112
Views
39
CrossRef citations to date
0
Altmetric
Review

Drug screening of rhodanine derivatives for antibacterial activity

, &
Pages 203-229 | Received 08 Feb 2019, Accepted 20 Nov 2019, Published online: 28 Nov 2019

References

  • Bodier-Montagutelli E, Morello E, L’Hostis G, et al. Inhaled phage therapy: a promising and challenging approach to treat bacterial respiratory infections. Expert Opin Drug Deliv. 2017;4:959–972.
  • Amly W, Karaman R. Recent updates in utilizing prodrugs in drug delivery (2013–2015). Expert Opin Drug Deliv. 2016;13:571–591.
  • Guo H. Isatin derivatives and their anti-bacterial activities. Eur J Med Chem. 2019;164:678–688.
  • Kim JH, Lee J, Park J, et al. Gram-negative and gram-positive bacterial extracellular vesicles. Semin Cell Develop Biolo. 2015;40:97–104.
  • Fu LM, Fu-Liu CS. Is mycobacterium tuberculosis a closer relative to gram-positive or gram-negative bacterial pathogens? Tuberculosis (Edinb). 2002;82:85–90.
  • Hessle CC, Andersson B, Wold AE. Gram-positive and Gram-negative bacteria elicit different patterns of pro-inflammatory cytokines in human monocytes. Cytokine. 2005;30:311–318.
  • Abdelaziz AA, Elbanna TE, Sonbol FI, et al. Optimization of niosomes for enhanced antibacterial activity and reduced bacterial resistance: in vitro and in vivo evaluation. Expert Opin Drug Deliv. 2015;12:163–180.
  • Cal PM, Matos MJ, Bernardes GJ. Trends in therapeutic drug conjugates for bacterial diseases: a patent review. Expert Opin Ther Pat. 2017;27:179–189.
  • Abeylath SC, Turos E. Drug delivery approaches to overcome bacterial resistance to β-lactam antibiotics. Expert Opin Drug Deliv. 2008;5:931–949.
  • Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74:417–433.
  • IN O, RW P, Goossens H, et al. Diagnostics as essential tools for containing antibacterial resistance. Drug Resist Updat. 2011;14:95–96.
  • Figueiredo AHA, Brouwer MC, van de Beek D. Acute community-acquired bacterial meningitis. Neurologic Clin. 2018;36:809–820.
  • Nagy E, Nagy G, Power CA, et al. Anti-bacterial monoclonal antibodies. Adv Exp Med Biol. 2017;1053:119–153.
  • Cerceo E, Deitelzweig SB, Sherman BM, et al. Multidrug-resistant gram-negative bacterial infections in the hospital setting: overview, implications for clinical practice, and emerging treatment options. Microb Drug Resist. 2016;22:412–431.
  • Medina E, Pieper DH. Tackling threats and future problems of multidrug-resistant bacteria. Curr Top Microbiol Immunol. 2016;398:3–33.
  • Bartoletti M, Giannella M, Tedeschi S, et al. Multidrug-resistant bacterial infections in solid organ transplant candidates and recipients. Infect Dis Clin North Am. 2018;32:551–580.
  • Cervera C, van Delden C, Gavalda J, et al. Multidrug-resistant bacteria in solid organ transplant recipients. Clin Microbiol Infect. 2014;20:49–73.
  • Brown FC. 4-Thiazolidinones. Chem Rev. 1961;61:463–521.
  • Tomasic T, Masic LP. Rhodanine as a privileged scaffold in drug discovery. Curr Med Chem. 2009;16:1596–1629.
  • Singh SP, Parmar SS, Raman K, et al. Chemistry and biological activity of thiazolidinones. Chem Rev. 1981;81:175–203.
  • Rangel-Vega A, Bernstein LR, Mandujano-Tinoco EA. Silvia julieta garcia-contreras and rodolfo garcia-contreras, Drug repurposing as an alternative for the treatment of recalcitrant bacterial infections. Front Microbiol. 2015;6:20151–20158.
  • Korner H. Derivatives of dithiocarbaminoacetic acid. Ber Dtsch Chem Ges. 1908;41:1901–1905.
  • Andreasch R. Substituted rhodaninic acids and their aldehyde condensation products VII. Monatsh Chem. 1908;29:399–419.
  • Taniyama H, Yasui B, Takehara N, et al. Chemotherapeutics for mycobacterium tuberculosis. XIX. Synthesis and antibacterial activity of some 3-substituted rhodanines. Yakugaku Zasshi. 1959;79:1465–1468.
  • Singh J, Nathan CF, Bryk R, et al. Cyclic carboxylic acid rhodanine derivatives for the treatment and prevention of tuberculosis. WO Pat. 2008;2008005651.
  • Frankov IA, Kirillov MV, Sokolova TN, et al. Synthesis and pharmacological properties of alkyl derivatives of 3-carboxyalkylrhodanine. Khim-Farm Zh. 1985;19:943–946.
  • Friebe WG, Krell HW, Woelle S, et al. Thiazolidine carboxylic acid derivatives and their use in the treatment of cancer. WO Pat 0157006. 2001.
  • Singh R, Ramesh UV, Goff D, et al. Rhodanine derivatives and pharmaceutical compositions containing them. WO Pat 2004043955. 2004.
  • Orchard MG, Neuss JC, Galley CM, et al. Rhodanine-3-acetic acid derivatives as inhibitors of fungal protein mannosyl transferase. Bioorg Med Chem Lett. 2004;14:3975–3978.
  • Sortino M, Delgado P, Juarez S, et al. Synthesis and antifungal activity of (Z)-5-arylidenerhodanines. Bioorg Med Chem. 2007;15:484–494.
  • Orchard MG, Neuss JC, Galley CMS, et al. Rhodanine-3-acetic acid derivatives as inhibitors of fungal protein mannosyl transferase 1 (PMT 1). Bioorg Med Chem Lett. 2004;14:3975–3978.
  • Inamori Y, Muro C, Tanaka R, et al. Phyto-growth inhibitory activity of sulfur-containing compounds. I. Inhibitory activities of thiazolidine derivatives on plant growth. Chem Pharm Bull. 1992;40:2854–2856.
  • Muro C, Yasuda M, Sakagami Y, et al. Inhibitory activities of rhodanine derivatives on plant growth. Biocsi Biotechnol Biochem. 1996;60:1368–1371.
  • Inamori Y, Okamoto Y, Takegawa Y, et al. Insecticidal and antifungal activities of aminorhodanine derivatives. Biosci Biotechnol Biochem. 1998;62:1025–1027.
  • Takasu K, Inoue H, Kim HS, et al. Rhodacyanine dyes as antimalarials. 1. Preliminary evaluation of their activity and toxicity. J Med Chem. 2002;45:995–998.
  • Ge X, Wakim B, Sem DS. Chemical proteomics-based drug design: target and antitarget fishing with a catechol− rhodanine privileged scaffold for NAD (P)(H) binding proteins. J Med Chem. 2008;51:4571–4580.
  • Panico A, Maccari R, Cardile V, et al. Evaluation of the anti-inflammatory/chondroprotective activity of aldose reductase inhibitors in human chondrocyte cultures. Med Chem Commun. 2015;6:823–830.
  • Strittmatter T, Brockmann A, Pott M, et al. Expanding the scope of human DNA polymerase λ and β inhibitors. ACS Chem Biol. 2014;9:282–290.
  • Mosula L, Zimenkovsky B, Havrylyuk D, et al. Synthesis and antitumor activity of novel 2-thioxo-4-thiazolidinones with benzothiazole moieties. Farmacia. 2009;57:321–330.
  • Dolezel J, Hirsova P, Opletalova V, et al. Rhodanineacetic acid derivatives as potential drugs: preparation, hydrophobic properties and antifungal activity of (5-arylalkylidene-4-oxo-2-thioxo-1,3-thiazolidin-3-yl)acetic acids. Molecules. 2009;14:4197–4212.
  • Kaminskyy D, Kryshchyshyn A, Lesyk R. Recent developments with rhodanine as a scaffold for drug discovery. Expert Opini Drug Discov. 2017;17:1–20.
  • Katritzky AR, Tala SR, Lu H, et al. Privileged scaffolds or promiscuous binders: A comparative study on rhodanines and related heterocycles in medicinal chemistry. J Med Chem. 2010;52:7631–7638.
  • Maga G, Falchi F, Garbelli A, et al. Pharmacophore modeling and molecular docking led to the discovery of inhibitors of human immunodeficiency virus-1 replication targeting the human cellular aspartic acid−glutamic acid−alanine−aspartic acid box polypeptide 3. J Med Chem. 2008;51:6635–6638.
  • Furdas SD, Shekfeh S, Kannan S, et al. Rhodanine carboxylic acids as novel inhibitors of histone acetyltransferases. Med Chem Commun. 2012;3:305–311.
  • WT S, CL L, SL Y, et al. Arylalkylidene rhodanine with bulky and hydrophobic functional group as selective HCV NS3 protease inhibitor. Bioorg Med Chem Lett. 2001;11:91–94.
  • Grant EB, Guiadeen D, Baum EZ, et al. The synthesis and SAR of rhodanines as novel class C β-lactamase inhibitors. Bioorg Med Chem Lett. 2000;10:2179–2182.
  • Reddy TN, Ravinder M, Bagul P, et al. Synthesis and biological evaluation of new epalrestat analogues as aldose reductase inhibitors (ARIs). Eur J Med Chem. 2014;71:53–66.
  • Irvine MW, Patrick GL, Kewney J, et al. Rhodanine derivatives as novel inhibitors of PDE4. Bioorg Med Chem Lett. 2008;18:2032–2037.
  • Shafii N, Khoobi M, Amini M, et al. Synthesis and biological evaluation of 5-benzylidenerhodanine-3-acetic acid derivatives as AChE and 15-LOX inhibitors. J Enzyme Inhib Med Chem. 2015;30:389–395.
  • Smith TK, Young BL, Denton H, et al. First small molecular inhibitors of T. brucei dolicholphosphate mannose synthase (DPMS), a validated drug target in African sleeping sickness. Bioorg Med Chem Lett. 2009;19:1749–1752.
  • Tomasic T, Zidar N, Kovac A, et al. 5‐Benzylidenethiazolidin‐4‐ones as multitarget inhibitors of bacterial mur ligases. ChemMedChem. 2010;5:286–292.
  • Li R, Xie L, Feng H, et al. Molecular engineering of rhodanine dyes for highly efficient D-π-A organic sensitizer. Dyes Pigm. 2018;156:53–60.
  • Matsui M, Tanaka N, Ono Y, et al. Performance of new single rhodanine indoline dyes in zinc oxide dye-sensitized solar cell. Sol Energy Mater Sol Cell. 2014;128:313–319.
  • Wan Z, Jia C, Wang Y, et al. A strategy to boost the efficiency of rhodamine electron acceptor for organic dye: from nonconjugation to conjugation. ACS Appl Mater Interfaces. 2017;9:25225–25231.
  • Fan M, Duan L, Zhou Y, et al. Rhodanine side-chained thiophene and indacenodithiophene copolymer for solar cell applications. Mater Today Ener. 2017;5:287–292.
  • Cho CM, Ye Q, Neo WT, et al. Red-to-black electrochromism of 4,9-dihydro-s-indaceno[1,2-b:5,6-b’]dithiophene-embedded conjugated polymers. J Mater Sci. 2015;50:5856–5864.
  • Zhang W, Smith J, Watkins SE, et al. Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors. J Am Chem Soc. 2010;132:11437–11439.
  • Huang F, Chen KS, Yip HL, et al. Development of new conjugated polymers with donor− π-bridge− acceptor side chains for high performance solar cells. J Am Chem Soc. 2009;131:13886–13887.
  • Singh SP, Parmar SS, Raman K, et al. Chemistry and biological activity of thiazolidinones. Chem Rev. 1981;81:175–203.
  • Lesyk RB, Zimenkovsky BS. 4-Thiazolidones: centenarian history, current status and perspectives for modern organic and medicinal chemistry. Curr Org Chem. 2004;8:1547–1577.
  • Wu Y, Ding X, Xu S, et al. Design and synthesis of biaryloxazolidinone derivatives containing a rhodanine or thiohydantoin moiety as novel antibacterial agents against Gram-positive bacteria. Bioorg Med Chem Lett. 2019;29:496–502.
  • Trotsko N, Kosikowska U, Paneth A, et al. Synthesis and antibacterial activity of new (2,4-dioxothiazolidin-5-yl/ylidene)acetic acid derivatives with thiazolidine-2,4-dione, rhodamine and 2-thiohydantoin moieties. Saudi Pharmaceu J. 2018;26:568–577.
  • Kratky M, Vinsova J, Stolarikova J, et al. Antimicrobial activity of rhodanine-3-acetic acid derivatives. Bioorg Med Chem. 2017;25:1839–1845.
  • Subhedar DD, Shaikh MH, Nawale L, et al. Novel tetrazoloquinoline-rhodanine conjugates: highly efficient synthesis and biological evaluation. Bioorg Med Chem Lett. 2016;26:2278–2283.
  • Subhedar DD, Shaikh MH, Nawale L, et al. [Et3NH][HSO4] catalyzed efficient synthesis of 5-arylidene-rhodanine conjugates and their anti-tubercular activity. Res Chem Intermed. 2016;42:6607–6626.
  • Subhedar DD, Shaikh MH, Shingate BB, et al. Quinolidene-rhodanine conjugates: facile synthesis and biological evaluation. Eur J Med Chem. 2017;125:385–399.
  • Chao L, Jia-Chun L, Ya-Ru L, et al. Synthesis and antimicrobial evaluation of 5-aryl-1,2,4-triazole-3-thione derivatives containing a rhodanine moiety. Bioorg Med Chem Lett. 2015;25:3052–3056.
  • Bhatt HB, Sharma S. Synthesis and antimicrobial activity of pyrazole nucleus containing 2-thioxothiazolidin-4-one derivatives. Arab J Chem. 2017;10:S1590–S1596.
  • Hardej N, Ashby CR Jr, Khadtare NS, et al. The synthesis of phenylalanine-derived C5-substituted rhodanines and their activity against selected methicillin-resistant Staphylococcus aureus (MRSA) strains. Eur J Med Chem. 2010;45:5827–5832.
  • Sundaram K, Ravi S. Synthesis, antibacterial activity against MRSA, and in vitro cytotoxic activity against HeLa cell lines of novel 3-α-carboxy ethyl-5-benzylidene rhodanine derivatives. Res Chem Intermed. 2015;41:1011–1021.
  • Ming-Xia S, Song-Hui L, Jiao-Yang P, et al. Synthesis and bioactivity evaluation of N-arylsulfonylindole analogs bearing a rhodanine moiety as antibacterial agents. Molecules. 2017;22:970–982.
  • Tomasic T, Zidar N, Mueller-Premru M, et al. Synthesis and antibacterial activity of 5-ylidenethiazolidin-4-ones and 5-benzylidene-4,6-pyrimidinediones. Eur J Med Chem. 2010;45:1667–1672.
  • Slepikas L, Chiriano G, Perozzo R, et al. In silico driven design and synthesis of rhodanine derivatives as novel anti-bacterials targeting the enoyl reductase InhA. J Med Chem. 2016;59:10917−10928.
  • Yang X, Cheng C, Wen-Ming W, et al. Rhodanine as a potent scaffold for the development of broad-spectrum metallo-β-lactamase inhibitors. ACS Med Chem Lett. 2018;9:359–364.
  • Brvar M, Perdih A, Hodnik V, et al. In silico discovery and biophysical evaluation of novel 5-(2-hydroxybenzylidene) rhodanine inhibitors of DNA gyrase B. Bioorg Med Chem. 2012;20:2572–2580.
  • Frlan R, Kovac A, Blanot D, et al. Design and synthesis of novel n-benzylidenesulfonohydrazide inhibitors of MurC and MurD as potential antibacterial agents. Molecules. 2008;13:11–30.
  • Ungoren SH, Albayrak S, Gunay A, et al. A new method for the preparation of 5-acylidene and 5-imino substituted rhodanine derivatives and their antioxidant and antimicrobial activities. Tetrahedron. 2015;71:4312–4323.
  • Tejchman W, Korona-Glowniak I, Malm A, et al. Antibacterial properties of 5-substituted derivatives of rhodanine-3-carboxyalkyl acids. Med Chem Res. 2017;26:1316–1324.
  • AbdelKhalek A, Ashby CR, Patel BA, et al. In vitro antibacterial activity of rhodanine derivatives against pathogenic clinical isolates. PLoS ONE. 2016;11:e0164227.
  • Jing M, Chang-Ji Z, Liang-Peng S, et al. Synthesis and potential antibacterial activity of new rhodanine-3-acetic acid derivatives. Med Chem Res. 2013;22:4125–4132.
  • Jia-Chun L, Chang-Ji Z, Meng-Xiao W, et al. Synthesis and evaluation of the antimicrobial activities of 3-((5-phenyl-1,3,4-oxadiazol-2-yl)methyl)-2-thioxothiazolidin-4-one derivatives. Eur J Med Chem. 2014;74:405–410.
  • Wei L, Chang-Ji Z, Liang-Peng S, et al. Novel arylhydrazone derivatives bearing a rhodanine moiety: synthesis and evaluation of their antibacterial activities. Arch Pharm Res. 2014;37:852–861.
  • Opperman TJ, Kwasny SM, Williams JD. Aryl rhodanines specifically inhibit staphylococcal and enterococcal biofilm formation. Antimicro Agents Chemother. 2009;53:4357–4367.
  • Zhen-Hua C, Chang-Ji Z, Liang-Peng S, et al. Synthesis of new chalcone derivatives containing a rhodanine-3-acetic acid moiety with potential anti-bacterial activity. Eur J Med Chem. 2010;45:5739–5743.
  • Gualtieri M, Bastide L, Villain-Guillot P, et al. In vitro activity of a new antibacterial rhodanine derivative against Staphylococcus epidermidis biofilms. J Antimicrob Chemother. 2006;58:778–783.
  • Guo M, Chang-Ji Z, Ming-Xia S, et al. Synthesis and biological evaluation of rhodanine derivatives bearing a quinoline moiety as potent antimicrobial agents. Bioorg Med Chem Lett. 2013;23:4358–4361.
  • Habib NS, Ridal SM, Badaweyl EAM, et al. Synthesis and antimicrobial activity of rhodanine derivatives. Eur J Med Chem. 1997;32:759–762.
  • Jin X, Chang-Ji Z, Ming-Xia S, et al. Synthesis and antimicrobial evaluation of L-phenylalanine-derived C5-substituted rhodanine and chalcone derivatives containing thiobarbituric acid or 2-thioxo-4-thiazolidinone. Eur J Med Chem. 2012;56:203–209.
  • Zingle C, Tritsch D, Grosdemange-Billiard C, et al. Catechol–rhodanine derivatives: specific and promiscuous inhibitors of Escherichia coli deoxyxylulose phosphate reductoisomerase (DXR). Bioorg Med Chem. 2014;22:3713–3719.
  • Chang-Ji Z, Li-Li X, Liang-Peng S, et al. Synthesis and antibacterial activity of novel 1,3-diphenyl-1H-pyrazoles functionalized with phenylalanine-derived rhodanines. Eur J Med Chem. 2012;58:112–116.
  • Chang-Ji Z, Ming-Xia S, Liang-Peng S, et al. Synthesis and biological evaluation of 5-aryloxypyrazole derivatives bearing a rhodanine-3-aromatic acid as potential antimicrobial agents. Bioorg Med Chem Lett. 2012;22:7024–7028.
  • Li-Li X, Chang-Ji Z, Liang-Peng S, et al. Synthesis of novel 1,3-diaryl pyrazole derivatives bearing rhodanine-3-fatty acid moieties as potential antibacterial agents. Eur J Med Chem. 2012;48:174–178.
  • Ming-Xia S, Chang-Ji Z, Xian-Qing D, et al. Synthesis and bioactivity evaluation of rhodanine derivatives as potential anti-bacterial agents. Eur J Med Chem. 2012;54:403–412.
  • Ming-Xia S, Chang-Ji Z, Xian-Qing D, et al. Synthesis and antibacterial evaluation of rhodanine-based 5-aryloxy pyrazoles against selected methicillin resistant and quinolone resistant Staphylococcus aureus (MRSA and QRSA). Eur J Med Chem. 2013;60:376–385.
  • Patel BB, Ashby CR, Hardej D, et al. The synthesis and SAR study of phenylalanine-derived (Z)-5-arylmethylidene rhodanines as anti-methicillin-resistant Staphylococcus aureus (MRSA) compounds. Bioorg Med Chem Lett. 2013;23:5523–5527.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.