232
Views
4
CrossRef citations to date
0
Altmetric
Perspective

Animal models of synucleinopathies and how they could impact future drug discovery and delivery efforts

Pages 969-982 | Received 11 Apr 2019, Accepted 28 Jun 2019, Published online: 05 Jul 2019

References

  • Lees AJ, Hardy J, Revesz T. Parkinson’s disease. Lancet. 2009;373:2055–2066.
  • Emre M, Aarsland D, Brown R, et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord. 2007;22:1689–1707.
  • Beach TG, Adler CH, Sue LI, et al. Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol. 2010;119:689–702.
  • Braak H, Del Tredici K. Neuroanatomy and pathology of sporadic Parkinson’s disease. Adv Anat Embryol Cell Biol. 2009;201:1–119.
  • Wakabayashi K, Miki Y. [Multi-organ distribution of alpha-synuclein pathology in dementia with Lewy bodies]. Brain Nerve. 2018;70:489–500.
  • Selikhova M, Williams DR, Kempster PA, et al. A clinico-pathological study of subtypes in Parkinson’s disease. Brain. 2009;132:2947–2957.
  • Thenganatt MA, Jankovic J. Parkinson disease subtypes. JAMA Neurol. 2014;71:499–504.
  • Lawton M, Ben-Shlomo Y, May MT, et al. Developing and validating Parkinson’s disease subtypes and their motor and cognitive progression. J Neurol Neurosurg Psychiatry. 2018;89:1279–1287.
  • Fereshtehnejad SM, Zeighami Y, Dagher A, et al. Clinical criteria for subtyping Parkinson’s disease: biomarkers and longitudinal progression. Brain. 2017;140:1959–1976.
  • De Pablo-Fernandez E, Breen DP, Bouloux PM, et al. Neuroendocrine abnormalities in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2017;88:176–185.
  • Lang AE. A critical appraisal of the premotor symptoms of Parkinson’s disease: potential usefulness in early diagnosis and design of neuroprotective trials. Mov Disord. 2011;26:775–783.
  • Coon EA, Cutsforth-Gregory JK, Benarroch EE. Neuropathology of autonomic dysfunction in synucleinopathies. Mov Disord. 2018;33:349–358.
  • Jellinger KA. Neuropathobiology of non-motor symptoms in Parkinson disease. J Neural Transm (Vienna). 2015;122:1429–1440.
  • Jellinger KA. Neuropathology of movement disorders. In: Chaudhuri KR, editor. Movement Disorders Curricula. Wien: Springer; 2017. p. 43–48.
  • Jellinger KA. Neuropathology of nonmotor symptoms of Parkinson’s disease. Int Rev Neurobiol. 2017;133:13–62.
  • Kane JPM, Surendranathan A, Bentley A, et al. Clinical prevalence of Lewy body dementia. Alzheimers Res Ther. 2018;10:19.
  • Arnaoutoglou NA, O’Brien JT, Underwood BR. Dementia with Lewy bodies - from scientific knowledge to clinical insights. Nat Rev Neurol. 2019;15:103–112.
  • Savica R, Grossardt BR, Bower JH, et al. Incidence of dementia with Lewy bodies and Parkinson disease dementia. JAMA Neurol. 2013;70:1396–1402.
  • Donaghy PC, McKeith I. The clinical characteristics of dementia with Lewy bodies and a consideration of prodromal diagnosis. Alzheimers Res Ther. 2014;6:46.
  • Sanford AM. Lewy Body Dementia. Clin Geriatr Med. 2018;34:603–615.
  • McKeith IG, Boeve BF, Dickson DW, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology. 2017;89:88–100.
  • Cousins O, Yousaf T, Wilson H, et al. Molecular imaging of dementia with Lewy bodies. Int Rev Neurobiol. 2019;144:59–93.
  • Outeiro TF, Koss DJ, Erskine D, et al. Dementia with Lewy bodies: an update and outlook. Mol Neurodegener. 2019;14:5.
  • Yousaf T, Dervenoulas G, Valkimadi PE, et al. Neuroimaging in Lewy body dementia. J Neurol. 2019;266:1–26.
  • Irwin DJ, Grossman M, Weintraub D, et al. Neuropathological and genetic correlates of survival and dementia onset in synucleinopathies: a retrospective analysis. Lancet Neurol. 2017;16:55–65.
  • Kosaka K, Tsuchiya K, Yoshimura M. Lewy body disease with and without dementia: a clinicopathological study of 35 cases. Clin Neuropathol. 1988;7:299–305.
  • Seidel K, Mahlke J, Sonny S, et al. The brainstem pathologies of Parkinson’s disease and dementia with Lewy bodies. Brain Pathol. 2015;25:121–135.
  • Ruffmann C, Calboli FC, Bravi I, et al. Cortical Lewy bodies and Abeta burden are associated with prevalence and timing of dementia in Lewy body diseases. Neuropathol Appl Neurobiol. 2016;42:436–450.
  • Tiraboschi P, Attems J, Thomas A, et al. Clinicians’ ability to diagnose dementia with Lewy bodies is not affected by beta-amyloid load. Neurology. 2015;84:496–499.
  • Jellinger KA. Dementia with Lewy bodies and Parkinson’s disease-dementia: current concepts and controversies. J Neural Transm (Vienna). 2018;125:615–650.
  • Krismer F, Wenning GK. Multiple system atrophy: insights into a rare and debilitating movement disorder. Nat Rev Neurol. 2017;13:232–243.
  • Fanciulli A, Wenning GK. Multiple-system atrophy. N Engl J Med. 2015;372:249–263.
  • Ozawa T, Onodera O. Multiple system atrophy: clinicopathological characteristics in Japanese patients. Proc Jpn Acad Ser B Phys Biol Sci. 2017;93:251–258.
  • Köllensperger M, Geser F, Seppi K, et al. Red flags for multiple system atrophy. Mov Disord. 2008;23:1093–1099.
  • Gilman S, Wenning GK, Low PA, et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology. 2008;71:670–676.
  • Ono K. The oligomer hypothesis in alpha-synucleinopathy. Neurochem Res. 2017;42:3362–3371.
  • Sorrentino ZA, Giasson BI, Chakrabarty P. alpha-Synuclein and astrocytes: tracing the pathways from homeostasis to neurodegeneration in Lewy body disease. Acta Neuropathol. 2019;138:1-21.
  • Spillantini MG, Goedert M. Neurodegeneration and the ordered assembly of alpha-synuclein. Cell Tissue Res. 2018;373:137–148.
  • Jellinger KA. Neuropathology of movement disorders. In: Winn HR, editor. Youmans Neurological Surgery.7th. Philadelphia:Elsevier-Saunders; 2016.Vol. 1. e840–880.
  • Jiang P, Dickson DW. Parkinson’s disease: experimental models and reality. Acta Neuropathol. 2018;135:13–32.
  • Refolo V, Stefanova N. Neuroinflammation and glial phenotypic changes in alpha-synucleinopathies. Front Cell Neurosci. 2019;13:263.
  • Olanow CW, Stocchi F. Levodopa: A new look at an old friend. Mov Disord. 2018;33:859–866.
  • Davis AA, Leyns CEG, Holtzman DM. Intercellular spread of protein aggregates in neurodegenerative disease. Annu Rev Cell Dev Biol. 2018;34:545–568.
  • Karpowicz RJ Jr., Trojanowski JQ, Lee VM. Transmission of alpha-synuclein seeds in neurodegenerative disease: recent developments. Lab Invest. 2019; online Feb 13: doi 10.1038/s41374-41019-40195-z.
  • Henderson MX, Trojanowski JQ, Lee VM. Alpha-synuclein pathology in Parkinson’s disease and related alpha-synucleinopathies. Neurosci Lett. 2019;709:134316.
  • Koprich JB, Kalia LV, Brotchie JM. Animal models of alpha-synucleinopathy for Parkinson disease drug development. Nat Rev Neurosci. 2017;18:515–529.
  • Trigo-Damas I, Del Rey NL, Blesa J. Novel models for Parkinson’s disease and their impact on future drug discovery. Expert Opin Drug Discov. 2018;13:229–239.
  • Francardo V, Schmitz Y, Sulzer D, et al. Neuroprotection and neurorestoration as experimental therapeutics for Parkinson’s disease. Exp Neurol. 2017;298:137–147.
  • Valadas JS, Vos M, Verstreken P. Therapeutic strategies in Parkinson’s disease: what we have learned from animal models. Ann N Y Acad Sci. 2015;1338:16–37.
  • Javed H, Kamal MA, Ojha S. An overview on the role of alpha -synuclein in experimental models of Parkinson’s disease from pathogenesis to therapeutics. CNS Neurol Disord Drug Targets. 2016;15:1240–1252.
  • Betzer C, Jensen PH. Reduced cytosolic calcium as an early decisive cellular state in Parkinson’s disease and synucleinopathies. Front Neurosci. 2018;12:819.
  • Falkenburger BH, Saridaki T, Dinter E. Cellular models for Parkinson’s disease. J Neurochem. 2016;139(Suppl 1):121–130.
  • Lazaro DF, Pavlou MAS, Outeiro TF. Cellular models as tools for the study of the role of alpha-synuclein in Parkinson’s disease. Exp Neurol. 2017;298:162–171.
  • Volpicelli-Daley LA, Luk KC, Patel TP, et al. Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron. 2011;72:57–71.
  • Marvian AT, Koss DJ, Aliakbari F, et al. In vitro models of synucleinopathies: informing on molecular mechanisms and protective strategies. J Neurochem. 2019 online Apr 20: doi 10.1111/jnc.14707.
  • Bolognin S, Fossepre M, Qing X, et al. 3D cultures of Parkinson’s disease-specific dopaminergic neurons for high content phenotyping and drug testing. Adv Sci (Weinh). 2018;6:1800927.
  • Taylor-Whiteley TR, Le Maitre CL, Duce JA, et al. Recapitulating Parkinson’s disease pathology in a three-dimensional human neural cell culture model. Dis Model Mech. 2019;12: doi 10.1242/dmm.038042.
  • Croft CL, Cruz PE, Ryu DH, et al. rAAV-based brain slice culture models of Alzheimer's and Parkinson's disease inclusion pathologies. J Exp Med. 2019;216:539-555.
  • Penttinen AM, Suleymanova I, Albert K, et al. Characterization of a new low-dose 6-hydroxydopamine model of Parkinson’s disease in rat. J Neurosci Res. 2016;94:318–328.
  • Aly AE, Harmon BT, Padegimas L, et al. Intranasal delivery of pGDNF DNA nanoparticles provides neuroprotection in the rat 6-hydroxydopamine model of Parkinson’s disease. Mol Neurobiol. 2019;56:688–701.
  • Monnot C, Zhang X, Nikkhou-Aski S, et al. Asymmetric dopaminergic degeneration and levodopa alter functional corticostriatal connectivity bilaterally in experimental parkinsonism. Exp Neurol. 2017;292:11–20.
  • Tamano H, Nishio R, Morioka H, et al. Extracellular Zn(2+) influx into nigral dopaminergic neurons plays a key role for pathogenesis of 6-hydroxydopamine-induced Parkinson’s disease in rats. Mol Neurobiol. 2019;56:435–443.
  • Liu M, Choi DY, Hunter RL, et al. Trichloroethylene induces dopaminergic neurodegeneration in Fisher 344 rats. J Neurochem. 2010;112:773–783.
  • Bhattacharjee N, Borah A. Oxidative stress and mitochondrial dysfunction are the underlying events of dopaminergic neurodegeneration in homocysteine rat model of Parkinson’s disease. Neurochem Int. 2016;101:48–55.
  • Cook AR, Botham PA, Breckenridge CB, et al. Neurotoxicity of paraquat and paraquat-induced mechanisms of developing Parkinson’s disease. Lab Invest. 2016;96:1028–1029.
  • Bastias-Candia S, Zolezzi JM, Inestrosa NC. Revisiting the paraquat-induced sporadic Parkinson’s disease-like model. Mol Neurobiol. 2019;56:1044–1055.
  • Chinta SJ, Woods G, Demaria M, et al. Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to Parkinson’s disease. Cell Rep. 2018;22:930–940.
  • Richter F, Gabby L, McDowell KA, et al. Effects of decreased dopamine transporter levels on nigrostriatal neurons and paraquat/maneb toxicity in mice. Neurobiol Aging. 2017;51:54–66.
  • Seo J, Lee Y, Kim BS, et al. A non-human primate model for stable chronic Parkinson’s disease induced by MPTP administration based on individual behavioral quantification. J Neurosci Methods. 2019;311:277–287.
  • Mingazov ER, Khakimova GR, Kozina EA, et al. MPTP mouse model of preclinical and clinical Parkinson’s disease as an instrument for translational medicine. Mol Neurobiol. 2018;55:2991–3006.
  • Gagnon D, Eid L, Coude D, et al. Evidence for sprouting of dopamine and serotonin axons in the pallidum of parkinsonian monkeys. Front Neuroanat. 2018;12:38.
  • Blesa J, Trigo-Damas I, Del Rey NL, et al. The use of nonhuman primate models to understand processes in Parkinson’s disease. J Neural Transm (Vienna). 2018;125:325–335.
  • Pan-Montojo F, Anichtchik O, Dening Y, et al. Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS One. 2010;5:e8762.
  • Harischandra DS, Rokad D, Neal ML, et al. Manganese promotes the aggregation and prion-like cell-to-cell exosomal transmission of alpha-synuclein. Sci Signal. 2019;12:eaau4543.
  • Langley MR, Ghaisas S, Ay M, et al. Manganese exposure exacerbates progressive motor deficits and neurodegeneration in the MitoPark mouse model of Parkinson’s disease: relevance to gene and environment interactions in metal neurotoxicity. Neurotoxicology. 2018;64:240–255.
  • Martinez TN, Greenamyre JT. Toxin models of mitochondrial dysfunction in Parkinson’s disease. Antioxid Redox Signal. 2012;16:920–934.
  • Meredith GE, Rademacher DJ. MPTP mouse models of Parkinson’s disease: an update. J Parkinsons Dis. 2011;1:19–33.
  • Fernagut PO, Hutson CB, Fleming SM, et al. Behavioral and histopathological consequences of paraquat intoxication in mice: effects of alpha-synuclein over-expression. Synapse. 2007;61:991–1001.
  • Nicholatos JW, Francisco AB, Bender CA, et al. Nicotine promotes neuron survival and partially protects from Parkinson’s disease by suppressing SIRT6. Acta Neuropathol Commun. 2018;6:120.
  • Shishido T, Nagano Y, Araki M, et al. Synphilin-1 has neuroprotective effects on MPP(+)-induced Parkinson’s disease model cells by inhibiting ROS production and apoptosis. Neurosci Lett. 2019;690:145–150.
  • Lee Y, Cho JH, Lee S, et al. Neuroprotective effects of MHY908, a PPAR alpha/gamma dual agonist, in a MPTP-induced Parkinson’s disease model. Brain Res. 2019;1704:47–58.
  • Kirkley KS, Popichak KA, Hammond SL, et al. Genetic suppression of IKK2/NF-kappaB in astrocytes inhibits neuroinflammation and reduces neuronal loss in the MPTP-Probenecid model of Parkinson’s disease. Neurobiol Dis. 2019;127:193–209.
  • Haeri P, Mohammadipour A, Heidari Z, et al. Neuroprotective effect of crocin on substantia nigra in MPTP-induced Parkinson’s disease model of mice. Anat Sci Int. 2019;94:119–127.
  • Bhurtel S, Katila N, Srivastav S, et al. Mechanistic comparison between MPTP and rotenone neurotoxicity in mice. Neurotoxicology. 2019;71:113–121.
  • Ma K, Han C, Zhang G, et al. Reduced VMAT2 expression exacerbates the hyposmia in the MPTP model of Parkinson’s disease. Biochem Biophys Res Commun. 2019;513:306-312.
  • Wimalasena K. The inherent high vulnerability of dopaminergic neurons toward mitochondrial toxins may contribute to the etiology of Parkinson’s disease. Neural Regen Res. 2016;11:246–247.
  • Zeng XS, Geng WS, Jia JJ. Neurotoxin-induced animal models of Parkinson disease: pathogenic mechanism and assessment. ASN Neuro. 2018;10:1759091418777438.
  • Dehay B, Fernagut PO. Alpha-synuclein-based models of Parkinson’s disease. Rev Neurol (Paris). 2016;172:371–378.
  • Feany MB, Bender WW. A Drosophila model of Parkinson’s disease. Nature. 2000;404:394–398.
  • Van der Perren A, Van Den Haute C, Baekelandt V. Viral vector-based models of Parkinson’s disease. Curr Top Behav Neurosci. 2015;22:271–301.
  • Valente EM, Salvi S, Ialongo T, et al. PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol. 2004;56:336–341.
  • Pickrell AM, Pinto M, Hida A, et al. Striatal dysfunctions associated with mitochondrial DNA damage in dopaminergic neurons in a mouse model of Parkinson’s disease. J Neurosci. 2011;31:17649–17658.
  • Patil DA, Patil VA, Bari SB, et al. Animal models for Parkinson’s disease. CNS Neurol Disord Drug Targets. 2014;13:1580–1594.
  • Chen X, Kordich JK, Williams ET, et al. Parkinson's disease-linked D620N VPS35 knockin mice manifest tau neuropathology and dopaminergic neurodegeneration. Proc Natl Acad Sci U S A. 2019;116:5765-5774.
  • Duffy MF, Collier TJ, Patterson JR, et al. Quality over quantity: advantages of using alpha-synuclein preformed fibril triggered synucleinopathy to model idiopathic Parkinson’s disease. Front Neurosci. 2018;12:621.
  • Giraldo G, Brooks M, Giasson BI, et al. Locomotor differences in mice expressing wild-type human alpha-synuclein. Neurobiol Aging. 2018;65:140–148.
  • Frahm S, Melis V, Horsley D, et al. Alpha-Synuclein transgenic mice, h-alpha-SynL62, display alpha-Syn aggregation and a dopaminergic phenotype reminiscent of Parkinson’s disease. Behav Brain Res. 2018;339:153–168.
  • Henrich MT, Geibl FF, Lee B, et al. A53T-alpha-synuclein overexpression in murine locus coeruleus induces Parkinson’s disease-like pathology in neurons and glia. Acta Neuropathol Commun. 2018;6:39.
  • Kim D, Hwang H, Choi S, et al. D409H GBA1 mutation accelerates the progression of pathology in A53T alpha-synuclein transgenic mouse model. Acta Neuropathol Commun. 2018;6:32.
  • Creed RB, Goldberg MS. New developments in genetic rat models of Parkinson’s disease. Mov Disord. 2018;33:717–729.
  • Xiong Y, Dawson TM, Dawson VL. Models of LRRK2-associated Parkinson’s disease. Adv Neurobiol. 2017;14:163–191.
  • Dung VM, Thao DTP. Parkinson’s disease model. Adv Exp Med Biol. 2018;1076:41–61.
  • Nagoshi E. Drosophila models of sporadic Parkinson’s disease. Int J Mol Sci. 2018;19:3343.
  • Julienne H, Buhl E, Leslie DS, et al. Drosophila PINK1 and parkin loss-of-function mutants display a range of non-motor Parkinson’s disease phenotypes. Neurobiol Dis. 2017;104:15–23.
  • Fatima A, Jyoti S, Siddique YH. Models of Parkinson’s disease with special emphasis on Drosophila melanogaster. CNS Neurol Disord Drug Targets. 2018;17:757–766.
  • Hewitt VL, Whitworth AJ. Mechanisms of Parkinson’s disease: lessons from drosophila. Curr Top Dev Biol. 2017;121:173–200.
  • Koopman M, Seinstra RI, Nollen EAA. C. elegans as a model for synucleinopathies and other neurodegenerative diseases: tools and techniques. Methods Mol Biol. 2019;1948:93–112.
  • Cooper JF, Van Raamsdonk JM. Modeling Parkinson’s disease in C. elegans. J Parkinsons Dis. 2018;38:17–32.
  • Gaeta AL, Caldwell KA, Caldwell GA. Found in translation: the utility of C. elegans alpha-synuclein models of Parkinson’s disease. Brain Sci. 2019;9:73.
  • Marmion DJ, Kordower JH. alpha-Synuclein nonhuman primate models of Parkinson’s disease. J Neural Transm (Vienna). 2018;125:385–400.
  • Beck G, Singh A, Papa SM. Dysregulation of striatal projection neurons in Parkinson’s disease. J Neural Transm (Vienna). 2018;125:449–460.
  • Lillethorup TP, Glud AN, Alstrup AKO, et al. Nigrostriatal proteasome inhibition impairs dopamine neurotransmission and motor function in minipigs. Exp Neurol. 2018;303:142–152.
  • Aryal B, Lee Y. Disease model organism for Parkinson disease: drosophila melanogaster. BMB Rep. 2019;52:250–258.
  • Breger LS, Fuzzati Armentero MT. Genetically engineered animal models of Parkinson’s disease: from worm to rodent. Eur J Neurosci. 2019;49:533–560.
  • Ko WKD, Bezard E. Experimental animal models of Parkinson’s disease: A transition from assessing symptomatology to alpha-synuclein targeted disease modification. Exp Neurol. 2017;298:172–179.
  • Faustini G, Longhena F, Varanita T, et al. Synapsin III deficiency hampers alpha-synuclein aggregation, striatal synaptic damage and nigral cell loss in an AAV-based mouse model of Parkinson’s disease. Acta Neuropathol. 2018;136:621–639.
  • Niu H, Shen L, Li T, et al. Alpha-synuclein overexpression in the olfactory bulb initiates prodromal symptoms and pathology of Parkinson’s disease. Transl Neurodegener. 2018;7:25.
  • Ip CW, Klaus LC, Karikari AA, et al. AAV1/2-induced overexpression of A53T-alpha-synuclein in the substantia nigra results in degeneration of the nigrostriatal system with Lewy-like pathology and motor impairment: a new mouse model for Parkinson’s disease. Acta Neuropathol Commun. 2017;5:11.
  • Recasens A, Ulusoy A, Kahle PJ, et al. In vivo models of alpha-synuclein transmission and propagation. Cell Tissue Res. 2018;373:183–193.
  • Rey NL, George S, Brundin P. Review: spreading the word: precise animal models and validated methods are vital when evaluating prion-like behaviour of alpha-synuclein. Neuropathol Appl Neurobiol. 2016;42:51–76.
  • Niu Y, Guo X, Chen Y, et al. Early Parkinson’s disease symptoms in alpha-synuclein transgenic monkeys. Hum Mol Genet. 2015;24:2308–2317.
  • Cenci MA, Crossman AR. Animal models of L-dopa-induced dyskinesia in Parkinson’s disease. Mov Disord. 2018;33:889–899.
  • Choudhury GR, Daadi MM. Charting the onset of Parkinson-like motor and non-motor symptoms in nonhuman primate model of Parkinson’s disease. PLoS One. 2018;13:e0202770.
  • Fortuna JTS, Gralle M, Beckman D, et al. Brain infusion of alpha-synuclein oligomers induces motor and non-motor Parkinson’s disease-like symptoms in mice. Behav Brain Res. 2017;333:150–160.
  • Wang Y, Liu W, Yang J, et al. Parkinson’s disease-like motor and non-motor symptoms in rotenone-treated zebrafish. Neurotoxicology. 2017;58:103–109.
  • Lelos MJ, Morgan RJ, Kelly CM, et al. Amelioration of non-motor dysfunctions after transplantation of human dopamine neurons in a model of Parkinson’s disease. Exp Neurol. 2016;278:54–61.
  • Wang B, Underwood R, Kamath A, et al. 14-3-3 proteins reduce cell-to-cell transfer and propagation of pathogenic alpha-synuclein. J Neurosci. 2018;38:8211–8232.
  • Wang W, Song N, Jia F, et al. Genomic DNA levels of mutant alpha-synuclein correlate with non-motor symptoms in an A53T Parkinson’s disease mouse model. Neurochem Int. 2018;114:71–79.
  • Potts LF, Wu H, Singh A, et al. Modeling Parkinson’s disease in monkeys for translational studies, a critical analysis. Exp Neurol. 2014;256:133–143.
  • Howson PA, Johnston TH, Ravenscroft P, et al. Beneficial effects of trehalose on striatal dopaminergic deficits in rodent and primate models of synucleinopathy in Parkinson’s disease. J Pharmacol Exp Ther. 2019;369:364–374.
  • Hu D, Sun X, Liao X, et al. Alpha-synuclein suppresses mitochondrial protease ClpP to trigger mitochondrial oxidative damage and neurotoxicity. Acta Neuropathol. 2019;137:939–960.
  • Braak H, Del Tredici K. Neuropathological staging of brain pathology in sporadic Parkinson’s disease: separating the wheat from the chaff. J Parkinsons Dis. 2017;7:S71–S85.
  • Braak H, de Vos RA, Bohl J, et al. Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett. 2006;396:67–72.
  • Longhena F, Faustini G, Missale C, et al. The contribution of alpha-synuclein spreading to Parkinson’s disease synaptopathy. Neural Plast. 2017;2017:5012129.
  • Duyckaerts C, Clavaguera F, Potier MC. The prion-like propagation hypothesis in Alzheimer’s and Parkinson’s disease. Curr Opin Neurol. 2019;32:266-271.
  • Dehay B, Vila M, Bezard E, et al. Alpha-synuclein propagation: new insights from animal models. Mov Disord. 2016;31:161–168.
  • Sastry N, Zheng W, Liu G, et al. No apparent transmission of transgenic alpha-synuclein into nigrostriatal dopaminergic neurons in multiple mouse models. Transl Neurodegener. 2015;4:23.
  • Costanzo M, Zurzolo C. The cell biology of prion-like spread of protein aggregates: mechanisms and implication in neurodegeneration. Biochem J. 2013;452:1–17.
  • Brundin P, Melki R, Kopito R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol. 2010;11:301–307.
  • Emmanouilidou E, Vekrellis K. Exocytosis and spreading of normal and aberrant alpha-synuclein. Brain Pathol. 2016;26:398–403.
  • La Vitola P, Beeg M, Balducci C, et al. Cellular prion protein neither binds to alpha-synuclein oligomers nor mediates their detrimental effects. Brain. 2019;142:249–254.
  • Gelpi E, Colom-Cadena M. Oligomers: a hot topic for neurodegeneration and a note of caution for experimental models. Brain. 2019;142:228–230.
  • Masaracchia C, Hnida M, Gerhardt E, et al. Membrane binding, internalization, and sorting of alpha-synuclein in the cell. Acta Neuropathol Commun. 2018;6:79.
  • Tamguney G, Korczyn AD. A critical review of the prion hypothesis of human synucleinopathies. Cell Tissue Res. 2018;373:213–220.
  • Irwin DJ, Abrams JY, Schonberger LB, et al. Evaluation of potential infectivity of Alzheimer and Parkinson disease proteins in recipients of cadaver-derived human growth hormone. JAMA Neurol. 2013;70:462–468.
  • Surguchev AA, Emamzadeh FN, Surguchov A. Cell responses to extracellular alpha-synuclein. Molecules. 2019;24:305.
  • Tyson T, Senchuk M, Cooper JF, et al. Novel animal model defines genetic contributions for neuron-to-neuron transfer of alpha-synuclein. Sci Rep. 2017;7:7506.
  • Ayers JI, Riffe CJ, Sorrentino ZA, et al. Localized induction of wild-type and mutant alpha-synuclein aggregation reveals propagation along neuroanatomical tracts. J Virol. 2018;92:e00586-00518.
  • Braak H, Del Tredici K. Nervous system pathology in sporadic Parkinson disease. Neurology. 2008;70:1916–1925.
  • Holmqvist S, Chutna O, Bousset L, et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol. 2014;128:805–820.
  • Uemura N, Yagi H, Uemura MT, et al. Inoculation of alpha-synuclein preformed fibrils into the mouse gastrointestinal tract induces Lewy body-like aggregates in the brainstem via the vagus nerve. Mol Neurodegener. 2018;13:21.
  • Svensson E, Horvath-Puho E, Thomsen RW, et al. Vagotomy and subsequent risk of Parkinson’s disease. Ann Neurol. 2015;78:522–529.
  • Kim S, Kwon SH, Kam TI, et al. Transneuronal propagation of pathologic alpha-synuclein from the gut to the brain models Parkinson's disease. Neuron. 2019; online Jun 17: doi 10.1016/j.neuron.2019.1005.1035
  • Breen DP, Halliday GM, Lang AE. Gut-brain axis and the spread of alpha-synuclein pathology: vagal highway or dead end? Mov Disord. 2019;34:307–316.
  • Kujawska M, Jodynis-Liebert J. What is the evidence that Parkinson’s disease is a prion disorder, which originates in the gut? Int J Mol Sci. 2018;19:3573.
  • Lionnet A, Leclair-Visonneau L, Neunlist M, et al. Does Parkinson’s disease start in the gut? Acta Neuropathol. 2018;135:1–12.
  • Manfredsson FP, Luk KC, Benskey MJ, et al. Induction of alpha-synuclein pathology in the enteric nervous system of the rat and non-human primate results in gastrointestinal dysmotility and transient CNS pathology. Neurobiol Dis. 2018;112:106–118.
  • Chamoli M, Chinta SJ, Andersen JK. An inducible MAO-B mouse model of Parkinson’s disease: a tool towards better understanding basic disease mechanisms and developing novel therapeutics. J Neural Transm (Vienna). 2018;125:1651–1658.
  • Polinski NK, Volpicelli-Daley LA, Sortwell CE, et al. Best practices for generating and using alpha-synuclein pre-formed fibrils to model Parkinson’s disease in rodents. J Parkinsons Dis. 2018;8:303–322.
  • Nouraei N, Mason DM, Miner KM, et al. Critical appraisal of pathology transmission in the alpha-synuclein fibril model of Lewy body disorders. Exp Neurol. 2018;299:172–196.
  • Shimozawa A, Ono M, Takahara D, et al. Propagation of pathological alpha-synuclein in marmoset brain. Acta Neuropathol Commun. 2017;5:12.
  • Halliday G, Herrero MT, Murphy K, et al. No Lewy pathology in monkeys with over 10 years of severe MPTP Parkinsonism. Mov Disord. 2009;24:1519–1523.
  • Recasens A, Dehay B, Bove J, et al. Lewy body extracts from Parkinson disease brains trigger alpha-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol. 2014;75:351–362.
  • Zhang B, Kehm V, Gathagan R, et al. Stereotaxic targeting of alpha-synuclein pathology in mouse brain using preformed fibrils. Methods Mol Biol. 2019;1948:45–57.
  • Carballo-Carbajal I, Laguna A, Romero-Gimenez J, et al. Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson’s disease pathogenesis. Nat Commun. 2019;10:973.
  • Wang X, Becker K, Levine N, et al. Pathogenic alpha-synuclein aggregates preferentially bind to mitochondria and affect cellular respiration. Acta Neuropathol Commun. 2019;7:41.
  • Bieri G, Brahic M, Bousset L, et al. LRRK2 modifies alpha-syn pathology and spread in mouse models and human neurons. Acta Neuropathol. 2019;137:961–980.
  • Baden P, Yu C, Deleidi M. Insights into GBA Parkinson’s disease pathology and therapy with induced pluripotent stem cell model systems. Neurobiol Dis. 2019;127:1–12.
  • Hagihara H, Fujita M, Umemori J, et al. Immature-like molecular expression patterns in the hippocampus of a mouse model of dementia with Lewy body-linked mutant beta-synuclein. Mol Brain. 2018;11:38.
  • Ho YJ, Weng JC, Lin CL, et al. Ceftriaxone treatment for neuronal deficits: a histological and memri study in a rat model of dementia with Lewy bodies. Behav Neurol. 2018;2018:4618716.
  • Bassil F, Guerin PA, Dutheil N, et al. Viral-mediated oligodendroglial alpha-synuclein expression models multiple system atrophy. Mov Disord. 2017;32:1230–1239.
  • Mandel RJ, Marmion DJ, Kirik D, et al. Novel oligodendroglial alpha synuclein viral vector models of multiple system atrophy: studies in rodents and nonhuman primates. Acta Neuropathol Commun. 2017;5:47.
  • Refolo V, Bez F, Polissidis A, et al. Progressive striatonigral degeneration in a transgenic mouse model of multiple system atrophy: translational implications for interventional therapies. Acta Neuropathol Commun. 2018;6:2.
  • Paumier KL, Luk KC, Manfredsson FP, et al. Intrastriatal injection of pre-formed mouse alpha-synuclein fibrils into rats triggers alpha-synuclein pathology and bilateral nigrostriatal degeneration. Neurobiol Dis. 2015;82:185–199.
  • Abati E, Di Fonzo A, Corti S. In vitro models of multiple system atrophy from primary cells to induced pluripotent stem cells. J Cell Mol Med. 2018;22:2536–2546.
  • Mavroeidi P, Arvanitaki F, Karakitsou AK, et al. Endogenous oligodendroglial alpha-synuclein and TPPP/p25alpha orchestrate alpha-synuclein pathology in experimental multiple system atrophy models. Acta Neuropathol. 2019.
  • Krejciova Z, Carlson GA, Giles K, et al. Replication of multiple system atrophy prions in primary astrocyte cultures from transgenic mice expressing human alpha-synuclein. Acta Neuropathol Commun. 2019;7:81.
  • Woerman AL, Oehler A, Kazmi SA, et al. Multiple system atrophy prions retain strain specificity after serial propagation in two different Tg(SNCA*A53T) mouse lines. Acta Neuropathol. 2019;137:437–454.
  • Dhillon JS, Trejo-Lopez JA, Riffe C, et al. Comparative analyses of the in vivo induction and transmission of alpha-synuclein pathology in transgenic mice by MSA brain lysate and recombinant alpha-synuclein fibrils. Acta Neuropathol Commun. 2019;7:80.
  • Heras-Garvin A, Weckbecker D, Ryazanov S, et al. Anle138b modulates alpha-synuclein oligomerization and prevents motor decline and neurodegeneration in a mouse model of multiple system atrophy. Mov Disord. 2019;34:255–263.
  • Tanji K, Miki Y, Mori F, et al. A mouse model of adult-onset multiple system atrophy. Neurobiol Dis. 2019;127:339–349.
  • Kallab M, Herrera-Vaquero M, Johannesson M, et al. Region-specific effects of immunotherapy with antibodies targeting alpha-synuclein in a transgenic model of synucleinopathy. Front Neurosci. 2018;12:452.
  • Bleasel JM, Halliday GM, Kim WS. Animal modeling an oligodendrogliopathy–multiple system atrophy. Acta Neuropathol Commun. 2016;4:12.
  • Fellner L, Wenning GK, Stefanova N. Models of multiple system atrophy. Curr Top Behav Neurosci. 2015;22:369–393.
  • Overk C, Rockenstein E, Valera E, et al. Multiple system atrophy: experimental models and reality. Acta Neuropathol. 2018;135:33–47.
  • Valera E, Spencer B, Fields JA, et al. Combination of alpha-synuclein immunotherapy with anti-inflammatory treatment in a transgenic mouse model of multiple system atrophy. Acta Neuropathol Commun. 2017;5:2.
  • Vingill S, Connor-Robson N, Wade-Martins R. Are rodent models of Parkinson’s disease behaving as they should? Behav Brain Res. 2018;352:133–141.
  • Shan C, Gong YL, Zhuang QQ, et al. Protective effects of beta-nicotinamide adenine dinucleotide against motor deficits and dopaminergic neuronal damage in a mouse model of Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry. 2019;94:109670.
  • Brundin P, Dave KD, Kordower JH. Therapeutic approaches to target alpha-synuclein pathology. Exp Neurol. 2017;298:225–235.
  • Ghatak S, Trudler D, Dolatabadi N, et al. Parkinson’s disease: what the model systems have taught us so far. J Genet. 2018;97:729–751.
  • Stefanova N, Reindl M, Neumann M, et al. Microglial activation mediates neurodegeneration related to oligodendroglial alpha-synucleinopathy: implications for multiple system atrophy. Mov Disord. 2007;22:2196–2203.
  • Dodel R, Spottke A, Gerhard A, et al. Minocycline 1-year therapy in multiple-system-atrophy: effect on clinical symptoms and [(11)C] (R)-PK11195 PET (MEMSA-trial). Mov Disord. 2010;25:97–107.
  • Wegrzynowicz M, Bar-On D, Calo L, et al. Depopulation of dense alpha-synuclein aggregates is associated with rescue of dopamine neuron dysfunction and death in a new Parkinson’s disease model. Acta Neuropathol. 2019.
  • Zhu Q, Zhuang X, Lu J. Neuroprotective effects of baicalein in animal models of Parkinson’s disease: A systematic review of experimental studies. Phytomedicine. 2019;55:302–309.
  • Dou F, Chu X, Zhang B, et al. EriB targeted inhibition of microglia activity attenuates MPP(+) induced DA neuron injury through the NF-kappaB signaling pathway. Mol Brain. 2018;11:75.
  • Gong J, Szego EM, Leonov A, et al. Translocator protein ligand protects against neurodegeneration in the MPTP mouse model of parkinsonism. J Neurosci. 2019;39:3752–3769.
  • Piper DA, Sastre D, Schule B. Advancing stem cell models of alpha-synuclein gene regulation in neurodegenerative disease. Front Neurosci. 2018;12:199.
  • Lebedeva OS, Lagarkova MA. Pluripotent stem cells for modelling and cell therapy of Parkinson’s disease. Biochemistry (Mosc). 2018;83:1046–1056.
  • Sidorova YA, Volcho KP, Salakhutdinov NF. Neuroregeneration in Parkinson’s disease: from proteins to small molecules. Curr Neuropharmacol. 2019;17:268–287.
  • Gerson JE, Farmer KM, Henson N, et al. Tau oligomers mediate alpha-synuclein toxicity and can be targeted by immunotherapy. Mol Neurodegener. 2018;13:13.
  • Salari S, Bagheri M. In vivo, in vitro and pharmacologic models of Parkinson’s disease. Physiol Res. 2019;68:17–24.
  • Raza C, Anjum R, Shakeel NUA. Parkinson’s disease: mechanisms, translational models and management strategies. Life Sci. 2019;226:77–90.
  • Vasquez V, Mitra J, Perry G, et al. An inducible alpha-synuclein expressing neuronal cell line model for Parkinson’s disease. J Alzheimers Dis. 2018;66:453–460.
  • Prots I, Grosch J, Brazdis RM, et al. alpha-Synuclein oligomers induce early axonal dysfunction in human iPSC-based models of synucleinopathies. Proc Natl Acad Sci U S A. 2018;115:7813–7818.
  • Mishima T, Fujioka S, Fukae J, et al. Modeling Parkinson’s disease and atypical parkinsonian syndromes using induced pluripotent stem cells. Int J Mol Sci. 2018;19:3870.
  • Lasbleiz C, Mestre-Frances N, Devau G, et al. Combining gene transfer and nonhuman primates to better understand and treat Parkinson’s disease. Front Mol Neurosci. 2019;12:10.
  • Kim C, Spencer B, Rockenstein E, et al. Immunotherapy targeting toll-like receptor 2 alleviates neurodegeneration in models of synucleinopathy by modulating alpha-synuclein transmission and neuroinflammation. Mol Neurodegener. 2018;13:43.
  • Bergstrom AL, Kallunki P, Fog K. Development of passive immunotherapies for synucleinopathies. Mov Disord. 2016;31:203–213.
  • Games D, Valera E, Spencer B, et al. Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson’s disease-like models. J Neurosci. 2014;34:9441–9454.
  • El-Agnaf O, Overk C, Rockenstein E, et al. Differential effects of immunotherapy with antibodies targeting alpha-synuclein oligomers and fibrils in a transgenic model of synucleinopathy. Neurobiol Dis. 2017;104:85–96.
  • Huang YR, Xie XX, Ji M, et al. Naturally occurring autoantibodies against alpha-synuclein rescues memory and motor deficits and attenuates alpha-synuclein pathology in mouse model of Parkinson’s disease. Neurobiol Dis. 2019;124:202–217.
  • Weihofen A, Liu Y, Arndt JW, et al. Development of an aggregate-selective, human-derived alpha-synuclein antibody BIIB054 that ameliorates disease phenotypes in Parkinson’s disease models. Neurobiol Dis. 2019;124:276–288.
  • Mandler M, Valera E, Rockenstein E, et al. Active immunization against alpha-synuclein ameliorates the degenerative pathology and prevents demyelination in a model of multiple system atrophy. Mol Neurodegener. 2015;10:10.
  • Mandler M, Valera E, Rockenstein E, et al. Next-generation active immunization approach for synucleinopathies: implications for Parkinson’s disease clinical trials. Acta Neuropathol. 2014;127:861–879.
  • Schneeberger A, Mandler M, Otawa O, et al. Development of AFFITOPE vaccines for Alzheimer’s disease (AD)–from concept to clinical testing. J Nutr Health Aging. 2009;13:264–267.
  • Jankovic J, Goodman I, Safirstein B, et al. Safety and tolerability of multiple ascending doses of PRX002/RG7935, an anti-alpha-synuclein monoclonal antibody, in patients with parkinson disease: a randomized clinical trial. JAMA Neurol. 2018;75:1206–1214.
  • Angot E, Steiner JA, Lema Tome CM, et al. Alpha-synuclein cell-to-cell transfer and seeding in grafted dopaminergic neurons in vivo. PLoS One. 2012;7:e39465.
  • Hansen C, Angot E, Bergstrom AL, et al. alpha-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Invest. 2011;121:715–725.
  • Kordower JH, Dodiya HB, Kordower AM, et al. Transfer of host-derived alpha synuclein to grafted dopaminergic neurons in rat. Neurobiol Dis. 2011;43:552–557.
  • Brys M, Ellenbogen A, Fanning L, et al. Randomized, double-blind, placebo-controlled, single ascending dose study of anti-alpha-synuclein antibody BIIB054 in patients with Parkinso’s disease (abstr.). Neurology. 2018;90:S26.001.
  • Sardi SP, Cedarbaum JM, Brundin P. Targeted therapies for Parkinson’s disease: from genetics to the clinic. Mov Disord. 2018;33:684–696.
  • Rockenstein E, Ostroff G, Dikengil F, et al. Combined active humoral and cellular immunization approaches for the treatment of synucleinopathies. J Neurosci. 2018;38:1000–1014.
  • Spencer B, Trinh I, Rockenstein E, et al. Systemic peptide mediated delivery of an siRNA targeting alpha-syn in the CNS ameliorates the neurodegenerative process in a transgenic model of Lewy body disease. Neurobiol Dis. 2019;127:163–177.
  • Merchant KM, Cedarbaum JM, Brundin P, et al. A proposed roadmap for Parkinson’s disease proof of concept clinical trials investigating compounds targeting alpha-synuclein. J Parkinsons Dis. 2019;9:31–61.
  • Cheng HC, Ulane CM, Burke RE. Clinical progression in Parkinson disease and the neurobiology of axons. Ann Neurol. 2010;67:715–725.
  • Bezard E, Yue Z, Kirik D, et al. Animal models of Parkinson’s disease: limits and relevance to neuroprotection studies. Mov Disord. 2013;28:61–70.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.