291
Views
14
CrossRef citations to date
0
Altmetric
Review

Current discovery strategies for hepatocellular carcinoma therapeutics

, , , &
Pages 243-258 | Received 29 Jul 2019, Accepted 20 Nov 2019, Published online: 06 Dec 2019

References

  • Petrick JL, Braunlin M, Laversanne M, et al. International trends in liver cancer incidence, overall and by histologic subtype, 1978–2007. Int J Cancer. 2016;139(7):1534–1545.
  • Kang KJ, Ahn KS. Anatomical resection of hepatocellular carcinoma: a critical review of the procedure and its benefits on survival. World J Gastroenterol. 2017;23(7):1139–1146.
  • Ringelhan M, Pfister D, O’Connor T, et al. The immunology of hepatocellular carcinoma. Nat Immunol. 2018;19:222–232.
  • Galle PR, Forner A, Llovet JM, et al. EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2018;69(1):182–236.
  • Sia D, Villanueva A, Friedman SL, et al. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology. 2017;152(4):745–761.
  • Kudo M, Finn RS, Qin S, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018;391:1163–1173.
  • Abou-Alfa GK, Meyer T, Cheng AL, et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med. 2018;379(1):54–63.
  • Bruix J, Qin S, Merle P, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2016;389(10064):56–66.
  • El-Khoueiry AB, Sangro B, Yau T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389(10088):2492–2502.
  • Chau I, Peck-Radosavljevic M, Borg C, et al. Ramucirumab as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib: patient-focused outcome results from the randomised phase III REACH study. Ann Oncol. 2017;81:17–25.
  • Zhu AX, Finn RS, Edeline J, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 2018;19(7):940–952.
  • Ho DW-H, Lo RC-L, Chan L-K, et al. Molecular pathogenesis of hepatocellular carcinoma. Liver Cancer. 2016;5(4):290–302.
  • Desai JR, Ochoa S, Prins PA, et al. Systemic therapy for advanced hepatocellular carcinoma: an update. J Gastrointest Oncol. 2017;8(2):243–255.
  • Inarrairaegui M, Melero I, Sangro B. Immunotherapy of hepatocellular carcinoma: facts and hopes. Clin Cancer Res. 2018;24(7):1518–1524.
  • Fujiwara N, Friedman SL, Goossens N, et al. Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine. J Hepatol. 2018;68(3):526–549.
  • Tang A, Hallouch O, Chernyak V, et al. Epidemiology of hepatocellular carcinoma: target population for surveillance and diagnosis. Abdom Radiol. 2018;43(1):13–25.
  • Ledda C, Loreto C, Zammit C, et al. Non‑infective occupational risk factors for hepatocellular carcinoma: a review (Review). Mol Med Rep. 2017;15(2):511–533.
  • Atta ESA, Atta HM, Gad AM, et al. Clinical significance of vascular endothelial growth factor in hepatitis C related hepatocellular carcinoma in Egyptian patients. J Hepatocell Carcinoma. 2016;3:19–24.
  • Kaseb AO, Hanbali A, Cotant M, et al. Vascular endothelial growth factor in the management of hepatocellular carcinoma: a review of literature. Cancer. 2010;115(21):4895–4906.
  • Versmissen J, Colafella KMM, Koolen SLW, et al. Vascular cardio-oncology: vascular endothelial growth factor inhibitors and hypertension. Cardiovasc Res. 2019;115(5):904–914.
  • Frelin C, Ladoux A, D’Angelo G. Vascular endothelial growth factors and angiogenesis. Ann Endocr. 2000;61(1):70–74.
  • Eric S, Jean PT, Mathieu B, et al. Neuropilin-1 and neuropilin-2 act as coreceptors, potentiating proangiogenic activity. Blood. 2008;111(4):2036–2045.
  • Ling W, Huiyan Z, Ping W, et al. Neuropilin-1-mediated vascular permeability factor/vascular endothelial growth factor-dependent endothelial cell migration. J Biol Chem. 2003;278(49):48848–48860.
  • Simpson D, Keating GM. Sorafenib: in hepatocellular carcinoma. Drugs. 2008;68(2):251–258.
  • Tol J. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med. 2010;363:2573–2573.
  • Valérie B, David M, Abderrahmane B, et al. Efficacy, safety, and biomarkers of single-agent bevacizumab therapy in patients with advanced hepatocellular carcinoma. Oncologist. 2012;17(8):1063–1072.
  • Ahmed K, Jeffrey M, Michiko I, et al. Phase II trial of bevacizumab and erlotinib as a second-line therapy for advanced hepatocellular carcinoma. Onco Targets Ther. 2016;9:773–780.
  • Wang-Yuan Z, Jiang-Zheng Z, Lu YD, et al. Clinical efficacy of metronomic chemotherapy after cool-tip radiofrequency ablation in the treatment of hepatocellular carcinoma. Int J Hyperthermia. 2016;32(2):193–198.
  • Woo K, Stewart S, Kong G, et al. Identification of a thalidomide derivative that selectively targets tumorigenic liver progenitor cells and comparing its effects with lenalidomide and sorafenib. Eur J Med Chem. 2016;120:275–283.
  • Nicola N, Antonella DL, Caterina B, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 2006;366(1):2–16.
  • Blobel CP. ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol. 2005;6(1):32–43.
  • Jorissen RN, Walker F, Pouliot N, et al. Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res. 2003;284(1):31–53.
  • Schlessinger J. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell. 2002;110(6):669–672.
  • Komposch K, Sibilia M. EGFR signaling in liver diseases. Int J Mol Sci. 2015;17(1):30–61.
  • Daveau M, Scotte M, Ros G, et al. Hepatocyte growth factor, transforming growth factor alpha, and their receptors as combined markers of prognosis in hepatocellular carcinoma. Mol Carcinog. 2003;36(3):130–141.
  • Ito Y, Takeda T, Sakon M, et al. Expression and clinical significance of erb-B receptor family in hepatocellular carcinoma. Br J Cancer. 2001;84(10):1377–1383.
  • Noboru M, Hiroaki S, Masayuki O, et al. Angiopoietins and Tie-2 expression in angiogenesis and proliferation of human hepatocellular carcinoma. Hepatology. 2010;37(5):1105–1113.
  • Dipok Kumar D, Takashi O, Akira Y, et al. Serum endostatin predicts tumor vascularity in hepatocellular carcinoma. Cancer. 2010;95(10):2188–2195.
  • Sachiko O, Hirohisa Y, Seiya M, et al. Expression of matrix metalloproteinases (MMPs) in cultured hepatocellular carcinoma (HCC) cells and surgically resected HCC tissues. Oncol Rep. 2005;13(6):1043–1048.
  • Zhu AX, Keith S, Blaszkowsky LS, et al. Phase 2 study of cetuximab in patients with advanced hepatocellular carcinoma. Cancer. 2010;110(3):581–589.
  • Tanaka S, Arii S. Molecular targeted therapies in hepatocellular carcinoma. Hepatology. 2010;48(4):1312–1327.
  • Zhu AX, Blaszkowsky LS, Ryan DP, et al. Phase II study of gemcitabine and oxaliplatin in combination with bevacizumab in patients with advanced hepatocellular carcinoma. J Clin Oncol. 2006;24(12):1898–1903.
  • Amani A, Laetitia F, Olivier R, et al. Gemcitabine plus oxaliplatin (GEMOX) combined with cetuximab in patients with progressive advanced stage hepatocellular carcinoma: results of a multicenter phase 2 study. Cancer. 2010;112(12):2733–2739.
  • Alexander H, Michael HP, Sutter AP, et al. Erlotinib induces cell cycle arrest and apoptosis in hepatocellular cancer cells and enhances chemosensitivity towards cytostatics. J Hepatol. 2005;43(4):661–669.
  • Michael HP, Sutter AP, Alexander H, et al. Targeting the epidermal growth factor receptor by gefitinib for treatment of hepatocellular carcinoma. J Hepatol. 2004;41(6):1008–1016.
  • Philip PA, Mahoney MR, Cristine A, et al. Phase II study of Erlotinib (OSI-774) in patients with advanced hepatocellular cancer. J Clin Oncol. 2005;23(27):6657–6663.
  • Gajiwala KS, Feng J, Ferre R, et al. Insights into the aberrant activity of mutant EGFR kinase domain and drug recognition. Structure. 2013;21(2):209–219.
  • Jin H, Park YL, Lemmon MA, et al. Erlotinib binds both inactive and active conformations of the EGFR tyrosine kinase domain. Biochem J. 2012;448(Pt 3):417–423.
  • Song Z, Huang S, Yu H, et al. Synthesis and biological evaluation of morpholine-substituted diphenylpyrimidine derivatives (Mor-DPPYs) as potent EGFR T790M inhibitors with improved activity toward the gefitinib-resistant non-small cell lung cancers (NSCLC). Eur J Med Chem. 2017;133:329–339.
  • Hossam M, Lasheen DS, Ismail NSM, et al. Discovery of anilino-furo[2,3- d]pyrimidine derivatives as dual inhibitors of EGFR/HER2 tyrosine kinase and their anticancer activity. Eur J Med Chem. 2017;144:330–348.
  • Yang S, Liu G. Targeting the Ras/Raf/MEK/ERK pathway in hepatocellular carcinoma. Oncol Lett. 2017;13(3):1041–1047.
  • Ward AF, Braun BS, Shannon KM. Targeting oncogenic Ras signaling in hematologic malignancies. Blood. 2012;120(17):3397–3406.
  • Young-A H, Syed YY. Regorafenib: a review in hepatocellular carcinoma. Drugs. 2018;78(9):951–958.
  • Ito Y, Sasaki Y, Horimoto M, et al. Activation of mitogen-activated protein kinases extracellular signal-regulated kinases in human hepatocellular carcinoma. Hepatology. 1998;27(4):951–958.
  • Zuo Q, Huang H, Shi M, et al. Multivariate analysis of several molecular markers and clinicopathological features in postoperative prognosis of hepatocellular carcinoma. Anat Rec. 2012;295(3):423–431.
  • Hoffmann K, Lin S, Xiao Z, et al. Correlation of gene expression of ATP-binding cassette protein and tyrosine kinase signalling pathway in patients with hepatocellular carcinoma. Anticancer Res. 2011;31(11):3883–3890.
  • Charette N, Saeger CD, Lannoy V, et al. Salirasib inhibits the growth of hepatocarcinoma cell lines in vitro and tumor growth in vivo through ras and mTOR inhibition. Mol Cancer. 2010;9(1):256–260.
  • Roy B, Ran E, Shira Y, et al. Gene expression signature of human cancer cell lines treated with the ras inhibitor salirasib (S-farnesylthiosalicylic acid). Cancer Res. 2007;67(7):3320–3328.
  • Koeberle D, Dufour JF, Demeter G, et al. Sorafenib with or without everolimus in patients with advanced hepatocellular carcinoma (HCC): a randomized multicenter, multinational phase II trial (SAKK 77/08 and SASL 29). Ann Oncol Off J Eur Soc Med Oncol. 2016;27(5):856–861.
  • Yong-Song G, Qing H. Sorafenib: activity and clinical application in patients with hepatocellular carcinoma. Expert Opin Pharmacother. 2011;12(2):303–313.
  • Li L, Yichen C, Charles C, et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 2006;66(24):11851–11858.
  • Jiao Y, Xin BT, Zhang Y, et al. Design, synthesis and evaluation of novel 2-(1H-imidazol-2-yl) pyridine Sorafenib derivatives as potential BRAF inhibitors and anti-tumor agents. Eur J Med Chem. 2015;90:170–183.
  • Sith S, Hjelmeland AB, Keir ST, et al. AAL881, a novel small molecule inhibitor of RAF and vascular endothelial growth factor receptor activities, blocks the growth of malignant glioma. Cancer Res. 2006;66(17):8722–8730.
  • Cotrim CZ, Amado FL, Helguero LA. Estrogenic effect of the MEK1 inhibitor PD98059 on endogenous estrogen receptor alpha and beta. J Steroid Biochem Mol Biol. 2011;124(1):25–30.
  • Montagut C, Settleman J. Targeting the RAF-MEK-ERK pathway in cancer therapy. Cancer Lett. 2009;283(2):125–134.
  • Barrett SD, Bridges AJ, Dudley DT, et al. The discovery of the benzhydroxamate MEK inhibitors CI-1040 and PD 0325901. Bioorg Med Chem Lett. 2008;18(24):6501–6504.
  • LoRusso PM, Krishnamurthi SS, Rinehart JJ, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral MAPK/ERK kinase inhibitor PD-0325901 in patients with advanced cancers. Clin Cancer Res. 2010;16(6):1924–1937.
  • O’Neil BH, Goff LW, Kauh JSW, et al. Phase II study of the mitogen-activated protein kinase 1/2 inhibitor selumetinib in patients with advanced hepatocellular carcinoma. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(17):2350–2356.
  • Sousa N, Sousa O, Santos LL, et al. Lapatinib-capecitabine versus capecitabine alone as radiosensitizers in RAS wild-type resectable rectal cancer, an adaptive randomized phase II trial (LaRRC trial): study protocol for a randomized controlled trial. Trials. 2016;17(1):459–472.
  • Llovet JM, Hernandez-Gea V. Hepatocellular carcinoma: reasons for phase III failure and novel perspectives on trial design. Clin Cancer Res. 2014;20(8):2072–2079.
  • Ma F, Liu P, Lei M, et al. Design, synthesis and biological evaluation of indolin-2-one-based derivatives as potent, selective and efficacious inhibitors of FMS-like tyrosine kinase3 (FLT3). Eur J Med Chem. 2016;127:72–86.
  • Beretta GL, Cassinelli G, Pennati M, et al. Overcoming ABC transporter-mediated multidrug resistance: the dual role of tyrosine kinase inhibitors as multitargeting agents. Eur J Med Chem. 2017;142:271–289.
  • Kern MA, Schirmacher P, Breinig M. Cyclooxygenase-2 (COX-2) - a therapeutic target in liver cancer? Curr Pharm Des. 2007;13(32):3305–3315.
  • Takami Y, Tateishi M, Ryu T, et al. A randomised controlled trial of meloxicam, a COX-2 inhibitor, to prevent hepatocellular carcinoma recurrence after initial curative treatment. Hepatol Int. 2016;10(5):799–806.
  • Marco B, Peter S, Michael André K. Cyclooxygenase-2 (COX-2)–a therapeutic target in liver cancer? Curr Pharm Des. 2007;13(32):3305–3315.
  • Wang JL, Limburg D, Graneto MJ, et al. The novel benzopyran class of selective cyclooxygenase-2 inhibitors. Part 2: the second clinical candidate having a shorter and favorable human half-life. Bioorg Med Chem Lett. 2010;20(23):7159–7163.
  • Tai D, Tsai S, Chang YH, et al. Constitutive activation of nuclear factor kappaB in hepatocellular carcinoma. Cancer. 2015;89(11):2274–2281.
  • Chiao PJ, Ren N, Jiangong N, et al. Role of Rel/NF-kappaB transcription factors in apoptosis of human hepatocellular carcinoma cells. Cancer. 2002;95(8):1696–1705.
  • Jr ASB. THE NF-κB AND IκB PROTEINS: new discoveries and insights. Annu Rev Immunol. 1996;14(1):649–683.
  • Verma IM, Stevenson JK, Schwarz EM, et al. Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev. 1995;9(22):2723–2735.
  • Chiao PJ, Ren N, Niu J, et al. Role of Rel/NF-?B transcription factors in apoptosis of human hepatocellular carcinoma cells. Cancer. 2010;95(8):1696–1705.
  • Chen D, Frezza M, Schmitt S, et al. Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr Cancer Drug Tar. 2011;11(3):239–253.
  • Kim GP, Mahoney MR, Daniel S, et al. An international, multicenter phase II trial of bortezomib in patients with hepatocellular carcinoma. Invest New Drug. 2012;30(1):387–394.
  • Ashley JD, Stefanick JF, Schroeder VA, et al. Liposomal bortezomib nanoparticles via boronic ester prodrug formulation for improved therapeutic efficacy in vivo. J Med Chem. 2015;57(12):5282–5292.
  • Han LQ, Yuan X, Wu XY, et al. Urea-containing peptide boronic acids as potent proteasome inhibitors. Eur J Med Chem. 2017;125(Complete):925–939.
  • Jiankang Z, Luqing S, Jincheng W, et al. Design, synthesis and biological evaluation of novel non-peptide boronic acid derivatives as proteasome inhibitors. Med Chem. 2014;10(1):180–191.
  • Micale N, Ettari R, Lavecchia A, et al. Development of peptidomimetic boronates as proteasome inhibitors. Eur J Med Chem. 2013;64(6):23–34.
  • Thorpe LM, Haluk Y, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 2015;15(1):7–24.
  • Haijuan Y, Rudge DG, Koos JD, et al. mTOR kinase structure, mechanism and regulation. Nature. 2013;497(7448):217–223.
  • Qian Z, Lui VWY, Winnie Y. Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Future Oncol. 2011;7(10):1149–1167.
  • Wolfgang S, Thorsten F, Katharina S, et al. Mammalian target of rapamycin pathway activity in hepatocellular carcinomas of patients undergoing liver transplantation. Transplantation. 2007;83(4):425–432.
  • Zhang B, Wang N, Zhang C, et al. Novel multi-substituted benzyl acridone derivatives as survivin inhibitors for hepatocellular carcinoma treatment. Eur J Med Chem. 2017;129:337–348.
  • Wang N, Chen S, Zhang B, et al. 8u, a pro-apoptosis/cell cycle arrest compound, suppresses invasion and metastasis through HSP90α downregulating and PI3K/Akt inactivation in hepatocellular carcinoma cells. Sci Rep. 2018;8(1):309–321.
  • Li W, Gao C, Zhao L, et al. Phthalimide conjugations for the degradation of oncogenic PI3K. Eur J Med Chem. 2018;151:237–247.
  • Korangy F, Höchst B, Manns MP, et al. Immunotherapy of hepatocellular carcinoma. Oncoimmunology. 2014;1(1):48–55.
  • Qin S, Finn RS, Kudo M, et al. RATIONALE 301 study: tislelizumab versus sorafenib as first-line treatment for unresectable hepatocellular carcinoma. Future Oncol. 2019;15(16):1811–1822.
  • Teng Y, Guo R, Sun J, et al. Reactive capillary hemangiomas induced by camrelizumab (SHR-1210), an anti-PD-1 agent. Acta Oncologica. 2019;58(3):388–389.
  • Bang YJ, Goff LW, Wasserstrom H, et al. An open-label, multicenter, phase 1 study of ramucirumab (R) plus durvalumab (D) in patients (pts) with locally advanced and unresectable or metastatic gastric or gastroesophageal junction (G/GEJ) adenocarcinoma, non-small cell lung cancer (NSCLC), or hepatocellular carcinoma. Ann Oncol. 2016;27:359–378.
  • Suvà ML, Nicolo R, Bernstein BE. Epigenetic reprogramming in cancer. Science. 2013;339(6127):1567–1570.
  • Esteller M. Epigenetics in cancer. New Engl J Med. 2008;358:1148–1159.
  • Kelly TK, Carvalho DD, De, Jones PA. Epigenetic modifications as therapeutic targets. Nat Biotechnol. 2010;28(10):1069–1078.
  • Anestopoulos I, Voulgaridou GP, Georgakilas AG, et al. Epigenetic therapy as a novel approach in hepatocellular carcinoma. Pharmacol Ther. 2015;145:103–119.
  • Illingworth RS, Bird AP. CpG islands – ‘A rough guide’. FEBS Lett. 2009;583(11):1713–1720.
  • Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol. 1987;196(2):261–282.
  • Baylin SB. DNA methylation and gene silencing in cancer. Nature Clin Pract Oncol. 2005;2:S4–11.
  • Ina R, Bachman KE, Ben Ho P, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature. 2002;416(6880):552–556.
  • Bestor TH. Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. Embo J. 1992;11(7):2611–2617.
  • Yoshimasa S, Yae K, Tohru N, et al. Increased protein expression of DNA methyltransferase (DNMT) 1 is significantly correlated with the malignant potential and poor prognosis of human hepatocellular carcinomas. Int J Cancer. 2003;105(4):527–532.
  • Sceusi EL, Loose DS, Wray CJ. Clinical implications of DNA methylation in hepatocellular carcinoma. Hpb. 2011;13(6):369–376.
  • Delgado-Cruzata L, Brubaker W, Wu HC, et al. Abstract 3754: DNA methylation in hepatocellular carcinoma. Cancer Res. 2011;71(8):3754–3754.
  • Tischoff I, Tannapfel A. DNA methylation in hepatocellular carcinoma. World J Gastroenterol. 2008;14(11):1741–1748.
  • Hye-Jung P, Eunsil Y, Yhong-Hee S. DNA methyltransferase expression and DNA hypermethylation in human hepatocellular carcinoma. Cancer Lett. 2006;233(2):271–278.
  • Eads CA, Danenberg KD, Kawakami K, et al. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression. Cancer Res. 1999;59(10):2302–2306.
  • Pfister SX, Ashworth A. Marked for death: targeting epigenetic changes in cancer. Nat Rev Drug Discov. 2017;16(4):241–263.
  • Biswas S, Rao CM. Epigenetics in cancer: fundamentals and beyond. Pharmacol Ther. 2017;173:118–134.
  • Alexandre E, Ludovic H, Jacques F, et al. Targeting DNA methylation with small molecules: what’s next? J Med Chem. 2015;58(6):2569–2583.
  • Martinet N, Michel BY, Bertrand P, et al. Small molecules DNA methyltransferases inhibitors. Medchemcommun. 2012;3(3):263–273.
  • Isakovic L, Saavedra OM, Llewellyn DB, et al. Constrained (l-)-S-adenosyl-l-homocysteine (SAH) analogues as DNA methyltransferase inhibitors. Bioorg Med Chem Lett. 2009;19(10):2742–2746.
  • Agnieszka G, Zenon J, Sylwia F. DNA methyltransferase inhibitors and their emerging role in epigenetic therapy of cancer. Anticancer Res. 2013;33(8):2989–2996.
  • Frank L, Robert B. DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst. 2005;97(20):1498–1506.
  • Sajadian SO, Tripura C, Samani FS, et al. Vitamin C enhances epigenetic modifications induced by 5-azacytidine and cell cycle arrest in the hepatocellular carcinoma cell lines HLE and Huh7. Clin Epigenetics. 2016;8(1):46–58.
  • Witt O, Deubzer HE, Milde T, et al. HDAC family: what are the cancer relevant targets? Cancer Lett. 2009;277(1):8–21.
  • Li Y, Seto E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb Perspect Med. 2016;6(10):a026831–026843.
  • West AC, Johnstone RW. New and emerging HDAC inhibitors for cancer treatment. J Clin Investig. 2014;124(1):30–39.
  • New M, Olzscha H, Thangue NBL. HDAC inhibitor-based therapies: can we interpret the code? Mol Oncol. 2012;6(6):637–656.
  • Arrowsmith CH, Bountra C, Fish PV, et al. Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov. 2012;11(5):384–400.
  • Falkenberg KJ, Johnstone RW. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov. 2014;13(9):673–691.
  • Goto K, Annan DA, Morita T, et al. Novel chemoimmunotherapeutic strategy for hepatocellular carcinoma based on a genome-wide association study. Sci Rep. 2016;6(1):38407–38440.
  • Yuan-Ling L, Pei-Ming Y, Chia-Tung S, et al. Autophagy potentiates the anti-cancer effects of the histone deacetylase inhibitors in hepatocellular carcinoma. Autophagy. 2010;6(8):1057–1065.
  • Carlisi D, Lauricella M, D’Anneo A, et al. The histone deacetylase inhibitor suberoylanilide hydroxamic acid sensitises human hepatocellular carcinoma cells to TRAIL-induced apoptosis by TRAIL-DISC activation. Eur J Cancer. 2009;45(13):2425–2438.
  • Bradner JE, West N, Grachan ML, et al. Chemical phylogenetics of histone deacetylases. Nat Chem Biol. 2010;6(3):238–243.
  • Mann B, Johnson J, Mh Justice R, et al. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist. 2007;12(10):1247–1252.
  • Sun WJ, Huang H, He B, et al. Romidepsin induces G2/M phase arrest via Erk/cdc25C/cdc2/cyclinB pathway and apoptosis induction through JNK/c-Jun/caspase3 pathway in hepatocellular carcinoma cells. Biochem Pharmacol. 2017;127:90–100.
  • Amirikordestani L, Luchenko V, Peer CJ, et al. Phase I trial of a new schedule of romidepsin in patients with advanced cancers. Clin Cancer Res. 2013;19(16):4499–4507.
  • Frye R, Myers M, Axelrod KC, et al. Romidepsin: a new drug for the treatment of cutaneous T-cell lymphoma. Clin J Oncol Nurs. 2012;16(2):195–204.
  • Wang H, Guo Y, Fu M, et al. Antitumor activity of chidamide in hepatocellular carcinoma cell lines. Mol Med Rep. 2012;5(6):1503–1508.
  • Richardson PG, Laubach JP, Sagar L, et al. Panobinostat: a novel pan-deacetylase inhibitor for the treatment of relapsed or relapsed and refractory multiple myeloma. Expert Rev Anticancer Ther. 2015;15(9):1121–1131.
  • Susanne G, Christian M, Tobias K, et al. The pan-deacetylase inhibitor panobinostat affects angiogenesis in hepatocellular carcinoma models via modulation of CTGF expression. Int J Oncol. 2015;47(3):963–970.
  • Xuan S, Jiabei W, Tongsen Z, et al. LBH589 inhibits proliferation and metastasis of hepatocellular carcinoma via inhibition of gankyrin/stat3/akt pathway. Mol Cancer. 2013;12(1):114.
  • Liu KY, Wang LT, Hsu SH. Modification of epigenetic histone acetylation in hepatocellular carcinoma. Cancers (Basel). 2018;10(1):8–21.
  • Mcgranahan N, Swanton C. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell. 2015;27(1):15–26.
  • Easwaran H, Tsai H-C, Baylin SB. Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol Cell. 2014;54(5):716–727.
  • Wu Q, Yang Z, Nie Y, et al. Multi-drug resistance in cancer chemotherapeutics: mechanisms and lab approaches. Cancer Lett. 2014;347(2):159–166.
  • Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer: an overview. Cancers (Basel). 2014;6(3):1769–1792.
  • Alakhova DY, Kabanov AV. Pluronics and MDR reversal: an update. Mol Pharm. 2014;11(8):2566–2578.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.