219
Views
6
CrossRef citations to date
0
Altmetric
Drug Discovery Case History

Lenvatinib for thyroid cancer treatment: discovery, pre-clinical development and clinical application

, , , , &
Pages 11-26 | Received 06 Jun 2019, Accepted 26 Sep 2019, Published online: 13 Oct 2019

References

  • Siegel R, Ma J, Zou Z, et al. Cancer statistics. CA Cancer J Clin. 2014 Jan–Feb;64(1):9–29. PubMed PMID: 24399786.
  • Vaccarella S, Franceschi S, Bray F, et al. Worldwide thyroid-cancer epidemic? The increasing impact of overdiagnosis. N Engl J Med. 2016 Aug 18;375(7):614–617. PubMed PMID: 27532827.
  • Tuttle RM, Ball DW, Byrd D, et al. Thyroid carcinoma. J National Compr Cancer Network. 2010;8(11):1228–1274.
  • Rivkees SA, Mazzaferri EL, Verburg FA, et al. The treatment of differentiated thyroid cancer in children: emphasis on surgical approach and radioactive iodine therapy. Endocr Rev. 2011 Dec;32(6):798–826. PubMed PMID: 21880704; PubMed Central PMCID: PMCPMC3591676.
  • Cabanillas ME, Schlumberger M, Jarzab B, et al. A phase 2 trial of lenvatinib (E7080) in advanced, progressive, radioiodine-refractory, differentiated thyroid cancer: a clinical outcomes and biomarker assessment. Cancer. 2015 Aug 15;121(16):2749–2756. PubMed PMID: 25913680; PubMed Central PMCID: PMCPMC4803478.
  • Schlumberger M, Tahara M, Wirth LJ, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. 2015 Feb 12;372(7):621–630. PubMed PMID: 25671254.
  • Nair A, Lemery SJ, Yang J, et al. FDA approval summary: lenvatinib for progressive, radio-iodine-refractory differentiated thyroid cancer. Clin Cancer Res. 2015 Dec 1;21(23):5205–5208. PubMed PMID: 26324740.
  • Sohn SY, Park WY, Shin HT, et al. Highly concordant key genetic alterations in primary tumors and matched distant metastases in differentiated thyroid cancer. Thyroid. 2016 May;26(5):672–682. PubMed PMID: 26971368.
  • Cantwell-Dorris ER, O’Leary JJ, Sheils OM. BRAFV600E: implications for carcinogenesis and molecular therapy. Mol Cancer Ther. 2011 Mar;10(3):385–394. PubMed PMID: 21388974.
  • Garnett MJ, Marais R. Guilty as charged: B-RAF is a human oncogene. Cancer Cell. 2004 Oct;6(4):313–319. PubMed PMID: 15488754.
  • Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002 Jun 27;417(6892):949–954. PubMed PMID: 12068308.
  • Xing M, Westra WH, Tufano RP, et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab. 2005 Dec;90(12):6373–6379. PubMed PMID: 16174717.
  • Basolo F, Torregrossa L, Giannini R, et al. Correlation between the BRAF V600E mutation and tumor invasiveness in papillary thyroid carcinomas smaller than 20 millimeters: analysis of 1060 cases. J Clin Endocrinol Metab. 2010 Sep;95(9):4197–4205. PubMed PMID: 20631031.
  • Ito Y, Miyauchi A, Oda H. Low-risk papillary microcarcinoma of the thyroid: a review of active surveillance trials. Eur J Surg Oncol. 2018 Mar;44(3):307–315. PubMed PMID: 28343733.
  • Li F, Chen G, Sheng C, et al. BRAFV600E mutation in papillary thyroid microcarcinoma: a meta-analysis. Endocr Relat Cancer. 2015 Apr;22(2):159–168. PubMed PMID: 25593071; PubMed Central PMCID: PMCPMC4629836.
  • Xue S, Wang P, Hurst ZA, et al. Active surveillance for papillary thyroid microcarcinoma: challenges and prospects. Front Endocrinol (Lausanne). 2018;9:736. PubMed PMID: 30619082; PubMed Central PMCID: PMCPMC6302022.
  • Yabuta T, Matsuse M, Hirokawa M, et al. TERT promoter mutations were not found in papillary thyroid microcarcinomas that showed disease progression on active surveillance. Thyroid. 2017 Sep;27(9):1206–1207. PubMed PMID: 28614984; eng.
  • Liu D, Liu Z, Condouris S, et al. BRAF V600E maintains proliferation, transformation, and tumorigenicity of BRAF-mutant papillary thyroid cancer cells. J Clin Endocrinol Metab. 2007 Jun;92(6):2264–2271. PubMed PMID: 17374713; PubMed Central PMCID: PMCPMC4152621.
  • Charles RP, Iezza G, Amendola E, et al. Mutationally activated BRAF(V600E) elicits papillary thyroid cancer in the adult mouse. Cancer Res. 2011 Jun 1;71(11):3863–3871. PubMed PMID: 21512141; PubMed Central PMCID: PMCPMC3107361.
  • Knauf JA, Ma X, Smith EP, et al. Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res. 2005 May 15;65(10):4238–4245. PubMed PMID: 15899815.
  • Cancer Genome Atlas Research N. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014 Oct 23;159(3):676–690. PubMed PMID: 25417114; PubMed Central PMCID: PMCPMC4243044.
  • Bond JA, Wyllie FS, Rowson J, et al. In vitro reconstruction of tumour initiation in a human epithelium. Oncogene. 1994 Jan;9(1):281–290. PubMed PMID: 8302590
  • Ruco L, Scarpino S. The pathogenetic role of the HGF/c-Met system in papillary carcinoma of the thyroid. Biomedicines. 2014 Oct 24;2(4):263–274. PubMed PMID: 28548071; PubMed Central PMCID: PMCPMC5344270.
  • Mineo R, Costantino A, Frasca F, et al. Activation of the hepatocyte growth factor (HGF)-Met system in papillary thyroid cancer: biological effects of HGF in thyroid cancer cells depend on met expression levels. Endocrinology. 2004 Sep;145(9):4355–4365. PubMed PMID: 15192042.
  • Abdullah MI, Junit SM, Ng KL, et al. Papillary thyroid cancer: genetic alterations and molecular biomarker investigations. Int J Med Sci. 2019;16(3):450–460. PubMed PMID: 30911279; PubMed Central PMCID: PMCPMC6428975.
  • Jhiang SM, Sagartz JE, Tong Q, et al. Targeted expression of the ret/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology. 1996 Jan;137(1):375–378. PubMed PMID: 8536638.
  • Weng LP, Gimm O, Kum JB, et al. Transient ectopic expression of PTEN in thyroid cancer cell lines induces cell cycle arrest and cell type-dependent cell death. Hum Mol Genet. 2001 Feb 1;10(3):251–258. PubMed PMID: 11159944.
  • Garcia-Rostan G, Costa AM, Pereira-Castro I, et al. Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res. 2005 Nov 15;65(22):10199–10207. PubMed PMID: 16288007.
  • Sastre-Perona A, Riesco-Eizaguirre G, Zaballos MA, et al. beta-catenin signaling is required for RAS-driven thyroid cancer through PI3K activation. Oncotarget. 2016 Aug 2;7(31):49435–49449. PubMed PMID: 27384483; PubMed Central PMCID: PMCPMC5226519.
  • McFadden DG, Vernon A, Santiago PM, et al. p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer. Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):E1600–E1609. PubMed PMID: 24711431; PubMed Central PMCID: PMCPMC4000830.
  • Ward PS, Cross JR, Lu C, et al. Identification of additional IDH mutations associated with oncometabolite R(-)-2-hydroxyglutarate production. Oncogene. 2012 May 10;31(19):2491–2498. PubMed PMID: 21996744; PubMed Central PMCID: PMCPMC3271133.
  • Murugan AK, Xing M. Anaplastic thyroid cancers harbor novel oncogenic mutations of the ALK gene. Cancer Res. 2011 Jul 1;71(13):4403–4411. PubMed PMID: 21596819; PubMed Central PMCID: PMCPMC3129369.
  • Schiff BA, McMurphy AB, Jasser SA, et al. Epidermal growth factor receptor (EGFR) is overexpressed in anaplastic thyroid cancer, and the EGFR inhibitor gefitinib inhibits the growth of anaplastic thyroid cancer. Clin Cancer Res. 2004 Dec 15;10(24):8594–8602. PubMed PMID: 15623643.
  • Fisher KE, Jani JC, Fisher SB, et al. Epidermal growth factor receptor overexpression is a marker for adverse pathologic features in papillary thyroid carcinoma. J Surg Res. 2013 Nov;185(1):217–224. PubMed PMID: 23746767; PubMed Central PMCID: PMCPMC4391738.
  • Máximo V, Botelho T, Capela J, et al. Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich (Hürthle cell) tumours of the thyroid. Br J Cancer. 2005 May 1;92(10):1892–1898.
  • Robbins HL, Hague A. The PI3K/Akt pathway in tumors of endocrine tissues. Front Endocrinol (Lausanne). 2015;6:188. PubMed PMID: 26793165; PubMed Central PMCID: PMCPMC4707207
  • Santoro M, Melillo RM, Fusco A. RET/PTC activation in papillary thyroid carcinoma: European journal of endocrinology prize lecture. Eur J Endocrinol. 2006 Nov;155(5):645–653. PubMed PMID: 17062879.
  • Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer. 2013 Mar;13(3):184–199. PubMed PMID: 23429735; PubMed Central PMCID: PMCPMC3791171.
  • Pawson T. Regulation and targets of receptor tyrosine kinases. Eur J Cancer. 2002 Sep;38(Suppl 5):S3–S10. PubMed PMID: 12528767
  • Stjepanovic N, Capdevila J. Multikinase inhibitors in the treatment of thyroid cancer: specific role of lenvatinib. Biologics. 2014;8:129–139. PubMed PMID: 24748771; PubMed Central PMCID: PMCPMC3990290
  • Zeng H, Dvorak HF, Mukhopadhyay D. Vascular permeability factor (VPF)/vascular endothelial growth factor (VEGF) peceptor-1 down-modulates VPF/VEGF receptor-2-mediated endothelial cell proliferation, but not migration, through phosphatidylinositol 3-kinase-dependent pathways. J Biol Chem. 2001 Jul 20;276(29):26969–26979. PubMed PMID: 11350975.
  • Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008 May 8;358(19):2039–2049. PubMed PMID: 18463380; PubMed Central PMCID: PMCPMC4542009.
  • Fenton C, Patel A, Dinauer C, et al. The expression of vascular endothelial growth factor and the type 1 vascular endothelial growth factor receptor correlate with the size of papillary thyroid carcinoma in children and young adults. Thyroid. 2000 Apr;10(4):349–357. PubMed PMID: 10807064.
  • Klein M, Picard E, Vignaud JM, et al. Vascular endothelial growth factor gene and protein: strong expression in thyroiditis and thyroid carcinoma. J Endocrinol. 1999 Apr;161(1):41–49. PubMed PMID: 10194527
  • Jo YS, Li S, Song JH, et al. Influence of the BRAF V600E mutation on expression of vascular endothelial growth factor in papillary thyroid cancer. J Clin Endocrinol Metab. 2006 Sep;91(9):3667–3670. PubMed PMID: 16772349.
  • Durante C, Tallini G, Puxeddu E, et al. BRAF(V600E) mutation and expression of proangiogenic molecular markers in papillary thyroid carcinomas. Eur J Endocrinol. 2011 Sep;165(3):455–463. PubMed PMID: 21653734.
  • Wesche J, Haglund K, Haugsten EM. Fibroblast growth factors and their receptors in cancer. Biochem J. 2011 Jul 15;437(2):199–213. PubMed PMID: 21711248.
  • Pfeifer A, Rusinek D, Zebracka-Gala J, et al. Novel TG-FGFR1 and TRIM33-NTRK1 transcript fusions in papillary thyroid carcinoma. Genes Chromosomes Cancer. 2019 Aug;58(8):558–566. PubMed PMID: 30664823; PubMed Central PMCID: PMCPMC6594006.
  • Kelly LM, Barila G, Liu P, et al. Identification of the transforming STRN-ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer. Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4233–4238. PubMed PMID: 24613930; PubMed Central PMCID: PMCPMC3964116.
  • Cabanillas ME, Habra MA. Lenvatinib: role in thyroid cancer and other solid tumors. Cancer Treat Rev. 2016 Jan;42:47–55. PubMed PMID: 26678514.
  • Okamoto K, Kodama K, Takase K, et al. Antitumor activities of the targeted multi-tyrosine kinase inhibitor lenvatinib (E7080) against RET gene fusion-driven tumor models. Cancer Lett. 2013 Oct 28;340(1):97–103. PubMed PMID: 23856031.
  • Dieci MV, Arnedos M, Andre F, et al. Fibroblast growth factor receptor inhibitors as a cancer treatment: from a biologic rationale to medical perspectives. Cancer Discov. 2013 Mar;3(3):264–279. PubMed PMID: 23418312.
  • Haugen BR, Sherman SI. Evolving approaches to patients with advanced differentiated thyroid cancer. Endocr Rev. 2013 Jun;34(3):439–455. PubMed PMID: 23575762; PubMed Central PMCID: PMCPMC3660715.
  • Jung J, Seol HS, Chang S. The generation and application of patient-derived xenograft model for cancer research. Cancer Res Treat. 2018 Jan;50(1):1–10. PubMed PMID: 28903551; PubMed Central PMCID: PMCPMC5784646.
  • Adachi Y, Matsuki M, Watanabe H, et al. Antitumor and antiangiogenic activities of lenvatinib in mouse xenograft models of vascular endothelial growth factor-induced hypervascular human hepatocellular carcinoma. Cancer Invest. 2019 Apr 22:1–14. PubMed PMID: 31006280. DOI:10.1080/07357907.2019.1601209
  • Hoshi T, Watanabe Miyano S, Watanabe H, et al. Lenvatinib induces death of human hepatocellular carcinoma cells harboring an activated FGF signaling pathway through inhibition of FGFR-MAPK cascades. Biochem Biophys Res Commun. 2019 May 21;513(1):1–7. PubMed PMID: 30944079.
  • Matsuki M, Hoshi T, Yamamoto Y, et al. Lenvatinib inhibits angiogenesis and tumor fibroblast growth factor signaling pathways in human hepatocellular carcinoma models. Cancer Med. 2018 Jun;7(6):2641–2653. PubMed PMID: 29733511; PubMed Central PMCID: PMCPMC6010799.
  • Kimura T, Kato Y, Ozawa Y, et al. Immunomodulatory activity of lenvatinib contributes to antitumor activity in the Hepa1-6 hepatocellular carcinoma model. Cancer Sci. 2018 Dec;109(12):3993–4002. PubMed PMID: 30447042; PubMed Central PMCID: PMCPMC6272102.
  • Qiu MJ, He XX, Bi NR, et al. Effects of liver-targeted drugs on expression of immune-related proteins in hepatocellular carcinoma cells. Clin Chim Acta. 2018 Oct;485:103–105. PubMed PMID: 29940148.
  • Wei X, Zhang T, Yao Y, et al. Efficacy of Lenvatinib, a multitargeted tyrosine kinase inhibitor, on laser-induced CNV mouse model of neovascular AMD. Exp Eye Res. 2018 Mar;168:2–11. PubMed PMID: 29284110.
  • Li J, Zou CL, Zhang ZM, et al. A multitargeted tyrosine kinase inhibitor lenvatinib for the treatment of mice with advanced glioblastoma. Mol Med Rep. 2017 Nov;16(5):7105–7111. PubMed PMID: 28901423.
  • Matsuki M, Adachi Y, Ozawa Y, et al. Targeting of tumor growth and angiogenesis underlies the enhanced antitumor activity of lenvatinib in combination with everolimus. Cancer Sci. 2017 Apr;108(4):763–771. PubMed PMID: 28107584; PubMed Central PMCID: PMCPMC5406533.
  • Huang Q, Schneeberger VE, Luetteke N, et al. Preclinical modeling of KIF5B-RET fusion lung adenocarcinoma. Mol Cancer Ther. 2016 Oct;15(10):2521–2529. PubMed PMID: 27496134; PubMed Central PMCID: PMCPMC5289739.
  • Nakazawa Y, Kawano S, Matsui J, et al. Multitargeting strategy using lenvatinib and golvatinib: maximizing anti-angiogenesis activity in a preclinical cancer model. Cancer Sci. 2015 Feb;106(2):201–207. PubMed PMID: 25458359; PubMed Central PMCID: PMCPMC4399030.
  • Wiegering A, Korb D, Thalheimer A, et al. E7080 (lenvatinib), a multi-targeted tyrosine kinase inhibitor, demonstrates antitumor activities against colorectal cancer xenografts. Neoplasia. 2014 Nov;16(11):972–981. PubMed PMID: 25425971; PubMed Central PMCID: PMCPMC4240916.
  • Nakagawa T, Matsushima T, Kawano S, et al. Lenvatinib in combination with golvatinib overcomes hepatocyte growth factor pathway-induced resistance to vascular endothelial growth factor receptor inhibitor. Cancer Sci. 2014 Jun;105(6):723–730. PubMed PMID: 24689876; PubMed Central PMCID: PMCPMC4317894.
  • Glen H, Mason S, Patel H, et al. E7080, a multi-targeted tyrosine kinase inhibitor suppresses tumor cell migration and invasion. BMC Cancer. 2011 Jul 22;11:309. PubMed PMID: 21781317; PubMed Central PMCID: PMCPMC3154179.
  • Bruheim S, Kristian A, Uenaka T, et al. Antitumour activity of oral E7080, a novel inhibitor of multiple tyrosine kinases, in human sarcoma xenografts. Int J Cancer. 2011 Aug 1;129(3):742–750. PubMed PMID: 21225632.
  • Matsui J, Yamamoto Y, Funahashi Y, et al. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int J Cancer. 2008 Feb 1;122(3):664–671. PubMed PMID: 17943726.
  • Matsui J, Funahashi Y, Uenaka T, et al. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin Cancer Res. 2008 Sep 1;14(17):5459–5465. PubMed PMID: 18765537.
  • Ikuta K, Yano S, Trung VT, et al. E7080, a multi-tyrosine kinase inhibitor, suppresses the progression of malignant pleural mesothelioma with different proangiogenic cytokine production profiles. Clin Cancer Res. 2009 Dec 1;15(23):7229–7237. PubMed PMID: 19934291.
  • Yamamoto Y, Matsui J, Matsushima T, et al. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vasc Cell. 2014;6:18. PubMed PMID: 25197551; PubMed Central PMCID: PMCPMC4156793.
  • Tohyama O, Matsui J, Kodama K, et al. Antitumor activity of lenvatinib (e7080): an angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J Thyroid Res. 2014;2014:638747. PubMed PMID: 25295214; PubMed Central PMCID: PMCPMC4177084.
  • Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001 Apr 5;344(14):1031–1037. PubMed PMID: 11287972.
  • Kim SY, Kim SM, Chang HJ, et al. SoLAT (Sorafenib Lenvatinib alternating treatment): a new treatment protocol with alternating Sorafenib and Lenvatinib for refractory thyroid cancer. BMC Cancer. 2018 Oct 4;18(1):956. PubMed PMID: 30286728; PubMed Central PMCID: PMCPMC6172752.
  • Ferrari SM, Bocci G, Di Desidero T, et al. Lenvatinib exhibits antineoplastic activity in anaplastic thyroid cancer in vitro and in vivo. Oncol Rep. 2018 May;39(5):2225–2234. PubMed PMID:journal29517103.
  • Wang JR, Zafereo ME, Dadu R, et al. Complete surgical resection following neoadjuvant dabrafenib plus trametinib in BRAF(V600E)-mutated anaplastic thyroid carcinoma. Thyroid. 2019 Aug;29(8):1036–1043. PubMed PMID: 31319771; PubMed Central PMCID: PMCPMC6707029.
  • Lee YS, Kim SM, Kim BW, et al. Anti-cancer effects of HNHA and lenvatinib by the suppression of EMT-mediated drug resistance in cancer stem cells. Neoplasia. 2018 Feb;20(2):197–206. PubMed PMID: 29331886; PubMed Central PMCID: PMCPMC5767911.
  • Wang R, Yamada T, Arai S, et al. Distribution and activity of lenvatinib in brain tumor models of human anaplastic thyroid cancer cells in severe combined immune deficient mice. Mol Cancer Ther. 2019 May;18(5):947–956. 10.1158/1535-7163.MCT-18-0695. PubMed PMID: 30926637
  • [cited May 31]. Available from: https://www.ema.europa.eu/en/documents/product-information/lenvima-epar-product-information_en.pdf
  • Yamada K, Yamamoto N, Yamada Y, et al. Phase I dose-escalation study and biomarker analysis of E7080 in patients with advanced solid tumors. Clin Cancer Res. 2011 Apr 15;17(8):2528–2537. PubMed PMID: 21372218.
  • Boss DS, Glen H, Beijnen JH, et al. A phase I study of E7080, a multitargeted tyrosine kinase inhibitor, in patients with advanced solid tumours. Br J Cancer. 2012 May 8;106(10):1598–1604. PubMed PMID: 22516948; PubMed Central PMCID: PMCPMC3349182.
  • Gianoukakis AG, Dutcus CE, Batty N, et al. Prolonged duration of response in lenvatinib responders with thyroid cancer. Endocr Relat Cancer. 2018 Jun;25(6):699–704. PubMed PMID: 29752332; PubMed Central PMCID: PMCPMC5958278.
  • Brose MS, Worden FP, Newbold KL, et al. Effect of age on the efficacy and safety of lenvatinib in radioiodine-refractory differentiated thyroid cancer in the phase III SELECT trial. J Clin Oncol. 2017 Aug 10;35(23):2692–2699. PubMed PMID: 28613956.
  • Schlumberger M, Jarzab B, Cabanillas ME, et al. A phase II trial of the multitargeted tyrosine kinase inhibitor lenvatinib (E7080) in advanced medullary thyroid cancer. Clin Cancer Res. 2016 Jan 1;22(1):44–53. PubMed PMID: 26311725.
  • Haddad RI, Schlumberger M, Wirth LJ, et al. Incidence and timing of common adverse events in Lenvatinib-treated patients from the SELECT trial and their association with survival outcomes. Endocrine. 2017 Apr;56(1):121–128. PubMed PMID: 28155175; PubMed Central PMCID: PMCPMC5368192.
  • Tahara M, Brose MS, Wirth LJ, et al. Impact of dose interruption on the efficacy of lenvatinib in a phase 3 study in patients with radioiodine-refractory differentiated thyroid cancer. Eur J Cancer. 2019 Jan;106:61–68. PubMed PMID: 30471649.
  • Scartozzi M, Galizia E, Chiorrini S, et al. Arterial hypertension correlates with clinical outcome in colorectal cancer patients treated with first-line bevacizumab. Ann Oncol. 2009 Feb;20(2):227–230. PubMed PMID: 18842611; eng.
  • Rini BI, Cohen DP, Lu DR, et al. Hypertension as a biomarker of efficacy in patients with metastatic renal cell carcinoma treated with sunitinib. J Natl Cancer Inst. 2011 May 4;103(9):763–773. PubMed PMID: 21527770; PubMed Central PMCID: PMCPMC3086879. eng.
  • Pant S, Martin LK, Geyer S, et al. Treatment-related hypertension as a pharmacodynamic biomarker for the efficacy of bevacizumab in advanced pancreas cancer: a pooled analysis of 4 prospective trials of gemcitabine-based therapy with bevacizumab. Am J Clin Oncol. 2016 Dec;39(6):614–618. PubMed PMID: 25068471; PubMed Central PMCID: PMCPMC4305484. eng.
  • Budolfsen C, Faber J, Grimm D, et al. Tyrosine kinase inhibitor-induced hypertension: role of hypertension as a biomarker in cancer treatment. Curr Vasc Pharmacol. 2019 Jan 30. PubMed PMID: 30706818; eng. DOI:10.2174/1570161117666190130165810.
  • Wirth LJ, Tahara M, Robinson B, et al. Treatment-emergent hypertension and efficacy in the phase 3 study of (E7080) lenvatinib in differentiated cancer of the thyroid (SELECT). Cancer. 2018 Jun 1;124(11):2365–2372. PubMed PMID: 29656442.
  • Colombo C, De Leo S, Di Stefano M, et al. Primary adrenal insufficiency during lenvatinib or vandetanib and improvement of fatigue after cortisone acetate therapy. J Clin Endocrinol Metab. 2019 Mar 1;104(3):779–784. PubMed PMID: 30383218.
  • Paschke L, Lincke T, Muhlberg KS, et al. Anti VEGF-TKI treatment and new renal adverse events not reported in phase III trials. Eur Thyroid J. 2018 Nov;7(6):308–312. PubMed PMID: 30574461; PubMed Central PMCID: PMCPMC6276742.
  • Hyogo Y, Kiyota N, Otsuki N, et al. Thrombotic microangiopathy with severe proteinuria induced by lenvatinib for radioactive iodine-refractory papillary thyroid carcinoma. Case Rep Oncol. 2018 Sept–Dec;11(3):735–741. PubMed PMID: 30519176; PubMed Central PMCID: PMCPMC6276762.
  • Furuto Y, Hashimoto H, Namikawa A, et al. Focal segmental glomerulosclerosis lesion associated with inhibition of tyrosine kinases by lenvatinib: a case report. BMC Nephrol 2018 Oct 19;19(1):273. PubMed PMID: 30340546; PubMed Central PMCID: PMCPMC6194623. DOI:10.1186/s12882-018-1074-3.
  • Osawa Y, Gozawa R, Koyama K, et al. Posterior reversible encephalopathy syndrome after lenvatinib therapy in a patient with anaplastic thyroid carcinoma. Intern Med. 2018 Apr 1;57(7):1015–1019. PubMed PMID: 29225265; PubMed Central PMCID: PMCPMC5919864.
  • Tahara M, Kiyota N, Yamazaki T, et al. Lenvatinib for Anaplastic Thyroid Cancer. Front Oncol. 2017;7:25. PubMed PMID: 28299283; PubMed Central PMCID: PMCPMC5331066.
  • Koyama S, Miyake N, Fujiwara K, et al. Lenvatinib for anaplastic thyroid cancer and lenvatinib-induced thyroid dysfunction. Eur Thyroid J. 2018 Jun;7(3):139–144. PubMed PMID: 30023346; PubMed Central PMCID: PMCPMC6047489.
  • Iwasaki H, Yamazaki H, Takasaki H, et al. Lenvatinib as a novel treatment for anaplastic thyroid cancer: a retrospective study. Oncol Lett. 2018 Dec;16(6):7271–7277. PubMed PMID: 30546466; PubMed Central PMCID: PMCPMC6256365.
  • Yamazaki H, Yokose T, Hayashi H, et al. Expression of vascular endothelial growth factor receptor 2 and clinical response to lenvatinib in patients with anaplastic thyroid cancer. Cancer Chemother Pharmacol. 2018 Oct;82(4):649–654. PubMed PMID: 30051190.
  • Iyer PC, Dadu R, Gule-Monroe M, et al. Salvage pembrolizumab added to kinase inhibitor therapy for the treatment of anaplastic thyroid carcinoma. J Immunother Cancer. 2018 Jul 11;6(1):68. PubMed PMID: 29996921; PubMed Central PMCID: PMCPMC6042271.
  • Robinson B, Schlumberger M, Wirth LJ, et al. Characterization of tumor size changes over time from the phase 3 study of lenvatinib in thyroid cancer. J Clin Endocrinol Metab. 2016 Nov;101(11):4103–4109. PubMed PMID: 27548104; PubMed Central PMCID: PMCPMC5095235.
  • Berdelou A, Borget I, Godbert Y, et al. Lenvatinib for the treatment of radioiodine-refractory thyroid cancer in real-life practice. Thyroid. 2017 Nov 27. PubMed PMID: 29048237. DOI:10.1089/thy.2017.0205.
  • Yamazaki H, Iwasaki H, Takasaki H, et al. Efficacy and tolerability of initial low-dose lenvatinib to treat differentiated thyroid cancer. Medicine (Baltimore). 2019 Mar;98(10):e14774. PubMed PMID: 30855484.
  • Yun KJ, Kim W, Kim EH, et al. Accelerated disease progression after discontinuation of sorafenib in a patient with metastatic papillary thyroid cancer. Endocrinol Metab (Seoul). 2014 Sep;29(3):388–393. PubMed PMID: 25309799; PubMed Central PMCID: PMCPMC4192805. eng.
  • Chaft JE, Oxnard GR, Sima CS, et al. Disease flare after tyrosine kinase inhibitor discontinuation in patients with EGFR-mutant lung cancer and acquired resistance to erlotinib or gefitinib: implications for clinical trial design. Clin Cancer Res. 2011 Oct 1;17(19):6298–6303. PubMed PMID: 21856766; PubMed Central PMCID: PMCPMC3756539. eng.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.