. Mol Neurobiol. 2016;53(7):4328–4342.
  • Alam J, Sharma L. Potential enzymatic targets in Alzheimer’s: a comprehensive review. Curr Drug Targets. 2019;20(3):316–339 .
  • Maqbool M, Mobashir M, Hoda N. Pivotal role of glycogen synthase kinase-3: a therapeutic target for Alzheimer’s disease. Eur J Med Chem. 2016;107:63–81.
  • Saraswati AP, Hussaini SMA, Krishna NH, et al. Glycogen synthase kinase-3 and its inhibitors: potential target for various therapeutic conditions. Eur J Med Chem. 2018;144:843–858.
  • Palomo V, Perez DI, Roca C, et al. Subtly modulating glycogen synthase kinase 3β: allosteric inhibitor development and their potential for the treatment of chronic diseases. J Med Chem. 2017;60(12):4983–5001.
  • Bhounsule AS, Bhatt LK, Prabhavalkar KS, et al. Cyclin dependent kinase 5: a novel avenue for Alzheimer’s disease. Brain Res Bull. 2017;132:28–38.
  • Yang XY, Qian KV. Protein O-GlcNAcylation: emerging mechanisms and functions. Nat Rev Mol Cell Biol. 2017;18(7):452–465.
  • Yu Y, Zhang L, Li XJ, et al. Differential effects of an O-GlcNAcase inhibitor on tau phosphorylation. PLoS One. 2012;7(4):8.
  • Wang XH, Smith K, Pearson M, et al. Early intervention of tau pathology prevents behavioral changes in the rTg4510 mouse model of tauopathy. PLoS One. 2018;13(4):15.
  • Seripa D, Solfrizzi V, Imbimbo BP, et al. Tau-directed approaches for the treatment of Alzheimer’s disease: focus on leuco-methylthioninium. Expert Rev Neurother. 2016;16(3):259–277.
  • Wilcock GK, Gauthier S, Frisoni GB, et al. Potential of low dose leuco-methylthioninium bis(hydromethanesulphonate) (LMTM) monotherapy for treatment of mild Alzheimer’s disease: cohort analysis as modified primary outcome in a phase III clinical trial. J Alzheimers Dis. 2018;61(1):435–457.
  • Prati F, De Simone A, Bisignano P, et al. Multitarget drug discovery for Alzheimer’s disease: triazinones as BACE-1 and GSK-3 beta inhibitors. Angew Chem Int Edit. 2015;54(5):1578–1582.
  • Gandini A, Bartolini M, Tedesco D, et al. Tau-centric multitarget approach for Alzheimer’s disease: development of first-in-class dual glycogen synthase kinase 3 beta and tau-aggregation inhibitors. J Med Chem. 2018;61(17):7640–7656.
  • Nygaard HB. Targeting fyn kinase in Alzheimer’s disease. Biol Psychiatry. 2018;83(4):369–376.
  • Li CZ, Gotz J. Somatodendritic accumulation of Tau in Alzheimer’s disease is promoted by Fyn-mediated local protein translation. Embo J. 2017;36(21):3120–3138.
  • Nisbet RM, Gotz J. Amyloid-beta and Tau in Alzheimer’s disease: novel pathomechanisms and non-pharmacological treatment strategies. J Alzheimers Dis. 2018;64:S517–S527.
  • Hennequin LF, Allen J, Breed J, et al. N-(5-Chloro-1,3-benzodioxol-4-yl)-7-2-(4-methylpiperazin-1-yl)ethoxy -5 -(tetrahydro-2H-pyran-4-yloxy)quinazolin-4-amine, a novel, highly selective, orally available, dual-specific c-Src/Abl kinase inhibitor. J Med Chem. 2006;49(22):6465–6488.
  • Fury MG, Baxi S, Shen RL, et al. Phase II study of saracatinib (AZD0530) for patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC). Anticancer Res. 2011;31(1):249–253.
  • Gangadhar TC, Clark JI, Karrison T, et al. Phase II study of the Src kinase inhibitor saracatinib (AZD0530) in metastatic melanoma. Invest New Drugs. 2013;31(3):769–773.
  • Kim AC, Lim S, Kim YK. Metal ion effects on Aβ and Tau aggregation. Int J Mol Sci. 2018;19(1):128 .
  • Prakash A, Dhaliwal GK, Kumar P, et al. Brain biometals and Alzheimer’s disease – boon or bane? Int J Neurosci. 2017;127(2):99–108.
  • Cristina A, Barbara LF, Giuseppe DO, et al. Flavonoids in the treatment of Alzheimer’s and other neurodegenerative diseases. Curr Med Chem. 2018;25(27):3228–3246.
  • de Andrade Teles RB, Diniz TC, Costa Pinto TC, et al. Flavonoids as therapeutic agents in Alzheimer’s and Parkinson’s diseases: a systematic review of preclinical evidences. OxidMed Cell Longevity. 2018;2018:7043213.
  • Patil PO, Bari SB, Firke SD, et al. A comprehensive review on synthesis and designing aspects of coumarin derivatives as monoamine oxidase inhibitors for depression and Alzheimer’s disease. Bioorg Med Chem. 2013;21(9):2434–2450.
  • Matos MJ, Viña D, Vazquez-Rodriguez S, et al. Focusing on new monoamine oxidase inhibitors: differently substituted coumarins as an interesting scaffold. Curr Top Med Chem. 2012;12(20):2210–2239.
  • Jalili-Baleh L, Babaei E, Abdpour S, et al. A review on flavonoid-based scaffolds as multi-target-directed ligands (MTDLs) for Alzheimer’s disease. Eur J Med Chem. 2018;152:570–589 .
  • Sandhu S, Bansal Y, Silakari O, et al. Coumarin hybrids as novel therapeutic agents. Bioorg Med Chem. 2014;22(15):3806–3814.
  • Stefanachi A, Leonetti F, Pisani L, et al. Coumarin: a natural, privileged and versatile scaffold for bioactive compounds. Molecules. 2018;23(2):250.
  • Qizilbash N, Whitehead A, Higgins J, et al. Cholinesterase inhibition for Alzheimer disease - A meta-analysis of the tacrine trials. JAMA. 1998;280(20):1777–1782.
  • Girek M, Szymański P. Tacrine hybrids as multi-target-directed ligands in Alzheimer’s disease: influence of chemical structures on biological activities. Chem Pap. 2018;73(2):269–289.
  • Silva CFM, Pinto DCGA, Silva AMS. Chromones: privileged scaffolds for the production of multi-target-directed-ligand agents for the treatment of Alzheimer’s disease. Expert Opin Drug Discov. 2018;13(12):1141–1151.
  • Sameem B, Saeedi M, Mahdavi M, et al. A review on tacrine-based scaffolds as multi-target drugs (MTDLs) for Alzheimer’s disease. Eur J Med Chem. 2017;128:332–345 .
  • Li Q, He SY, Chen Y, et al. Donepezil-based multi-functional cholinesterase inhibitors for treatment of Alzheimer’s disease. Eur J Med Chem. 2018;158:463–477.
  • Piemontese L, Tomás D, Hiremathad A, et al. Donepezil structure-based hybrids as potential multifunctional anti-Alzheimer’s drug candidates. J Enzyme Inhib Med Chem. 2018;33(1):1212–1224.
  • Unzeta M, Esteban G, Bolea I, et al. Multi-target directed donepezil-like ligands for Alzheimer’s disease. Front Neurosci. 2016;10:24.
  • Sampson EL, Jenagaratnam L, McShane R. Metal protein attenuating compounds for the treatment of Alzheimer’s dementia. Cochrane Database Syst Rev. 2014;2. doi: 10.1002/14651858.CD005380.pub5
  • Sharma A, Pachauri V, Flora SJS. Advances in multi-functional ligands and the need for metal-related pharmacology for the management of Alzheimer disease. Front Pharmacol. 2018;9:1247.
  • Chen JJ, Swope DM, Dashtipour K. Comprehensive review of rasagiline, a second-generation monoamine oxidase inhibitor, for the treatment of Parkinson’s disease. Clin Ther. 2007;29(9):1825–1849.
  • Weinreb O, Mandel S, Bar-Am O, et al. Multifunctional neuroprotective derivatives of rasagiline as anti-Alzheimer’s disease drugs. Neurotherapeutics. 2009;6(1):163–174.
  • Ferrero H, Solas M, Francis PT, et al. Serotonin 5-HT6 receptor antagonists in Alzheimer’s disease: therapeutic rationale and current development status. CNS Drugs. 2017;31(1):19–32.
  • Jankowska A, Wesołowska A, Pawłowski M, et al. Multi-target-directed ligands affecting serotonergic neurotransmission for Alzheimer’s disease therapy: advances in chemical and biological research. Curr Med Chem. 2017;25(17):2045–2067 .
  • Maczurek A, Hager K, Kenklies M, et al. Lipoic acid as an anti-inflammatory and neuroprotective treatment for Alzheimer’s disease. Adv Drug Deliv Rev. 2008;60(13):1463–1470.
  • Molz P, Schröder N. Potential therapeutic effects of lipoic acid on memory deficits related to aging and neurodegeneration. Front Pharmacol. 2017;8:849.
  • Bolognesi ML, Minarini A, Tumiatti V, et al. Lipoic acid, a lead structure for multi-target-directed drugs for neurodegeneration. Mini Rev Med Chem. 2006;6(11):1269–1274.
  • Berman AY, Motechin RA, Wiesenfeld MY, et al. The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol. 2017;1(1):35.
  • Barone E, Calabrese V, Mancuso C. Ferulic acid and its therapeutic potential as a hormetin for age-related diseases. Biogerontology. 2009;10(2):97–108.
  • Habtemariam S. Protective effects of caffeic acid and the Alzheimer’s brain: an update. Mini Rev Med Chem. 2017;17(8):667–674.
  • Atri A, Frolich L, Ballard C, et al. Effect of Idalopirdine as adjunct to cholinesterase inhibitors on change in cognition in patients with Alzheimer disease: three randomized clinical trials. JAMA. 2018;319(2):130–142.
  • Weinstock M, Bejar C, Wang RH, et al. TV3326, a novel neuroprotective drug with cholinesterase and monoamine oxidase inhibitory activities for the treatment of Alzheimer’s disease. In: Riederer P, Calne DB, Horowski R, et al., editors. Advances in research on neurodegeneration. Vienna: Springer Vienna; 2000. p. 157–169.
  • Marco-Contelles J, Unzeta M, Bolea I, et al. ASS234, as a new multi-target directed propargylamine for Alzheimer’s disease therapy. Front Neurosci. 2016;10:294.
  • Rosini M, Andrisano V, Bartolini M, et al. Rational approach to discover multipotent anti-Alzheimer drugs. J Med Chem. 2005;48(2):360–363.
  • Ramsay RR, Popovic-Nikolic MR, Nikolic K, et al. A perspective on multi-target drug discovery and design for complex diseases. Clin Transl Med. 2018;7(1):3 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.