3,547
Views
10
CrossRef citations to date
0
Altmetric
Perspective

Streamlining drug discovery assays for cardiovascular disease using zebrafish

, &
Pages 27-37 | Received 22 Mar 2019, Accepted 19 Sep 2019, Published online: 01 Oct 2019

References

  • Wiviott SD, Braunwald E, McCabe CH, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2007;357:2001–2015.
  • Wallentin L, Becker RC, Budaj A, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2009;361:1045–1057.
  • McMurray JJ, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993–1004.
  • Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–2128.
  • Wang X, Raghavan A, Chen T, et al. CRISPR-Cas9 targeting of PCSK9 in human hepatocytes in vivo-brief report. Arterioscler Thromb Vasc Biol. 2016;36:783–786.
  • Moretti A, Bellin M, Welling A, et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med. 2010;363:1397–1409.
  • Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3:e442.
  • Fuster V, Kelly BB, Vedanthan R. Promoting global cardiovascular health: moving forward. Circulation. 2011;123:1671–1678.
  • Fuster V. Global burden of cardiovascular disease: time to implement feasible strategies and to monitor results. J Am Coll Cardiol. 2014;64:520–522.
  • Sacks LV, Shamsuddin HH, Yasinskaya YI, et al. Scientific and regulatory reasons for delay and denial of FDA approval of initial applications for new drugs, 2000-2012. JAMA. 2014;311:378–384.
  • Pammolli F, Magazzini L, Riccaboni M. The productivity crisis in pharmaceutical R&D. Nat Rev Drug Discov. 2011;10:428–438.
  • Hughes JP, Rees S, Kalindjian SB, et al. Principles of early drug discovery. Br J Pharmacol. 2011;162:1239–1249.
  • Everett JR. Academic drug discovery: current status and prospects. Expert Opin Drug Discov. 2015;10:937–944.
  • Pott A, Rottbauer W, Just S. Functional genomics in zebrafish as a tool to identify novel antiarrhythmic targets. Curr Med Chem. 2014;21:1320–1329.
  • MacRae CA, Peterson RT. Zebrafish-based small molecule discovery. Chem Biol. 2003;10:901–908.
  • Pott A, Shahid M, Kohler D, et al. Therapeutic chemical screen identifies phosphatase inhibitors to reconstitute PKB phosphorylation and cardiac contractility in ILK-deficient zebrafish. Biomolecules. 2018;8. DOI:10.3390/biom8040153.
  • Kramer F, Just S, Zeller T. New perspectives: systems medicine in cardiovascular disease. BMC Syst Biol. 2018;12: 57-018-0579-5.
  • Kessler M, Rottbauer W, Just S. Recent progress in the use of zebrafish for novel cardiac drug discovery. Expert Opin Drug Discov. 2015;10:1231–1241.
  • Stainier DY. Zebrafish genetics and vertebrate heart formation. Nat Rev Genet. 2001;2:39–48. **.
  • Paone C, Diofano F, Park DD, et al. Genetics of cardiovascular disease: fishing for causality. Front Cardiovasc Med. 2018;5:60.
  • Hu N, Yost HJ, Clark EB. Cardiac morphology and blood pressure in the adult zebrafish. Anat Rec. 2001;264:1–12.
  • Bakkers J. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res. 2011;91:279–288.
  • Giardoglou P, Beis D. On zebrafish disease models and matters of the heart. Biomedicines. 2019;7. DOI:10.3390/biomedicines7010015
  • Brown DR, Samsa LA, Qian L, et al. Advances in the study of heart development and disease using zebrafish. J Cardiovasc Dev Dis. 2016;3:13. Epub 2016 Apr 9.
  • Food and Drug Administration, HHS. International conference on harmonisation; guidance on S7B nonclinical evaluation of the potential for delayed ventricular repolarization (QT Interval Prolongation) by human pharmaceuticals; availability. Notice Fed Regist. 2005; 70:61133–61134.
  • van Opbergen CJM, Koopman CD, Kok BJM, et al. Optogenetic sensors in the zebrafish heart: a novel in vivo electrophysiological tool to study cardiac arrhythmogenesis. Theranostics. 2018;8:4750–4764.
  • Hoage T, Ding Y, Xu X. Quantifying cardiac functions in embryonic and adult zebrafish. Methods Mol Biol. 2012;843:11–20.
  • Ritter JM. Cardiac safety, drug-induced QT prolongation and torsade de pointes (TdP). Br J Clin Pharmacol. 2012;73:331–334.
  • Gromo G, Mann J, Fitzgerald JD. Cardiovascular drug discovery: a perspective from a research-based pharmaceutical company. Cold Spring Harb Perspect Med. 2014;4. DOI:10.1101/cshperspect.a014092
  • Kithcart A, MacRae CA. Using zebrafish for high-throughput screening of novel cardiovascular drugs. JACC Basic Transl Sci. 2017;2:1–12. **.
  • Kithcart AP, MacRae CA. Zebrafish assay development for cardiovascular disease mechanism and drug discovery. Prog Biophys Mol Biol. 2018;138:126–131.
  • Cianciolo Cosentino C, Roman BL, Drummond IA, et al. Intravenous microinjections of zebrafish larvae to study acute kidney injury. J Vis Exp. 2010;42:pii: 2079.
  • Li Y, Chen T, Miao X, et al. Zebrafish: A promising in vivo model for assessing the delivery of natural products, fluorescence dyes and drugs across the blood-brain barrier. Pharmacol Res. 2017;125:246–257.
  • Howe K, Clark MD, Torroja CF, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496:498–503.
  • de Souza Anselmo C, Sardela VF, de Sousa VP, et al. Zebrafish (Danio rerio): a valuable tool for predicting the metabolism of xenobiotics in humans? Comp Biochem Physiol C Toxicol Pharmacol. 2018;212:34–46.
  • McGrath P, Li CQ. Zebrafish: a predictive model for assessing drug-induced toxicity. Drug Discov Today. 2008;13:394–401.
  • Goldstone JV, McArthur AG, Kubota A, et al. Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish. BMC Genomics. 2010;11: 643–664.
  • Dahme T, Katus HA, Rottbauer W. Fishing for the genetic basis of cardiovascular disease. Dis Model Mech. 2009;2:18–22.
  • Staudt D, Stainier D. Uncovering the molecular and cellular mechanisms of heart development using the zebrafish. Annu Rev Genet. 2012;46:397–418.
  • Stainier DY, Fishman MC. The zebrafish as a model system to study cardiovascular development. Trends Cardiovasc Med. 1994;4:207–212.
  • Iwamatsu T. Stages of normal development in the medaka Oryzias latipes. Mech Dev. 2004;121:605–618.
  • Furutani-Seiki M, Wittbrodt J. Medaka and zebrafish, an evolutionary twin study. Mech Dev. 2004;121:629–637.
  • Vogel B, Meder B, Just S, et al. In-vivo characterization of human dilated cardiomyopathy genes in zebrafish. Biochem Biophys Res Commun. 2009;390:516–522.
  • Kustermann M, Manta L, Paone C, et al. Loss of the novel Vcp (valosin containing protein) interactor Washc4 interferes with autophagy-mediated proteostasis in striated muscle and leads to myopathy in vivo. Autophagy. 2018;14:1911–1927.
  • Buhrdel JB, Hirth S, Kessler M, et al. In vivo characterization of human myofibrillar myopathy genes in zebrafish. Biochem Biophys Res Commun. 2015;461:217–223.
  • Hein SJ, Lehmann LH, Kossack M, et al. Advanced echocardiography in adult zebrafish reveals delayed recovery of heart function after myocardial cryoinjury. PLoS One. 2015; 10:e0122665.
  • Huang CC, Monte A, Cook JM, et al. Zebrafish heart failure models for the evaluation of chemical probes and drugs. Assay Drug Dev Technol. 2013;11:561–572.
  • Shi X, Verma S, Yun J, et al. Effect of empagliflozin on cardiac biomarkers in a zebrafish model of heart failure: clues to the EMPA-REG OUTCOME trial? Mol Cell Biochem. 2017;433:97–102.
  • Hou JH, Kralj JM, Douglass AD, et al. Simultaneous mapping of membrane voltage and calcium in zebrafish heart in vivo reveals chamber-specific developmental transitions in ionic currents. Front Physiol. 2014;5:344.
  • Schurgers E, Moorlag M, Hemker C, et al. Thrombin generation in zebrafish blood. PLoS One. 2016;11:e0149135.
  • Pott A, Bock S, Berger IM, et al. Mutation of the Na(+)/K(+)-ATPase Atp1a1a.1 causes QT interval prolongation and bradycardia in zebrafish. J Mol Cell Cardiol. 2018;120:42–52.
  • Lin MH, Chou HC, Chen YF, et al. Development of a rapid and economic in vivo electrocardiogram platform for cardiovascular drug assay and electrophysiology research in adult zebrafish. Sci Rep. 2018;8: 15986-018-33577-7.
  • Jagadeeswaran P, Sheehan JP. Analysis of blood coagulation in the zebrafish. Blood Cells Mol Dis. 1999;25:239–249.
  • Zhu XY, Liu HC, Guo SY, et al. A zebrafish thrombosis model for assessing antithrombotic drugs. Zebrafish. 2016;13:335–344.
  • Hanumanthaiah R, Thankavel B, Day K, et al. Developmental expression of vitamin K-dependent gamma-carboxylase activity in zebrafish embryos: effect of warfarin. Blood Cells Mol Dis. 2001;27:992–999.
  • Schier AF, Neuhauss SC, Harvey M, et al. Mutations affecting the development of the embryonic zebrafish brain. Development. 1996;123:165–178.
  • Stainier DY, Fouquet B, Chen JN, et al. Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development. 1996;123:285–292.
  • Stainier DY, Fishman MC. Patterning the zebrafish heart tube: acquisition of anteroposterior polarity. Dev Biol. 1992;153:91–101.
  • Liu J, Stainier DY. Zebrafish in the study of early cardiac development. Circ Res. 2012;110:870–874.
  • Rottbauer W, Baker K, Wo ZG, et al. Growth and function of the embryonic heart depend upon the cardiac-specific L-type calcium channel alpha1 subunit. Dev Cell. 2001;1:265–275.
  • Hassel D, Dahme T, Erdmann J, et al. Nexilin mutations destabilize cardiac Z-disks and lead to dilated cardiomyopathy. Nat Med. 2009;15:1281–1288.
  • Hassel D, Scholz EP, Trano N, et al. Deficient zebrafish ether-a-go-go-related gene channel gating causes short-QT syndrome in zebrafish reggae mutants. Circulation. 2008;117:866–875.
  • Meder B, Laufer C, Hassel D, et al. A single serine in the carboxyl terminus of cardiac essential myosin light chain-1 controls cardiomyocyte contractility in vivo. Circ Res. 2009;104:650–659.
  • Kessler M, Kieltsch A, Kayvanpour E, et al. A zebrafish model for FHL1-opathy reveals loss-of-function effects of human FHL1 mutations. Neuromuscul Disord. 2018;28:521–531.
  • Milan DJ, Jones IL, Ellinor PT, et al. In vivo recording of adult zebrafish electrocardiogram and assessment of drug-induced QT prolongation. Am J Physiol Heart Circ Physiol. 2006;291:H269–73.
  • Cornet C, Di Donato V, Terriente J. Combining zebrafish and CRISPR/Cas9: toward a more efficient drug discovery pipeline. Front Pharmacol. 2018;9:703.
  • Dahlem TJ, Hoshijima K, Jurynec MJ, et al. Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet. 2012;8:e1002861.
  • Pauli A, Montague TG, Lennox KA, et al. Antisense oligonucleotide-mediated transcript knockdown in zebrafish. PLoS One. 2015;10:e0139504.
  • Heasman J. Morpholino oligos: making sense of antisense?. Dev Biol. 2002;243:209–214.
  • Just S, Raphel L, Berger IM, et al. Tbx20 is an essential regulator of embryonic heart growth in zebrafish. PLoS One. 2016;11:e0167306.
  • Huttner IG, Wang LW, Santiago CF, et al. A-band titin truncation in zebrafish causes dilated cardiomyopathy and hemodynamic stress intolerance. Circ Genom Precis Med. 2018;11:e002135.
  • Huang W, Zhang R, Xu X. Myofibrillogenesis in the developing zebrafish heart: a functional study of tnnt2. Dev Biol. 2009;331:237–249.
  • Watkins H, McKenna WJ, Thierfelder L, et al. Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy. N Engl J Med. 1995;332:1058–1064.
  • Chen Z, Huang W, Dahme T, et al. Depletion of zebrafish essential and regulatory myosin light chains reduces cardiac function through distinct mechanisms. Cardiovasc Res. 2008;79:97–108.
  • Nagwekar J, Duggal D, Midde K, et al. A novel method of determining the functional effects of a minor genetic modification of a protein. Front Cardiovasc Med. 2015;2:35.
  • Hernandez OM, Jones M, Guzman G, et al. Myosin essential light chain in health and disease. Am J Physiol Heart Circ Physiol. 2007;292:H1643–54.
  • Rottbauer W, Wessels G, Dahme T, et al. Cardiac myosin light chain-2: a novel essential component of thick-myofilament assembly and contractility of the heart. Circ Res. 2006;99:323–331.
  • Poetter K, Jiang H, Hassanzadeh S, et al. Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nat Genet. 1996;13:63–69.
  • Ahn DG, Kourakis MJ, Rohde LA, et al. T-box gene tbx5 is essential for formation of the pectoral limb bud. Nature. 2002;417:754–758.
  • Basson CT, Bachinsky DR, Lin RC, et al. Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet. 1997;15:30–35.
  • Balijepalli SY, Anderson CL, Lin EC, et al. Rescue of mutated cardiac ion channels in inherited arrhythmia syndromes. J Cardiovasc Pharmacol. 2010;56:113–122.
  • Thomas D, Kiehn J, Katus HA, et al. Adrenergic regulation of the rapid component of the cardiac delayed rectifier potassium current, I(Kr), and the underlying hERG ion channel. Basic Res Cardiol. 2004;99:279–287.
  • Meder B, Scholz EP, Hassel D, et al. Reconstitution of defective protein trafficking rescues Long-QT syndrome in zebrafish. Biochem Biophys Res Commun. 2011;408:218–224.
  • Schimpf R, Wolpert C, Gaita F, et al. Short QT syndrome. Cardiovasc Res. 2005;67:357–366.
  • Splawski I, Timothy KW, Sharpe LM, et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell. 2004;119:19–31.
  • Wemhoner K, Friedrich C, Stallmeyer B, et al. Gain-of-function mutations in the calcium channel CACNA1C (Cav1.2) cause non-syndromic long-QT but not Timothy syndrome. J Mol Cell Cardiol. 2015;80:186–195.
  • Li W, Zheng NZ, Yuan Q, et al. NFAT5-mediated CACNA1C expression is critical for cardiac electrophysiological development and maturation. J Mol Med (Berl). 2016;94:993–1002.
  • Sztal TE, Zhao M, Williams C, et al. Zebrafish models for nemaline myopathy reveal a spectrum of nemaline bodies contributing to reduced muscle function. Acta Neuropathol. 2015;130:389–406.
  • Gatayama R, Ueno K, Nakamura H, et al. Nemaline myopathy with dilated cardiomyopathy in childhood. Pediatrics. 2013;131:e1986–90.
  • D’Amico A, Graziano C, Pacileo G, et al. Fatal hypertrophic cardiomyopathy and nemaline myopathy associated with ACTA1 K336E mutation. Neuromuscul Disord. 2006;16:548–552.
  • Hyde AS, Farmer EL, Easley KE, et al. UDP-glucose dehydrogenase polymorphisms from patients with congenital heart valve defects disrupt enzyme stability and quaternary assembly. J Biol Chem. 2012;287:32708–32716.
  • Fishman MC, Stainier DY. Cardiovascular development Prospects for a genetic approach. Circ Res. 1994;74:757–763.
  • Warren KS, Fishman MC. “Physiological genomics”: mutant screens in zebrafish. Am J Physiol. 1998;275:H1–7.
  • Shore EM, Xu M, Feldman GJ, et al. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet. 2006;38:525–527.
  • LaBonty M, Pray N, Yelick PC. A zebrafish model of human fibrodysplasia ossificans progressiva. Zebrafish. 2017;14:293–304.
  • Masuelli L, Bei R, Sacchetti P, et al. Beta-catenin accumulates in intercalated disks of hypertrophic cardiomyopathic hearts. Cardiovasc Res. 2003;60:376–387.
  • Hurlstone AF, Haramis AP, Wienholds E, et al. The Wnt/beta-catenin pathway regulates cardiac valve formation. Nature. 2003;425:633–637.
  • YH S, Zhang Y, Ding Y, et al. Cardiac transcriptome and dilated cardiomyopathy genes in zebrafish. Circ Cardiovasc Genet. 2015;8:261–269.
  • Tomita-Mitchell A, Stamm KD, Mahnke DK, et al. Impact of MYH6 variants in hypoplastic left heart syndrome. Physiol Genomics. 2016;48:912–921.
  • Mittal A, Sharma R, Prasad R, et al. Role of cardiac TBX20 in dilated cardiomyopathy. Mol Cell Biochem. 2016;414:129–136.
  • Singh MK, Christoffels VM, Dias JM, et al. Tbx20 is essential for cardiac chamber differentiation and repression of Tbx2. Development. 2005;132:2697–2707.
  • Zhao CM, Bing-Sun, Song HM, et al. TBX20 loss-of-function mutation associated with familial dilated cardiomyopathy. Clin Chem Lab Med. 2016;54:325–332.
  • Chakraborty S, Sengupta A, Yutzey KE. Tbx20 promotes cardiomyocyte proliferation and persistence of fetal characteristics in adult mouse hearts. J Mol Cell Cardiol. 2013;62:203–213.
  • Bendig G, Grimmler M, Huttner IG, et al. Integrin-linked kinase, a novel component of the cardiac mechanical stretch sensor, controls contractility in the zebrafish heart. Genes Dev. 2006;20:2361–2372.
  • Knoll R, Postel R, Wang J, et al. Laminin-alpha4 and integrin-linked kinase mutations cause human cardiomyopathy via simultaneous defects in cardiomyocytes and endothelial cells. Circulation. 2007;116:515–525.
  • Alcalai R, Seidman JG, Seidman CE. Genetic basis of hypertrophic cardiomyopathy: from bench to the clinics. J Cardiovasc Electrophysiol. 2008;19:104–110.
  • Tardiff JC. Sarcomeric proteins and familial hypertrophic cardiomyopathy: linking mutations in structural proteins to complex cardiovascular phenotypes. Heart Fail Rev. 2005;10:237–248.
  • Zhao L, Zhao X, Tian T, et al. Heart-specific isoform of tropomyosin4 is essential for heartbeat in zebrafish embryos. Cardiovasc Res. 2008;80:200–208.
  • Xu X, Meiler SE, Zhong TP, et al. Cardiomyopathy in zebrafish due to mutation in an alternatively spliced exon of titin. Nat Genet. 2002;30:205–209.
  • Gigli M, Begay RL, Morea G, et al. A review of the giant protein titin in clinical molecular diagnostics of cardiomyopathies. Front Cardiovasc Med. 2016;3:21.
  • Herman DS, Lam L, Taylor MR, et al. Truncations of titin causing dilated cardiomyopathy. N Engl J Med. 2012;366:619–628.
  • Zou J, Tran D, Baalbaki M, et al. An internal promoter underlies the difference in disease severity between N- and C-terminal truncation mutations of Titin in zebrafish. Elife. 2015;4:e09406.
  • Tessadori F, van Weerd JH, Burkhard SB, et al. Identification and functional characterization of cardiac pacemaker cells in zebrafish. PLoS One. 2012;7:e47644.
  • Verkerk AO, Remme CA. Zebrafish: a novel research tool for cardiac (patho)electrophysiology and ion channel disorders. Front Physiol. 2012;3:255.
  • Langheinrich U, Vacun G, Wagner T. Zebrafish embryos express an orthologue of HERG and are sensitive toward a range of QT-prolonging drugs inducing severe arrhythmia. Toxicol Appl Pharmacol. 2003;193:370–382.
  • Schimpf R, Veltmann C, Wolpert C, et al. Channelopathies: brugada syndrome, long QT syndrome, short QT syndrome, and CPVT. Herz. 2009;34:281–288.
  • Schimpf R, Borggrefe M, Wolpert C. Clinical and molecular genetics of the short QT syndrome. Curr Opin Cardiol. 2008;23:192–198.
  • Pfeufer A, Sanna S, Arking DE, et al. Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nat Genet. 2009;41:407–414.
  • Skou JC. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta. 1957;23:394–401.
  • Hu N, Sedmera D, Yost HJ, et al. Structure and function of the developing zebrafish heart. Anat Rec. 2000;260:148–157.
  • Brette F, Luxan G, Cros C, et al. Characterization of isolated ventricular myocytes from adult zebrafish (Danio rerio). Biochem Biophys Res Commun. 2008;374:143–146.
  • Warren KS, Baker K, Fishman MC. The slow mo mutation reduces pacemaker current and heart rate in adult zebrafish. Am J Physiol Heart Circ Physiol. 2001;281:H1711–9.
  • Nemtsas P, Wettwer E, Christ T, et al. Adult zebrafish heart as a model for human heart? An electrophysiological study. J Mol Cell Cardiol. 2010;48:161–171.
  • Peterson RT, Shaw SY, Peterson TA, et al. Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat Biotechnol. 2004;22:595–599.
  • Hong CC, Peterson QP, Hong JY, et al. Artery/vein specification is governed by opposing phosphatidylinositol-3 kinase and MAP kinase/ERK signaling. Curr Biol. 2006;16:1366–1372.
  • Peal DS, Mills RW, Lynch SN, et al. Novel chemical suppressors of long QT syndrome identified by an in vivo functional screen. Circulation. 2011;123:23–30.
  • Burns CG, Milan DJ, Grande EJ, et al. High-throughput assay for small molecules that modulate zebrafish embryonic heart rate. Nat Chem Biol. 2005;1:263–264.
  • Yozzo KL, Isales GM, Raftery TD, et al. High-content screening assay for identification of chemicals impacting cardiovascular function in zebrafish embryos. Environ Sci Technol. 2013;47:11302–11310.
  • Lin KY, Chang WT, Lai YC, et al. Toward functional screening of cardioactive and cardiotoxic drugs with zebrafish in vivo using pseudodynamic three-dimensional imaging. Anal Chem. 2014;86:2213–2220.
  • Spomer W, Pfriem A, Alshut R, et al. High-throughput screening of zebrafish embryos using automated heart detection and imaging. J Lab Autom. 2012;17:435–442.
  • Pylatiuk C, Sanchez D, Mikut R, et al. Automatic zebrafish heartbeat detection and analysis for zebrafish embryos. Zebrafish. 2014;11:379–383.
  • Breitwieser H, Dickmeis T, Vogt M, et al. Fully automated pipetting sorting system for different morphological phenotypes of zebrafish embryos. SLAS Technol. 2018;23:128–133.
  • Letamendia A, Quevedo C, Ibarbia I, et al. Development and validation of an automated high-throughput system for zebrafish in vivo screenings. PLoS One. 2012;7:e36690.
  • Wittbrodt JN, Liebel U, Gehrig J. Generation of orientation tools for automated zebrafish screening assays using desktop 3D printing. BMC Biotechnol. 2014;14: 36–42.
  • Gehrig J, Pandey G, Westhoff JH. Zebrafish as a model for drug screening in genetic kidney diseases. Front Pediatr. 2018;6:183.
  • Pandey G, Westhoff JH, Schaefer F, et al. A smart imaging workflow for organ-specific screening in a cystic kidney zebrafish disease model. Int J Mol Sci. 2019;20. DOI:10.3390/ijms20061290.
  • Schutera M, Dickmeis T, Mione M, et al. Automated phenotype pattern recognition of zebrafish for high-throughput screening. Bioengineered. 2016;7:261–265.