1,999
Views
16
CrossRef citations to date
0
Altmetric
Review

Induced degradation of protein kinases by bifunctional small molecules: a next-generation strategy

ORCID Icon
Pages 1237-1253 | Received 02 Jan 2019, Accepted 23 Aug 2019, Published online: 12 Sep 2019

References

  • Müller MP, Rauh D. Try me: promiscuous inhibitors still allow for selective targeted protein degradation. Cell Chem Biol. 2018;25(1):4–6.
  • Cromm PM, Crews CM. Targeted protein degradation: from chemical biology to drug discovery. Cell Chem Biol. 2017 Sep 21;24(9):1181–1190.
  • Kronke J, Fink EC, Hollenbach PW, et al. Lenalidomide induces ubiquitination and degradation of CK1alpha in del(5q) MDS. Nature. 2015 Jul 9;523(7559):183–188.
  • Lebraud H, Heightman TD. Protein degradation: a validated therapeutic strategy with exciting prospects. Essays Biochem. 2017 Nov 8;61(5):517–527.
  • An S, Fu L. Small-molecule PROTACs: an emerging and promising approach for the development of targeted therapy drugs. EBioMedicine. 2018 Oct;36:553–562.
  • Phillippidis A. Pfizer joins yale spinout in up-to-$830 protein degradation drug collaboration. Genet Eng Biotechnol News. 2018. Available from: https://www.genengnews.com/news/pfizer-joins-yale-spinout-in-up-to-830m-protein-degradation-drug-collaboration/
  • Mori T, Ito T, Liu S, et al. Structural basis of thalidomide enantiomer binding to cereblon. Sci Rep. 2018 Jan 22;8(1):1294.
  • Petzold G, Fischer ES, Thoma NH. Structural basis of lenalidomide-induced CK1alpha degradation by the CRL4(CRBN) ubiquitin ligase. Nature. 2016 Apr 7;532(7597):127–130.
  • Huang X, Dixit VM. Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res. 2016 Apr;26(4):484–498.
  • Phillippidis A. Top 10 best-selling cancer drugs, Q1–Q3 2017. Genet Eng Biotechnol News. 2018. Available from: https://www.genengnews.com/a-lists/top-10-best-selling-cancer-drugs-q1-q3-2017/
  • Bondeson DP, Crews CM. Targeted protein degradation by small molecules. Annu Rev Pharmacol Toxicol. 2017 Jan;6(57):107–123.
  • Churcher I. Protac-induced protein degradation in drug discovery: breaking the rules or just making new ones? J Med Chem. 2018 Jan 25;61(2):444–452. doi:https://doi.org/10.1021/acs.jmedchem.7b01272.
  • Neklesa TK, Winkler JD, Crews CM. Targeted protein degradation by PROTACs. Pharmacol Ther. 2017 Jun;174:138–144.
  • Ottis P, Crews CM. Proteolysis-targeting chimeras: induced protein degradation as a therapeutic strategy. ACS Chem Biol. 2017 Apr 21;12(4):892–898.
  • Raina K, Crews CM. Targeted protein knockdown using small molecule degraders. Curr Opin Chem Biol. 2017 Aug;39:46–53.
  • Salami J, Crews CM. Waste disposal-an attractive strategy for cancer therapy. Science. 2017 Mar 17;355(6330):1163–1167.
  • Fry DW, Bridges AJ, Denny WA, et al. Specific, irreversible inactivation of the epidermal growth factor receptor and erbB2, by a new class of tyrosine kinase inhibitor. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):12022–12027.
  • Neckers L, Schulte TW, Mimnaugh E. Geldanamycin as a potential anti-cancer agent: its molecular target and biochemical activity. Invest New Drugs. 1999;17(4):361–373.
  • Huezo H, Vilenchik M, Rosen N, et al. Microtiter cell-based assay for detection of agents that alter cellular levels of Her2 and EGFR. Chem Biol. 2003 Jul;10(7):629–634.
  • Citri A, Alroy I, Lavi S, et al. Drug-induced ubiquitylation and degradation of ErbB receptor tyrosine kinases: implications for cancer therapy. Embo J. 2002 May 15;21(10):2407–2417.
  • Chiosis G, Lucas B, Huezo H, et al. Development of purine-scaffold small molecule inhibitors of Hsp90. Curr Cancer Drug Targets. 2003 Oct;3(5):371–376.
  • Vilenchik M, Solit D, Basso A, et al. Targeting wide-range oncogenic transformation via PU24FCl, a specific inhibitor of tumor Hsp90. Chem Biol. 2004 Jun;11(6):787–797.
  • Chiosis G, Lucas B, Shtil A, et al. Development of a purine-scaffold novel class of Hsp90 binders that inhibit the proliferation of cancer cells and induce the degradation of Her2 tyrosine kinase. Bioorg Med Chem. 2002 Nov;10(11):3555–3564.
  • Chiosis G, Timaul MN, Lucas B, et al. A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells. Chem Biol. 2001 Mar;8(3):289–299.
  • Marcu MG, Schulte TW, Neckers L. Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins. J Natl Cancer Inst. 2000 Feb 2;92(3):242–248.
  • Schulte TW, Akinaga S, Soga S, et al. Antibiotic radicicol binds to the N-terminal domain of Hsp90 and shares important biologic activities with geldanamycin. Cell Stress Chaperones. 1998 Jun;3(2):100–108.
  • Schulte TW, Neckers LM. The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol. 1998;42(4):273–279.
  • Yu X, Guo ZS, Marcu MG, et al. Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J Natl Cancer Inst. 2002 Apr 3;94(7):504–513.
  • Taipale M, Jarosz DF, Lindquist S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol. 2010 Jul;11(7):515–528.
  • Whitesell L, Lindquist SL. HSP90 and the chaperoning of cancer. Nat Rev Cancer. 2005 Oct;5(10):761–772.
  • Trepel J, Mollapour M, Giaccone G, et al. Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer. 2010 Aug;10(8):537–549.
  • Radli M, Rudiger SGD. Dancing with the diva: Hsp90-client interactions. J Mol Biol. 2018 Sep 14;430(18 Pt B):3029–3040.
  • Wang L, Li L, Gu K, et al. Targeting Hsp90-Cdc37: a promising therapeutic strategy by inhibiting Hsp90 chaperone function. Curr Drug Targets. 2017;18(13):1572–1585.
  • McDonnell DP, Wardell SE. The molecular mechanisms underlying the pharmacological actions of ER modulators: implications for new drug discovery in breast cancer. Curr Opin Pharmacol. 2010 Dec;10(6):620–628.
  • McDonnell DP, Wardell SE, Norris JD. Oral selective estrogen receptor downregulators (serds), a breakthrough endocrine therapy for breast cancer. J Med Chem. 2015 Jun 25;58(12):4883–4887.
  • Wu YL, Yang X, Ren Z, et al. Structural basis for an unexpected mode of SERM-mediated ER antagonism. Mol Cell. 2005 May 13;18(4):413–424.
  • Guan J, Zhou W, Hafner M, et al. Therapeutic ligands antagonize estrogen receptor function by impairing its mobility. Cell. 2019 Aug 8;178(4):949–63 e18.
  • Neklesa TK, Tae HS, Schneekloth AR, et al. Small-molecule hydrophobic tagging-induced degradation of HaloTag fusion proteins. Nat Chem Biol. 2011 Jul 3;7(8):538–543.
  • Gustafson JL, Neklesa TK, Cox CS, et al. Small-molecule-mediated degradation of the androgen receptor through hydrophobic tagging. Angew Chem Int Ed Engl. 2015 Aug 10;54(33):9659–9662.
  • Tae HS, Sundberg TB, Neklesa TK, et al. Identification of hydrophobic tags for the degradation of stabilized proteins. Chembiochem. 2012 Mar 5;13(4):538–541.
  • Xie T, Lim SM, Westover KD, et al. Pharmacological targeting of the pseudokinase Her3. Nat Chem Biol. 2014 Dec;10(12):1006–1012.
  • Lu G, Tandang-Silvas MR, Dawson AC, et al. Hypoxia-selective allosteric destabilization of activin receptor-like kinases: A potential therapeutic avenue for prophylaxis of heterotopic ossification. Bone. 2018 Jul;112:71–89.
  • Huang H-T, Dobrovolsky D, Paulk J, et al. A chemoproteomic approach to query the degradable kinome using a multi-kinase degrader. Cell Chem Biol. 2018 Jan 18;25(1):88–99.e6.
  • Tomoshige S, Nomura S, Ohgane K, et al. Discovery of small molecules that induce the degradation of huntingtin. Angew Chem Int Ed Engl. 2017 Sep 11;56(38):11530–11533.
  • Jones LH. Small-molecule kinase downregulators. Cell Chem Biol. 2018 Jan 18;25(1):30–35. doi:https://doi.org/10.1016/j.chembiol.2017.10.011. Epub 2017 Nov 22.
  • Lai AC, Crews CM. Induced protein degradation: an emerging drug discovery paradigm. Nat Rev Drug Discov. 2017 Feb;16(2):101–114.
  • Bondeson DP, Smith BE, Burslem GM, et al. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem Biol. 2018 Jan 18;25(1):78–87.e5.
  • Hughes SJ, Ciulli A. Molecular recognition of ternary complexes: a new dimension in the structure-guided design of chemical degraders. Essays Biochem. 2017 Nov 8;61(5):505–516.
  • Burslem GM, Smith BE, Lai AC, et al. The advantages of targeted protein degradation over inhibition: an RTK case study. Cell Chem Biol. 2018 Jan 18;25(1):67–77.e3.
  • Gadd MS, Testa A, Lucas X, et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat Chem Biol. 2017 May;13(5):514–521.
  • Shibata N, Nagai K, Morita Y, et al. Development of protein degradation inducers of androgen receptor by conjugation of androgen receptor ligands and inhibitor of apoptosis protein ligands. J Med Chem. 2018 Jan 25;61(2):543–575.
  • Ohoka N, Morita Y, Nagai K, et al. Derivatization of inhibitor of apoptosis protein (IAP) ligands yields improved inducers of estrogen receptor alpha degradation. J Biol Chem. 2018 May 4;293(18):6776–6790.
  • Ohoka N, Ujikawa O, Shimokawa K, et al. Different degradation mechanisms of Inhibitor of Apoptosis Proteins (IAPs) by the Specific and Nongenetic IAP-Dependent Protein Eraser (SNIPER). Chem Pharm Bull (Tokyo). 2019 Mar 1;67(3):203–209.
  • Hines J, Lartigue S, Dong H, et al. MDM2-recruiting PROTAC offers superior, synergistic antiproliferative activity via simultaneous degradation of BRD4 and stabilization of p53. Cancer Res. 2019 Jan 1;79(1):251–262.
  • Salami J, Alabi S, Willard RR, et al. Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Commun Biol. 2018;1:100.
  • Tan L, Gray NS. When kinases meet PROTACs. Chin J Chem. 2018;36(10): 971–977.
  • Ferguson FM, Gray NS. Kinase inhibitors: the road ahead. Nat Rev Drug Discov. 2018 May;17(5):353–377.
  • Bondeson DP, Mares A, Smith IE, et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat Chem Biol. 2015 Aug;11(8):611–617.
  • Buckley DL, Van Molle I, Gareiss PC, et al. Targeting the von hippel-lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1alpha interaction. J Am Chem Soc. 2012 Mar 14;134(10):4465–4468.
  • Van Molle I, Thomann A, Buckley DL, et al. Dissecting fragment-based lead discovery at the von hippel-lindau protein: hypoxiainducible factor 1alpha protein-protein interface. Chem Biol. 2012 Oct 26;19(10):1300–1312.
  • Galdeano C, Gadd MS, Soares P, et al. Structure-guided design and optimization of small molecules targeting the protein-protein interaction between the von hippel-lindau (VHL) E3 ubiquitin ligase and the hypoxia inducible factor (HIF) alpha subunit with in vitro nanomolar affinities. J Med Chem. 2014 Oct 23;57(20):8657–8663.
  • Chariot A, Leonardi A, Muller J, et al. Association of the adaptor TANK with the I kappa B kinase (IKK) regulator NEMO connects IKK complexes with IKK epsilon and TBK1 kinases. J Biol Chem. 2002 Oct 4;277(40):37029–37036.
  • Pomerantz JL, Baltimore D. NF-kappaB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. Embo J. 1999 Dec 1;18(23):6694–6704.
  • Demizu Y, Shibata N, Hattori T, et al. Development of BCR-ABL degradation inducers via the conjugation of an imatinib derivative and a cIAP1 ligand. Bioorg Med Chem Lett. 2016 Oct 15;26(20):4865–4869.
  • Shibata N, Miyamoto N, Nagai K, et al. Development of protein degradation inducers of oncogenic BCR-ABL protein by conjugation of ABL kinase inhibitors and IAP ligands. Cancer Sci. 2017 Aug;108(8):1657–1666.
  • Lai AC, Toure M, Hellerschmied D, et al. Modular PROTAC design for the degradation of oncogenic BCR-ABL. Angew Chem Int Ed Engl. 2016 Jan 11;55(2):807–810.
  • Shibata N, Shimokawa K, Nagai K, et al. Pharmacological difference between degrader and inhibitor against oncogenic BCR-ABL kinase. Sci Rep. 2018 Sep 10;8(1):13549.
  • de Azevedo WF Jr., Canduri F, Da Silveira NJ. Structural basis for inhibition of cyclin-dependent kinase 9 by flavopiridol. Biochem Biophys Res Commun. 2002 Apr 26;293(1):566–571.
  • Canduri F, Perez PC, Caceres RA, et al. CDK9 a potential target for drug development. Med Chem. 2008 May;4(3):210–218.
  • Eyvazi S, Hejazi MS, Kahroba H, et al. CDK9 as an appealing target for therapeutic interventions. Curr Drug Targets. 2019;20(4):453–464.
  • Olson CM, Jiang B, Erb MA, et al. Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nat Chem Biol. 2018 Feb;14(2):163–170.
  • Zorba A, Nguyen C, Xu Y, et al. Delineating the role of cooperativity in the design of potent PROTACs for BTK. Proc Natl Acad Sci U S A. 2018 Jul 31;115(31):E7285–E92.
  • Golubovskaya VM. Targeting FAK in human cancer: from finding to first clinical trials. Front Biosci (Landmark Ed). 2014 Jan 1;19:687–706.
  • Cromm PM, Samarasinghe K, Hines J, et al. Addressing kinase-independent functions of Fak via PROTAC-mediated Degradation. J Am Chem Soc. 2018 Nov 16.
  • Roskoski R Jr. Targeting oncogenic Raf protein-serine/threonine kinases in human cancers. Pharmacol Res. 2018 Sep;135:239–258.
  • Lebraud H, Wright DJ, Johnson CN, et al. Protein degradation by in-cell self-assembly of proteolysis targeting chimeras. ACS Cent Sci. 2016 Dec 28;2(12):927–934.
  • Smith BE, Wang SL, Jaime-Figueroa S, et al. Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nat Commun. 2019 Jan 10;10(1):131.
  • Shimono K, Tung WE, Macolino C, et al. Potent inhibition of heterotopic ossification by nuclear retinoic acid receptor-gamma agonists. Nat Med. 2011 Apr;17(4):454–460.
  • Lees-Shepard JB, Nicholas SE, Stoessel SJ, et al. Palovarotene reduces heterotopic ossification in juvenile FOP mice but exhibits pronounced skeletal toxicity. Elife. 2018;18:7.
  • Sheng N, Xie Z, Wang C, et al. Retinoic acid regulates bone morphogenic protein signal duration by promoting the degradation of phosphorylated Smad1. Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):18886–18891.
  • Agarwal S, Loder SJ, Breuler C, et al. Strategic targeting of multiple BMP receptors prevents trauma-induced heterotopic ossification. Mol Ther. 2017 Aug 2;25(8):1974–1987.
  • Dey D, Wheatley BM, Cholok D, et al. The traumatic bone: trauma-induced heterotopic ossification. Transl Res. 2017;186:95–111.
  • Zhu H, Kavsak P, Abdollah S, et al. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature. 1999 Aug 12;400(6745):687–693.
  • Yan X, Liu Z, Chen Y. Regulation of TGF-β signaling by Smad7. Acta Biochim Biophys Sin (Shanghai). 2009 Apr;41(4):263–272.
  • Kavsak P, Rasmussen RK, Causing CG, et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell. 2000 Dec;6(6):1365–1375.
  • Ebisawa T, Fukuchi M, Murakami G, et al. Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem. 2001 Apr 20;276(16):12477–12480.
  • Wang X, Feng S, Fan J, et al. New strategy for renal fibrosis: targeting Smad3 proteins for ubiquitination and degradation. Biochem Pharmacol. 2016 Sep 15;116:200–209.
  • Winter GE, Buckley DL, Paulk J, et al. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science. 2015;348(6241):1376–1381.
  • Kugimiya F, Yano F, Ohba S, et al. Mechanism of osteogenic induction by FK506 via BMP/Smad pathways. Biochem Biophys Res Commun. 2005 Dec 16;338(2):872–879.
  • Cao Y, Wang C, Zhang X, et al. Selective small molecule compounds increase BMP-2 responsiveness by inhibiting Smurf1-mediated Smad1/5 degradation. Sci Rep. 2014 May 14;4:4965.
  • Zhang Y, Wang C, Cao Y, et al. Selective compounds enhance osteoblastic activity by targeting HECT domain of ubiquitin ligase Smurf1. Oncotarget. 2017 Aug 1;8(31):50521–50533.
  • Piacentino ML, Bronner ME. Intracellular attenuation of BMP signaling via CKIP-1/Smurf1 is essential during neural crest induction. PLoS Biol. 2018 Jun;16(6):e2004425.
  • Li H, Cui Y, Wei J, et al. VCP/p97 increases BMP signaling by accelerating ubiquitin ligase Smurf1 degradation. Faseb J. 2019 Feb;33(2):2928–2943.
  • Bagarova J, Vonner AJ, Armstrong KA, et al. Constitutively active ALK2 receptor mutants require type II receptor cooperation. Mol Cell Biol. 2013 Jun;33(12):2413–2424.
  • Arora K, Warrior R. A new Smurf in the village. Dev Cell. 2001 Oct;1(4):441–442.
  • Lin H, Ying Y, Wang YY, et al. AMPK downregulates ALK2 via increasing the interaction between Smurf1 and Smad6, leading to inhibition of osteogenic differentiation. Biochim Biophys Acta. 2017 Dec;1864(12):2369–2377.
  • Groppe J, Hinck CS, Samavarchi-Tehrani P, et al. Cooperative assembly of TGF-β superfamily signaling complexes is mediated by two disparate mechanisms and distinct modes of receptor binding. Mol Cell. 2008 Feb 01;29(2):157–168.
  • Greenwald J, Groppe J, Gray P, et al. The BMP7/ActRII extracellular domain complex provides new insights into the cooperative nature of receptor assembly. Mol Cell. 2003 Mar;11(3):605–617.
  • Townson SA, Martinez-Hackert E, Greppi C, et al. Specificity and structure of a high affinity activin receptor-like kinase 1 (ALK1) signaling complex. J Biol Chem. 2012 Aug 10;287(33):27313–27325.
  • Hart PJ, Deep S, Taylor AB, et al. Crystal structure of the human TβR2 ectodomain–TGF-β3 complex. Nat Struct Biol. 2002 Mar;9(3):203–208.
  • Macias MJ, Martin-Malpartida P, Massague J. Structural determinants of smad function in TGF-β signaling. Trends Biochem Sci. 2015 Jun;40(6):296–308.
  • Shi Y, Massague J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell. 2003 Jun 13;113(6):685–700.
  • Nohe A, Hassel S, Ehrlich M, et al. The mode of bone morphogenetic protein (BMP) receptor oligomerization determines different BMP-2 signaling pathways. J Biol Chem. 2002 Feb 15;277(7):5330–5338.
  • Kozakov D, Hall DR, Xia B, et al. The cluspro web server for protein-protein docking. Nat Protoc. 2017 Feb;12(2):255–278.
  • Zhao G, Wu Y, Du L, et al. Drosophila S6 kinase like inhibits neuromuscular junction growth by downregulating the BMP receptor thickveins. PLoS Genet. 2015 Mar;11(3):e1004984.
  • Kim BG, Lee JH, Yasuda J, et al. Phospho-Smad1 modulation by nedd4 E3 ligase in BMP/TGF-β signaling. J Bone Miner Res. 2011 Jul;26(7):1411–1424.
  • Yang H, Yu N, Xu J, et al. SMURF1 facilitates estrogen receptor a signaling in breast cancer cells. J Exp Clin Cancer Res. 2018 Feb 12;37(1):24.
  • Tang LY, Zhang YE. Non-degradative ubiquitination in smad-dependent TGF-β signaling. Cell Biosci. 2011 Dec 28;1(1):43.
  • Imamura T, Oshima Y, Hikita A. Regulation of TGF-β family signalling by ubiquitination and deubiquitination. J Biochem. 2013 Dec;154(6):481–489.
  • Inoue Y, Imamura T. Regulation of TGF-β family signaling by E3 ubiquitin ligases. Cancer Sci. 2008 Nov;99(11):2107–2112.
  • Lallemand F, Seo SR, Ferrand N, et al. AIP4 restricts transforming growth factor-beta signaling through a ubiquitination-independent mechanism. J Biol Chem. 2005 Jul 29;280(30):27645–27653.
  • Ball KA, Johnson JR, Lewinski MK, et al. Non-degradative ubiquitination of protein kinases. PLoS Comput Biol. 2016 Jun;12(6):e1004898.
  • Wang G, Gao Y, Li L, et al. K63-linked ubiquitination in kinase activation and cancer. Front Oncol. 2012;2:5.
  • Tu D, Zhu Z, Zhou AY, et al. Structure and ubiquitination-dependent activation of TANK-binding kinase 1. Cell Rep. 2013 Mar 28;3(3):747–758.
  • Sorrentino A, Thakur N, Grimsby S, et al. The type I TGF-β receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol. 2008 Oct;10(10):1199–1207.
  • Yang WL, Wang J, Chan CH, et al. The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science. 2009 Aug 28;325(5944):1134–1138.
  • Yang WL, Wu CY, Wu J, et al. Regulation of Akt signaling activation by ubiquitination. Cell Cycle. 2010 Feb 1;9(3):487–497.
  • Ohtake F, Saeki Y, Ishido S, et al. The K48-K63 branched ubiquitin chain regulates NF-kappaB signaling. Mol Cell. 2016 Oct 20;64(2):251–266.
  • Ohtake F, Tsuchiya H, Saeki Y, et al. K63 ubiquitylation triggers proteasomal degradation by seeding branched ubiquitin chains. Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):E1401–E08.
  • David Y, Ternette N, Edelmann MJ, et al. E3 ligases determine ubiquitination site and conjugate type by enforcing specificity on E2 enzymes. J Biol Chem. 2011 Dec 23;286(51):44104–44115.
  • Sadowski M, Sarcevic B. Mechanisms of mono- and poly-ubiquitination: ubiquitination specificity depends on compatibility between the E2 catalytic core and amino acid residues proximal to the lysine. Cell Div. 2010 Aug 13;5:19.
  • Guo YC, Zhang SW, Yuan Q. Deubiquitinating enzymes and bone remodeling. Stem Cells Int. 2018;2018:3712083.