1,369
Views
65
CrossRef citations to date
0
Altmetric
Review

Binding affinity in drug design: experimental and computational techniques

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 755-768 | Received 02 Apr 2019, Accepted 21 May 2019, Published online: 31 May 2019

References

  • Ferenczy GG, Keserű GM. The impact of binding thermodynamics on medicinal chemistry optimizations. Future Med Chem. 2015;7:1285–1303.
  • Freire E. A thermodynamic approach to the affinity optimization of drug candidates. Chem Biol Drug Des. 2009;74:468–472.
  • Renaud J-P, Chung C, Danielson UH, et al. Biophysics in drug discovery: impact, challenges and opportunities. Nat Rev Drug Discov. 2016;15:679–698.
  • Wätzig H, Oltmann-Norden I, Steinicke F, et al. Data quality in drug discovery: the role of analytical performance in ligand binding assays. J Comput Aided Mol Des. 2015;29:847–865.
  • Leelananda SP, Lindert S. Computational methods in drug discovery. Beilstein J Org Chem. 2016;12:2694–2718.
  • Jensen JH. Predicting accurate absolute binding energies in aqueous solution: thermodynamic considerations for electronic structure methods. Phys Chem Chem Phys. 2015;17:12441–12451.
  • Kuhn B, Guba W, Hert J, et al. A real-world perspective on molecular design. J Med Chem. 2016;59:4087–4102.
  • Ross P, Weihofen W, Siu F, et al. Isothermal chemical denaturation to determine binding affinity of small molecules to G-protein coupled receptors. Anal Biochem. 2015;473:41–45.
  • Toleikis Z, Cimmperman P, Petrauskas V, et al. Determination of the volume changes induced by ligand binding to heat shock protein 90 using high-pressure denaturation. Anal Biochem. 2011;413:171–178.
  • Zubrienė A, Matulienė J, Baranauskienė L, et al. Measurement of nanomolar dissociation constants by titration calorimetry and thermal shift assay – radicicol binding to Hsp90 and ethoxzolamide binding to CAII. Int J Mol Sci. 2009;10:2662–2680.
  • Dudutienė V, Matulienė J, Smirnov A, et al. Discovery and characterization of novel selective inhibitors of carbonic anhydrase IX. J Med Chem. 2014;57:9435–9446.
  • Pelkonen L, Tengvall-Unadike U, Ruponen M, et al. Melanin binding study of clinical drugs with cassette dosing and rapid equilibrium dialysis inserts. Eur J Pharm Sci. 2017;109:162–168.
  • Grither WR, Longmore GD. Inhibition of tumor–microenvironment interaction and tumor invasion by small-molecule allosteric inhibitor of DDR2 extracellular domain. Pnas. 2018;115:E7786–E7794.
  • Meiby E, Simmonite H, le Strat L, et al. Fragment screening by weak affinity chromatography: comparison with established techniques for screening against HSP90. Anal Chem. 2013;85:6756–6766.
  • Ruiz-Ramos A, Velázquez-Campoy A, Grande-García A, et al. Structure and functional characterization of human aspartate transcarbamoylase, the target of the anti-tumoral drug PALA. Structure. 2016;24:1081–1094.
  • Aizpurua‐Olaizola O, Torano JS, Pukin A, et al. Affinity capillary electrophoresis for the assessment of binding affinity of carbohydrate-based cholera toxin inhibitors. Electrophoresis. 2018;39:344–347.
  • Zhang B, Li J, Yang X, et al. Crystal structures of membrane transporter MmpL3, an anti-TB drug target. Cell. 2019;176:636–648.e13.
  • Tayyab S, Sam SE, Kabir MZ, et al. Molecular interaction study of an anticancer drug, ponatinib with human serum albumin using spectroscopic and molecular docking methods. Spectrochim Acta A Mol Biomol Spectrosc. 2019;214:199–206.
  • Pollock JF, Ashton RS, Rode NA, et al. Molecular characterization of multivalent bioconjugates by size-exclusion chromatography (SEC) with multi-angle laser light scattering (MALS). Bioconjug Chem. 2012;23:1794–1801.
  • Yang D, Singh A, Wu H, et al. Comparison of biosensor platforms in the evaluation of high affinity antibody-antigen binding kinetics. Anal Biochem. 2016;508:78–96.
  • Igonet S, Raingeval C, Cecon E, et al. Enabling STD-NMR fragment screening using stabilized native GPCR: A case study of adenosine receptor. Sci Rep. 2018;8:8142.
  • Toyama Y, Kontani K, Katada T, et al. Conformational landscape alternations promote oncogenic activities of ras-related C3 botulinum toxin substrate 1 as revealed by NMR. Sci Adv. 2019;5:eaav8945.
  • Broecker J, Vargas C, Keller S. Revisiting the optimal c value for isothermal titration calorimetry. Anal Biochem. 2011;418:307–309.
  • Krainer G, Keller S. Single-experiment displacement assay for quantifying high-affinity binding by isothermal titration calorimetry. Methods. 2015;76:116–123.
  • Leavitt S, Freire E. Direct measurement of protein binding energetics by isothermal titration calorimetry. Curr Opin Struct Biol. 2001;11:560–566.
  • Perozzo R, Folkers G, Scapozza L. Thermodynamics of protein–ligand interactions: history, presence, and future aspects. J Recept Signal Transduct. 2004;24:1–52.
  • Claveria-Gimeno R, Vega S, Abian O, et al. A look at ligand binding thermodynamics in drug discovery. Expert Opin Drug Discov. 2017;12:363–377.
  • Holdgate GA, Ward WHJ. Measurements of binding thermodynamics in drug discovery. Drug Discov Today. 2005;10:1543–1550.
  • Baranauskiene L, Kuo TC, Chen WY, et al. Isothermal titration calorimetry for characterization of recombinant proteins. Curr Opin Biotechnol. 2019;55:9–15.
  • Petrauskas V, Baranauskienė L, Zubrienė A, et al. Isothermal titration calorimetry and fluorescent thermal and pressure shift assays in protein–ligand interactions. In: M. Bastos, editor. Biocalorimetry. New York: CRC press; 2016. p. 261–280.
  • Schön A, Brown RK, Hutchins BM, et al. Ligand binding analysis and screening by chemical denaturation shift. Anal Biochem. 2013;443:52–57.
  • Garbett NC, Chaires JB. Thermodynamic studies for drug design and screening. Expert Opin Drug Discov. 2012;7:299–314.
  • Pantoliano MW, Petrella EC, Kwasnoski JD, et al. High-density miniaturized thermal shift assays as a general strategy for drug discovery. J Biomol Screen. 2001;6:429–440.
  • Bai N, Roder H, Dickson A, et al. Isothermal analysis of thermofluor data can readily provide quantitative binding affinities. Sci Rep. 2019;9:2650.
  • Molina DM, Nordlund P. The cellular thermal shift assay: a novel biophysical assay for in situ drug target engagement and mechanistic biomarker studies. Annu Rev Pharmacol Toxicol. 2016;56:141–161.
  • Shaw J, Leveridge M, Norling C, et al. Determining direct binders of the androgen receptor using a high-throughput cellular thermal shift assay. Sci Rep. 2018;8:163.
  • Vuignier K, Schappler J, Veuthey J-L, et al. Drug–protein binding: a critical review of analytical tools. Anal Bioanal Chem. 2010;398:53–66.
  • de la Torre JG. The HYDRO software suite for the prediction of solution properties of rigid and flexible macromolecules and nanoparticles. In: Uchiyama S, Arisaka F, Stafford WF, editors. Analytical ultracentrifugation: instrumentation, software, and applications. Tokyo: Springer Japan; 2016. p. 195–217.
  • Cole JL, Correia JJ, Stafford WF. The use of analytical sedimentation velocity to extract thermodynamic linkage. Biophys Chem. 2011;159:120–128.
  • Chaturvedi SK, Ma J, Zhao H, et al. Use of fluorescence-detected sedimentation velocity to study high-affinity protein interactions. Nat Protoc. 2017;12:1777–1791.
  • Gordon SE, Perugini MA. Protein-Ligand Interactions. In: Uchiyama S, Arisaka F, Stafford WF, editors. Analytical ultracentrifugation: instrumentation, software, and applications. Tokyo: Springer; 2016. p. 329–353.
  • Zapp ML, Stern S, Green MR. Small molecules that selectively block RNA binding of HIV-1 rev protein inhibit rev function and viral production. Cell. 1993;74:969–978.
  • Ouimet CM, D’amico CI, Kennedy RT. Advances in capillary electrophoresis and the implications for drug discovery. Expert Opin Drug Discov. 2017;12:213–224.
  • Wu R, Zhu K, Zhang X, et al. Nonimmobilized biomaterial capillary electrophoresis for screening drugs targeting human glucose transporter 1. Anal Chem. 2017;89:12951–12959.
  • Wienken CJ, Baaske P, Rothbauer U, et al. Protein-binding assays in biological liquids using microscale thermophoresis. Nat Commun. 2010;1:100.
  • Bartoschik T, Galinec S, Kleusch C, et al. Near-native, site-specific and purification-free protein labeling for quantitative protein interaction analysis by microscale thermophoresis. Sci Rep. 2018;8:4977.
  • Tedesco D, Bertucci C. Induced circular dichroism as a tool to investigate the binding of drugs to carrier proteins: classic approaches and new trends. J Pharm Biomed Anal. 2015;113:34–42.
  • Krishnamoorthy G. Fluorescence spectroscopy for revealing mechanisms in biology: strengths and pitfalls. J Biosci. 2018;43:555–567.
  • Hixon J, Reshetnyak YK. Algorithm for the analysis of tryptophan fluorescence spectra and their correlation with protein structural parameters. Algorithms. 2009;2:1155–1176.
  • Stoddart LA, White CW, Nguyen K, et al. Fluorescence- and bioluminescence-based approaches to study GPCR ligand binding. Br J Pharmacol. 2016;173:3028–3037.
  • Some D. Light-scattering-based analysis of biomolecular interactions. Biophys Rev. 2013;5:147–158.
  • Shah NB, Duncan TM. Bio-layer interferometry for measuring kinetics of protein-protein interactions and allosteric ligand effects. J Vis Exp. 2014;(84):e51383.
  • Patching SG. Surface plasmon resonance spectroscopy for characterisation of membrane protein–ligand interactions and its potential for drug discovery. Biochim Biophys Acta - Biomembr. 2014;1838:43–55.
  • Lu J, Van Stappen T, Spasic D, et al. Fiber optic-SPR platform for fast and sensitive infliximab detection in serum of inflammatory bowel disease patients. Biosens Bioelectron. 2016;79:173–179.
  • Zheng H, Handing KB, Zimmerman MD, et al. X-ray crystallography over the past decade for novel drug discovery – where are we heading next? Expert Opin Drug Discov. 2015;10:975–989.
  • Goulding CW, Apostol M, Anderson DH, et al. The TB structural genomics consortium: providing a structural foundation for drug discovery. Curr Drug Targets Infect Disord. 2002;2(2):121–141).
  • Keefe LJ, Stoll VS. Accelerating pharmaceutical structure-guided drug design: a successful model. Drug Discov Today. 2019;24:377–381.
  • Renaud J-P, Chari A, Ciferri C, et al. Cryo-EM in drug discovery: achievements, limitations and prospects. Nat Rev Drug Discov. 2018;17:471–492.
  • Andersson CD, Martinez N, Zeller D, et al. Influence of enantiomeric inhibitors on the dynamics of acetylcholinesterase measured by elastic incoherent neutron scattering. J Phys Chem B. 2018;122:8516–8525.
  • Chen P, Hennig J. The role of small-angle scattering in structure-based screening applications. Biophys Rev. 2018;10:1295–1310.
  • Harner MJ, Mueller L, Robbins KJ, et al. NMR in drug design. Arch Biochem Biophys. 2017;628:132–147.
  • Nitsche C, Otting G. NMR studies of ligand binding. Curr Opin Struct Biol. 2018;48:16–22.
  • Scior T, Medina-Franco JL, Do Q-T, et al. How to recognize and workaround pitfalls in QSAR studies: a critical review. Curr Med Chem. 2009;16:4297–4313.
  • Leach AR, Gillet VJ. An introduction to chemoinformatics. Netherlands: Springer; 2007.
  • Golbraikh A, Tropsha A. Beware of q2! J Mol Graphics Modell. 2002;20:269–276.
  • Dearden JC, Cronin MTD, Kaiser KLE. How not to develop a quantitative structure–activity or structure–property relationship (QSAR/QSPR). SAR QSAR Environ Res. 2009;20:241–266.
  • Cherkasov A, Muratov EN, Fourches D, et al. QSAR modeling: where have you been? Where are you going to? J Med Chem. 2014;57:4977–5010.
  • Verma J, Khedkar VM, Coutinho EC. 3D-QSAR in drug design–a review. Curr Top Med Chem. 2010;10:95–115.
  • Melo-Filho CC, Braga RC, Andrade CH. 3D-QSAR approaches in drug design: perspectives to generate reliable CoMFA models. Curr Comput Aided Drug Des. 2014;10:148–159.
  • Damale MG, Harke SN, Kalam Khan FA, et al. Recent advances in multidimensional QSAR (4D–6D): a critical review. Mini Rev Med Chem. 2014;14:35–55.
  • Mitchell JBO. Machine learning methods in chemoinformatics. Wiley Interdiscip Rev Comput Mol Sci. 2014;4:468–481.
  • Chen H, Engkvist O, Wang Y, et al. The rise of deep learning in drug discovery. Drug Discov Today. 2018;23:1241–1250.
  • Hessler G, Baringhaus K-H. Artificial intelligence in drug design. Molecules. 2018;23:2520.
  • Ghasemi F, Mehridehnavi A, Pérez-Garrido A, et al. Neural network and deep-learning algorithms used in QSAR studies: merits and drawbacks. Drug Discov Today. 2018;23:1784–1790.
  • Ghasemi F, Mehridehnavi A, Fassihi A, et al. Deep neural network in QSAR studies using deep belief network. Appl Soft Comput. 2018;62:251–258.
  • Wang C, Zhang Y. Improving scoring-docking-screening powers of protein–ligand scoring functions using random forest. J Comput Chem. 2017;38:169–177.
  • Ryde U, Söderhjelm P. Ligand-binding affinity estimates supported by quantum-mechanical methods. Chem Rev. 2016;116:5520–5566.
  • Muddana HS, Fenley AT, Mobley DL, et al. The SAMPL4 host–guest blind prediction challenge: an overview. J Comput Aided Mol Des. 2014;28:305–317.
  • Ehrlich S, Göller AH, Grimme S. Towards full quantum-mechanics-based protein–ligand binding affinities. ChemPhysChem. 2017;18:898–905.
  • Grimme S, Schreiner PR. Computational chemistry: the fate of current methods and future challenges. Angew Chem. 2018;57:4170–4176.
  • Massova I, Kollman PA. Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect Drug Discovery Des. 2000;18:113–135.
  • Rizzi A, Murkli S, McNeill JN, et al. Overview of the SAMPL6 host–guest binding affinity prediction challenge. J Comput Aided Mol Des. 2018;32:937–963.
  • Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015;10:449–461.
  • Li C, Li L, Petukh M, et al. Progress in developing Poisson-Boltzmann equation solvers. Mol Based Math Biol. 2013;1:42–62.
  • Still WC, Tempczyk A, Hawley RC, et al. Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc. 1990;112:6127–6129.
  • Guimarães CRW, Cardozo M. MM-GB/SA rescoring of docking poses in structure-based lead optimization. J Chem Inf Model. 2008;48:958–970.
  • Thompson DC, Humblet C, Joseph-McCarthy D. Investigation of MM-PBSA rescoring of docking poses. J Chem Inf Model. 2008;48:1081–1091.
  • Chen W, Gilson MK, Webb SP, et al. Modeling protein−Ligand binding by mining minima. J Chem Theory Comput. 2010;6:3540–3557.
  • Schulz-Gasch T, Stahl M. Scoring functions for protein–ligand interactions: a critical perspective. Drug Discov Today. 2004;1:231–239.
  • Liu J, Wang R. Classification of Current Scoring Functions. J Chem Inf Model. 2015;55:475–482.
  • Sousa SF, Ribeiro AJM, Coimbra JTS, et al. Protein-ligand docking in the new millennium – A retrospective of 10 years in the field. Curr Med Chem. 2013;20:2296–2314.
  • Pagadala NS, Syed K, Tuszynski J. Software for molecular docking: a review. Biophys Rev. 2017;9:91–102.
  • Chen Y-C. Beware of docking!Trends Pharmacol Sci. 2015;36:78–95.
  • Gohlke H, Klebe G. Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angew Chem. 2002;41:2644–2676.
  • Li J, Fu A, Zhang L. An overview of scoring functions used for protein–ligand interactions in molecular docking. Interdiscip Sci Comput Life Sci. 2019.
  • Xu W, Lucke AJ, Fairlie DP. Comparing sixteen scoring functions for predicting biological activities of ligands for protein targets. J Mol Graphics Modell. 2015;57:76–88.
  • Su M, Yang Q, Du Y, et al. Comparative assessment of scoring functions: the CASF-2016 update. J Chem Inf Model. 2019;59:895–913.
  • Wang R, Lai L, Wang S. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Des. 2002;16:11–26.
  • Shell MS, Panagiotopoulos A, Pohorille A. Methods based on probability distributions and histograms. In: Chipot C, Pohorille A, editors. Free energy calculations: theory and applications in chemistry and biology. Berlin, Heidelberg: Springer; 2007. p. 77–118.
  • Kästner J. Umbrella sampling. Wiley Interdiscip Rev Comput Mol Sci. 2011;1:932–942.
  • Bernardi RC, Melo MCR, Schulten K. Enhanced sampling techniques in molecular dynamics simulations of biological systems. Biochim Biophys Acta Gen Subj. 2015;1850:872–877.
  • Kumar S, Rosenberg JM, Bouzida D, et al. The weighted histogram analysis method for free-energy calculations on biomolecules. I. the method. J Comput Chem. 1992;13:1011–1021.
  • Sun L, Bertelshofer F, Greiner G, et al. Characteristics of sucrose transport through the sucrose-specific porin scry studied by molecular dynamics simulations. Front Bioeng Biotechnol. 2016;4.
  • El Hage K, Mondal P, Meuwly M. Free energy simulations for protein ligand binding and stability. Mol Simulat. 2018;44:1044–1061.
  • Park S, Khalili-Araghi F, Tajkhorshid E, et al. Free energy calculation from steered molecular dynamics simulations using Jarzynski’s equality. J Chem Phys. 2003;119:3559–3566.
  • Okimoto N, Suenaga A, Taiji M. Evaluation of protein–ligand affinity prediction using steered molecular dynamics simulations. J Biomol Struct Dyn. 2017;35:3221–3231.
  • Laio A, Parrinello M. Escaping free-energy minima. Pnas. 2002;99:12562–12566.
  • Barducci A, Bussi G, Parrinello M. Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett. 2008;100:020603.
  • Leone V, Marinelli F, Carloni P, et al. Targeting biomolecular flexibility with metadynamics. Curr Opin Struct Biol. 2010;20:148–154.
  • Cavalli A, Spitaleri A, Saladino G, et al. Investigating drug–target association and dissociation mechanisms using metadynamics-based algorithms. Acc Chem Res. 2015;48:277–285.
  • Saleh N, Ibrahim P, Saladino G, et al. An efficient metadynamics-based protocol to model the binding affinity and the transition state ensemble of G-protein-coupled receptor ligands. J Chem Inf Model. 2017;57:1210–1217.
  • Gohlke H, Klebe G. Statistical potentials and scoring functions applied to protein–ligand binding. Curr Opin Struct Biol. 2001;11:231–235.
  • Kadukova M, Grudinin S. Convex-PL: a novel knowledge-based potential for protein-ligand interactions deduced from structural databases using convex optimization. J Comput Aided Mol Des. 2017;31:943–958.
  • Zwanzig RW. High‐temperature equation of state by a perturbation method. i. nonpolar gases. J Chem Phys. 1954;22:1420–1426.
  • Brandsdal BO, Österberg F, Almlöf M, et al. Free energy calculations and ligand binding. In: V. Daggett, editor. Advances in protein chemistry, vol. 66. Amsterdam: Elsevier Academic Press; 2003. 123–158.
  • Lamb ML, Jorgensen WL. Computational approaches to molecular recognition. Curr Opin Chem Biol. 1997;1:449–457.
  • Williams-Noonan BJ, Yuriev E, Chalmers DK. Free energy methods in drug design: prospects of “alchemical perturbation” in medicinal chemistry. J Med Chem. 2018;61:638–649.
  • Mikulskis P, Genheden S, Ryde U. A large-scale test of free-energy simulation estimates of protein–ligand binding affinities. J Chem Inf Model. 2014;54:2794–2806.
  • Åqvist J, Medina C, Samuelsson J-E. A new method for predicting binding affinity in computer-aided drug design. Protein Eng Des Sel. 1994;7:385–391.
  • Gutiérrez-de-Terán H, Åqvist J. Linear interaction energy: method and applications in drug design. In: Baron R, editor. Computational drug discovery and design. New York: Springer New York; 2012. p. 305–323.
  • Montalvo-Acosta JJ, Pacak P, Gomes DEB, et al. A linear interaction energy model for cavitand host–guest binding affinities. J Phys Chem B. 2018;122:6810–6814.
  • Čapkauskaitė E, Zakšauskas A, Ruibys V, et al. Benzimidazole design, synthesis, and docking to build selective carbonic anhydrase VA inhibitors. Bioorg Med Chem. 2018;26:675–687.
  • Nezami A, Kimura T, Hidaka K, et al. High-affinity inhibition of a family of plasmodium falciparum proteases by a designed adaptive inhibitor. Biochem J. 2003;42:8459–8464.
  • Sarver RW, Peevers J, Cody WL, et al. Binding thermodynamics of substituted diaminopyrimidine renin inhibitors. Anal Biochem. 2007;360:30–40.
  • Gaieb Z, Parks CD, Chiu M, et al. D3R grand challenge 3: blind prediction of protein–ligand poses and affinity rankings. J Comput Aided Mol Des. 2019;33:1–18.
  • Zhao H, Piszczek G, Schuck P. SEDPHAT – A platform for global ITC analysis and global multi-method analysis of molecular interactions. Methods. 2015;76:137–148.
  • Brautigam CA, Zhao H, Vargas C, et al. Integration and global analysis of isothermal titration calorimetry data for studying macromolecular interactions. Nat Protoc. 2016;11:882–894.
  • Linkuvienė V, Zubrienė A, Manakova E, et al. Thermodynamic, kinetic, and structural parameterization of human carbonic anhydrase interactions toward enhanced inhibitor design. Q Rev Biophys. 2018;51:e10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.