299
Views
7
CrossRef citations to date
0
Altmetric
Review

Novel therapeutic and drug development strategies for tobacco use disorder: endocannabinoid modulation

&
Pages 1065-1080 | Received 30 Jan 2020, Accepted 07 May 2020, Published online: 19 May 2020

References

  • World Health Organization. Tobacco factsheet [updated 2019 May 29; cited 2019 Jun]. Available from: https://www.who.int/news-room/fact-sheets/detail/tobacco
  • Peacock A, Leung J, Larney S, et al. Global statistics on alcohol, tobacco and illicit drug use: 2017 status report. Addiction. 2018 Oct;113(10):1905–1926.
  • Goodchild M, Nargis N. Tursan d’Espaignet E. Global economic cost of smoking-attributable diseases. Tob Control. 2018 Jan;27(1):58–64.
  • Makate M, Whetton S, Tait RJ, et al. Tobacco cost of illness studies: a systematic review. Nicotine Tob Res. 2020 Apr;22(4):458–465.
  • Center for Behavioral Health Statistics & Quality. National survey on drug use and health: detailed tables. Rockville Maryland Subst Abuse Mental Health Serv Administration. Rockville, Maryland. 2018. Available from: https://www.samhsa.gov/data/sites/default/files/cbhsq-reports/NSDUHDetailedTabs2017/NSDUHDetailedTabs2017.pdf
  • Jha P, Ramasundarahettige C, Landsman V, et al. 21st-century hazards of smoking and benefits of cessation in the United States. N Engl J Med. 2013 Jan 24;368(4):341–350.
  • Chaiton M, Diemert L, Cohen JE, et al. Estimating the number of quit attempts it takes to quit smoking successfully in a longitudinal cohort of smokers. BMJ Open. 2016 Jun 9;6(6):e011045.
  • Centres for Disease Control and Prevention. Quitting smoking among adults—United States, 2000–2015. Morbidity Mortality Weekly Rep. 2017;65(52):1457–1464. .
  • Hughes JR, Keely J, Naud S. Shape of the relapse curve and long-term abstinence among untreated smokers. Addiction. 2004 Jan;99(1):29–38.
  • Agboola SA, Coleman T, McNeill A, et al. Abstinence and relapse among smokers who use varenicline in a quit attempt-a pooled analysis of randomized controlled trials. Addiction. 2015 Jul;110(7):1182–1193.
  • Rosen LJ, Galili T, Kott J, et al. Diminishing benefit of smoking cessation medications during the first year: a meta-analysis of randomized controlled trials. Addiction. 2018;113(5):805–816.
  • Jackson SE, McGowan JA, Ubhi HK, et al. Modelling continuous abstinence rates over time from clinical trials of pharmacological interventions for smoking cessation. Addiction. 2019 May;114(5):787–797.
  • Jordan CJ, Xi ZX. Discovery and development of varenicline for smoking cessation. Expert Opin Drug Discov. 2018 Jul;13(7):671–683.
  • Beard E, Shahab L, Cummings DM, et al. New pharmacological agents to aid smoking cessation and tobacco harm reduction: what has been investigated, and what is in the pipeline? CNS Drugs. 2016 Oct;30(10):951–983.
  • Gomez-Coronado N, Walker AJ, Berk M, et al. Current and emerging pharmacotherapies for cessation of tobacco smoking. Pharmacotherapy. 2018 Feb;38(2):235–258.
  • Gendy MNS, Ibrahim C, Sloan ME, et al. Randomized clinical trials investigating innovative interventions for smoking cessation in the last decade. Handb Exp Pharmacol. Berlin: Springer; 2019 Jul 3:1–26.
  • Robinson JD, Cinciripini PM, Karam-Hage M, et al. Pooled analysis of three randomized, double-blind, placebo controlled trials with rimonabant for smoking cessation. Addict Biol. 2018 Jan;23(1):291–303.
  • Moreira FA, Crippa JA. The psychiatric side-effects of rimonabant. Rev Bras Psiquiatr (Sao Paulo, Brazil: 1999). 2009 Jun;31(2):145–153.
  • Le Foll B, Gorelick DA, Goldberg SR. The future of endocannabinoid-oriented clinical research after CB1 antagonists. Psychopharmacology (Berl). 2009 Jul;205(1):171–174.
  • Sagheddu C, Muntoni AL, Pistis M, et al. Endocannabinoid signaling in motivation, reward, and addiction: influences on mesocorticolimbic dopamine function. Int Rev Neurobiol. 2015;125:257–302.
  • Serrano A, Parsons LH. Endocannabinoid influence in drug reinforcement, dependence and addiction-related behaviors. Pharmacol Ther. 2011 Dec;132(3):215–241.
  • Devane WA. New dawn of cannabinoid pharmacology [Review]. Trends Pharmacol Sci. 1994 Feb;15(2):40–41.
  • Basavarajappa BS. Neuropharmacology of the endocannabinoid signaling system-molecular mechanisms, biological actions and synaptic plasticity. Curr Neuropharmacol. 2007;5(2):81–97.
  • Devane WA, Hanus L, Breuer A, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992 Dec 18;258(5090):1946–1949.
  • Mechoulam R, Ben-Shabat S, Hanus L, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol. 1995 Jun 29;50(1):83–90.
  • Sugiura T, Kondo S, Sukagawa A, et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun. 1995 Oct 4;215(1):89–97.
  • Di Marzo V, FAAH MM. and anandamide: is 2-AG really the odd one out? Trends Pharmacol Sci. 2008 May;29(5):229–233.
  • Long JZ, Li W, Booker L, et al. Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat Chem Biol. 2009 Jan;5(1):37–44.
  • Long JZ, Nomura DK, Vann RE, et al. Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo. Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20270–20275.
  • Maccarrone M, Rossi S, Bari M, et al. Anandamide inhibits metabolism and physiological actions of 2-arachidonoylglycerol in the striatum. Nat Neurosci. 2008 Feb;11(2):152–159.
  • Maccarrone M, Dainese E, Oddi S. Intracellular trafficking of anandamide: new concepts for signaling. Trends Biochem Sci. 2010 Nov;35(11):601–608.
  • Di Marzo V, Fontana A, Cadas H, et al. Formation and inactivation of endogenous cannabinoid anandamide in central neurons [Research support, non-U.S. Gov’t]. Nature. 1994 Dec 15;372(6507):686–691.
  • Okamoto Y, Morishita J, Tsuboi K, et al. Molecular characterization of a phospholipase D generating anandamide and its congeners. J Biol Chem. 2004 Feb 13;279(7):5298–5305.
  • Glaser ST, Abumrad NA, Fatade F, et al. Evidence against the presence of an anandamide transporter. Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4269–4274.
  • Moore SA, Nomikos GG, Dickason-Chesterfield AK, et al. Identification of a high-affinity binding site involved in the transport of endocannabinoids. Proc Natl Acad Sci U S A. 2005 Dec 6;102(49):17852–17857.
  • Piomelli D, Beltramo M, Glasnapp S, et al. Structural determinants for recognition and translocation by the anandamide transporter. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5802–5807.
  • Cravatt BF, Giang DK, Mayfield SP, et al. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature. 1996 Nov 7;384(6604):83–87.
  • Deutsch DG, Chin SA. Enzymatic synthesis and degradation of anandamide, a cannabinoid receptor agonist. Biochem Pharmacol. 1993 Sep 1;46(5):791–796.
  • Bisogno T, Howell F, Williams G, et al. Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J Cell Biol. 2003 Nov 10;163(3):463–468.
  • Stella N, Schweitzer P, Piomelli D. A second endogenous cannabinoid that modulates long-term potentiation. Nature. 1997 Aug 21;388(6644):773–778.
  • Dinh TP, Carpenter D, Leslie FM, et al. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10819–10824.
  • Herkenham M, Lynn AB, Johnson MR, et al. Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci. 1991 Feb;11(2):563–583.
  • Herkenham M, Lynn AB, Little MD, et al. Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1932–1936.
  • Katona I, Sperlagh B, Sik A, et al. Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci. 1999 Jun 1;19(11):4544–4558.
  • Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993 Sep 2;365(6441):61–65.
  • Zhang HY, Gao M, Liu QR, et al. Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):E5007–15.
  • Morales P, Reggio PH. An update on non-CB1, non-CB2 cannabinoid related G-protein-coupled receptors. Cannabis Cannabinoid Res. 2017;2(1):265–273.
  • Basavarajappa BS. Critical enzymes involved in endocannabinoid metabolism. Protein Pept Lett. 2007;14(3):237–246.
  • Le Foll B, Wertheim C, Goldberg SR. High reinforcing efficacy of nicotine in non-human primates. PloS One. 2007 Feb 21;2(2):e230.
  • Le Foll B, Goldberg SR. Nicotine induces conditioned place preferences over a large range of doses in rats. Psychopharmacology (Berl). 2005 Apr;178(4):481–492.
  • Schindler CW, Redhi GH, Vemuri K, et al. Blockade of nicotine and cannabinoid reinforcement and relapse by a cannabinoid CB1-receptor neutral antagonist AM4113 and inverse agonist rimonabant in squirrel monkeys. Neuropsychopharmacol. 2016 Aug;41(9):2283–2293.
  • Simonnet A, Cador M, Caille S. Nicotine reinforcement is reduced by cannabinoid CB1 receptor blockade in the ventral tegmental area. Addict Biol. 2013 Nov;18(6):930–936.
  • Shoaib M. The cannabinoid antagonist AM251 attenuates nicotine self-administration and nicotine-seeking behaviour in rats. Neuropharmacology. 2008 Feb;54(2):438–444.
  • Kodas E, Cohen C, Louis C, et al. Cortico-limbic circuitry for conditioned nicotine-seeking behavior in rats involves endocannabinoid signaling. Psychopharmacology (Berl). 2007 Oct;194(2):161–171.
  • Gamaleddin I, Wertheim C, Zhu AZ, et al. Cannabinoid receptor stimulation increases motivation for nicotine and nicotine seeking. Addict Biol. 2012 Jan;17(1):47–61.
  • Forget B, Coen KM, Le Foll B. Inhibition of fatty acid amide hydrolase reduces reinstatement of nicotine seeking but not break point for nicotine self-administration–comparison with CB(1) receptor blockade. Psychopharmacology (Berl). 2009 Sep;205(4):613–624.
  • Gueye AB, Pryslawsky Y, Trigo JM, et al. The CB1 neutral antagonist AM4113 retains the therapeutic efficacy of the inverse agonist rimonabant for nicotine dependence and weight loss with better psychiatric tolerability. Int J Neuropsychopharmacol. 2016 Dec;19(12):pyw068.
  • Castane A, Valjent E, Ledent C, et al. Lack of CB1 cannabinoid receptors modifies nicotine behavioural responses, but not nicotine abstinence. Neuropharmacology. 2002 Oct;43(5):857–867.
  • Le Foll B, Goldberg SR. Rimonabant, a CB1 antagonist, blocks nicotine-conditioned place preferences. Neuroreport. 2004 Sep 15;15(13):2139–2143.
  • Biala G, Budzynska B, Staniak N. Effects of rimonabant on the reinstatement of nicotine-conditioned place preference by drug priming in rats. Behav Brain Res. 2009 Sep 14;202(2):260–265.
  • Budzynska B, Kruk M, Biala G. Effects of the cannabinoid CB1 receptor antagonist AM 251 on the reinstatement of nicotine-conditioned place preference by drug priming in rats. Pharmacol Rep. 2009 Mar-Apr;61(2):304–310.
  • Azizi F, Fartootzadeh R, Alaei H, et al. Effects of concurrent blockade of OX2 and CB1 receptors in the ventral tegmental area on nicotine-induced place preference in rats. Neurosci Lett. 2018 Sep 25;684:121–126.
  • Hashemizadeh S, Sardari M, Rezayof A. Basolateral amygdala CB1 cannabinoid receptors mediate nicotine-induced place preference. Prog Neuropsychopharmacol Biol Psychiatry. 2014 Jun 3;51:65–71.
  • Forget B, Hamon M, Thiebot MH. Cannabinoid CB1 receptors are involved in motivational effects of nicotine in rats. Psychopharmacology (Berl). 2005 Oct;181(4):722–734.
  • Forget B, Barthelemy S, Saurini F, et al. Differential involvement of the endocannabinoid system in short- and long-term expression of incentive learning supported by nicotine in rats. Psychopharmacology (Berl). 2006 Nov;189(1):59–69.
  • Biala G, Budzynska B. Calcium-dependent mechanisms of the reinstatement of nicotine-conditioned place preference by drug priming in rats. Pharmacol Biochem Behav. 2008 Mar;89(1):116–125.
  • Cohen C, Perrault G, Voltz C, et al. SR141716, a central cannabinoid (CB(1)) receptor antagonist, blocks the motivational and dopamine-releasing effects of nicotine in rats. Behav Pharmacol. 2002 Sep;13(5–6):451–463.
  • Gamaleddin I, Zvonok A, Makriyannis A, et al. Effects of a selective cannabinoid CB2 agonist and antagonist on intravenous nicotine self administration and reinstatement of nicotine seeking. PloS One. 2012;7(1):e29900.
  • Navarrete F, Rodriguez-Arias M, Martin-Garcia E, et al. Role of CB2 cannabinoid receptors in the rewarding, reinforcing, and physical effects of nicotine. Neuropsychopharmacol. 2013 Nov;38(12):2515–2524.
  • Ignatowska-Jankowska BM, Muldoon PP, Lichtman AH, et al. The cannabinoid CB2 receptor is necessary for nicotine-conditioned place preference, but not other behavioral effects of nicotine in mice. Psychopharmacology (Berl). 2013 Oct;229(4):591–601.
  • Canseco-Alba A, Schanz N, Sanabria B, et al. Behavioral effects of psychostimulants in mutant mice with cell-type specific deletion of CB2 cannabinoid receptors in dopamine neurons. Behav Brain Res. 2019 Mar 15;360:286–297.
  • He Y, Galaj E, Bi GH, et al. Beta-caryophyllene, a dietary terpenoid, inhibits nicotine-taking and nicotine-seeking in rodents. Br J Pharmacol. 2020 May;177(9):2058–2072.
  • Corrigall WA, Franklin KB, Coen KM, et al. The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology (Berl). 1992;107(2–3):285–289.
  • Cheer JF, Wassum KM, Sombers LA, et al. Phasic dopamine release evoked by abused substances requires cannabinoid receptor activation. J Neurosci. 2007 Jan 24;27(4):791–795.
  • Gamaleddin I, Guranda M, Scherma M, et al. AM404 attenuates reinstatement of nicotine seeking induced by nicotine-associated cues and nicotine priming but does not affect nicotine- and food-taking. J Psychopharmacol. 2013 Jun;27(6):564–571.
  • Gamaleddin I, Guranda M, Goldberg SR, et al. The selective anandamide transport inhibitor VDM11 attenuates reinstatement of nicotine seeking behaviour, but does not affect nicotine intake. Br J Pharmacol. 2011 Nov;164(6):1652–1660.
  • Scherma M, Panlilio LV, Fadda P, et al. Inhibition of anandamide hydrolysis by cyclohexyl carbamic acid 3ʹ-carbamoyl-3-yl ester (URB597) reverses abuse-related behavioral and neurochemical effects of nicotine in rats. J Pharmacol Exp Ther. 2008 Nov;327(2):482–490.
  • Justinova Z, Panlilio LV, Moreno-Sanz G, et al. Effects of Fatty Acid Amide Hydrolase (FAAH) Inhibitors in non-human primate models of nicotine reward and relapse. Neuropsychopharmacol. 2015 Aug;40(9):2185–2197.
  • Pacher P, Kogan NM, Mechoulam R. Beyond THC and endocannabinoids. Annu Rev Pharmacol Toxicol. 2020 Jan 6;60(1):637–659.
  • Ben-Shabat S, Fride E, Sheskin T, et al. An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. Eur J Pharmacol. 1998 Jul 17;353(1):23–31.
  • Melis M, Pillolla G, Luchicchi A, et al. Endogenous fatty acid ethanolamides suppress nicotine-induced activation of mesolimbic dopamine neurons through nuclear receptors. J Neurosci. 2008 Dec 17;28(51):13985–13994.
  • Mascia P, Pistis M, Justinova Z, et al. Blockade of nicotine reward and reinstatement by activation of alpha-type peroxisome proliferator-activated receptors. Biol Psychiatry. 2011 Apr 1;69(7):633–641.
  • Merritt LL, Martin BR, Walters C, et al. The endogenous cannabinoid system modulates nicotine reward and dependence. J Pharmacol Exp Ther. 2008 Aug;326(2):483–492.
  • Scherma M, Justinova Z, Zanettini C, et al. The anandamide transport inhibitor AM404 reduces the rewarding effects of nicotine and nicotine-induced dopamine elevations in the nucleus accumbens shell in rats. Br J Pharmacol. 2012 Apr;165(8):2539–2548.
  • Pavon FJ, Serrano A, Sidhpura N, et al. Fatty acid amide hydrolase (FAAH) inactivation confers enhanced sensitivity to nicotine-induced dopamine release in the mouse nucleus accumbens. Addict Biol. 2018 Mar;23(2):723–734.
  • Luchicchi A, Lecca S, Carta S, et al. Effects of fatty acid amide hydrolase inhibition on neuronal responses to nicotine, cocaine and morphine in the nucleus accumbens shell and ventral tegmental area: involvement of PPAR-alpha nuclear receptors. Addict Biol. 2010 Jul;15(3):277–288.
  • Bisogno T, Hanus L, De Petrocellis L, et al. Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol. 2001 Oct;134(4):845–852.
  • Leweke FM, Piomelli D, Pahlisch F, et al. Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl Psychiatry. 2012 Mar 20;2(3):e94.
  • Morgan CJ, Das RK, Joye A, et al. Cannabidiol reduces cigarette consumption in tobacco smokers: preliminary findings. Addict Behav. 2013 Sep;38(9):2433–2436.
  • Elsaid S, Le Foll B. The complexity of pharmacology of cannabidiol (CBD) and its implications in the treatment of brain disorders. Neuropsychopharmacol. 2020 Jan;45(1):229–230.
  • Pretzsch CM, Freyberg J, Voinescu B, et al. Effects of cannabidiol on brain excitation and inhibition systems; a randomised placebo-controlled single dose trial during magnetic resonance spectroscopy in adults with and without autism spectrum disorder. Neuropsychopharmacol. 2019 Jul;44(8):1398–1405.
  • Wang H, Lupica CR. Release of endogenous cannabinoids from ventral tegmental area dopamine neurons and the modulation of synaptic processes. Prog Neuropsychopharmacol Biol Psychiatry. 2014 Jul 3;52:24–27.
  • Melis M, Perra S, Muntoni AL, et al. Prefrontal cortex stimulation induces 2-arachidonoyl-glycerol-mediated suppression of excitation in dopamine neurons. J Neurosci. 2004 Nov 24;24(47):10707–10715.
  • Trigo JM, Le Foll B. Inhibition of monoacylglycerol lipase (MAGL) enhances cue-induced reinstatement of nicotine-seeking behavior in mice. Psychopharmacology (Berl). 2016 May;233(10):1815–1822.
  • Buczynski MW, Herman MA, Hsu KL, et al. Diacylglycerol lipase disinhibits VTA dopamine neurons during chronic nicotine exposure. Proc Natl Acad Sci U S A. 2016 Jan 26;113(4):1086–1091.
  • Bossert JM, Marchant NJ, Calu DJ, et al. The reinstatement model of drug relapse: recent neurobiological findings, emerging research topics, and translational research. Psychopharmacology (Berl). 2013 Oct;229(3):453–476.
  • De Vries TJ, de Vries W, Janssen MC, et al. Suppression of conditioned nicotine and sucrose seeking by the cannabinoid-1 receptor antagonist SR141716A. Behav Brain Res. 2005 Jun 3;161(1):164–168.
  • Cohen C, Perrault G, Griebel G, et al. Nicotine-associated cues maintain nicotine-seeking behavior in rats several weeks after nicotine withdrawal: reversal by the cannabinoid (CB1) receptor antagonist, rimonabant (SR141716). Neuropsychopharmacol. 2005 Jan;30(1):145–155.
  • Xi ZX, Muldoon P, Wang XF, et al. Delta(8) -Tetrahydrocannabivarin has potent anti-nicotine effects in several rodent models of nicotine dependence. Br J Pharmacol. 2019 Dec;176(24):4773–4784.
  • Forget B, Guranda M, Gamaleddin I, et al. Attenuation of cue-induced reinstatement of nicotine seeking by URB597 through cannabinoid CB1 receptor in rats. Psychopharmacology (Berl). 2016 May;233(10):1823–1828.
  • Gonzalez-Cuevas G, Martin-Fardon R, Kerr TM, et al. Unique treatment potential of cannabidiol for the prevention of relapse to drug use: preclinical proof of principle. Neuropsychopharmacol. 2018 Sep;43(10):2036–2045.
  • Hindocha C, Freeman TP, Grabski M, et al. Cannabidiol reverses attentional bias to cigarette cues in a human experimental model of tobacco withdrawal. Addiction. 2018 May 1;113(9):1696–1705.
  • Feja M, Leigh MPK, Baindur AN, et al. The novel MAGL inhibitor MJN110 enhances responding to reward-predictive incentive cues by activation of CB1 receptors. Neuropharmacology. 2020 Jan 1;162:107814.
  • McLaughlin I, Dani JA, De Biasi M. Nicotine withdrawal. Curr Top Behav Neurosci. 2015;24:99–123.
  • Robinson JD, Li L, Chen M, et al. Evaluating the temporal relationships between withdrawal symptoms and smoking relapse. Psychol Addict Behav J Soc Psychologists Addict Behav. 2019 Mar;33(2):105–116.
  • Mannucci C, Navarra M, Pieratti A, et al. Interactions between endocannabinoid and serotonergic systems in mood disorders caused by nicotine withdrawal. Nicotine Tob Res. 2011 Apr;13(4):239–247.
  • Balerio GN, Aso E, Berrendero F, et al. Delta9-tetrahydrocannabinol decreases somatic and motivational manifestations of nicotine withdrawal in mice. Eur J Neurosci. 2004 Nov;20(10):2737–2748.
  • Evans DE, Sutton SK, Jentink KG, et al. Cannabinoid receptor 1 (CNR1) gene variant moderates neural index of cognitive disruption during nicotine withdrawal. Genes Brain Behav. 2016 Sep;15(7):621–626.
  • Saravia R, Flores A, Plaza-Zabala A, et al. CB1 cannabinoid receptors mediate cognitive deficits and structural plasticity changes during nicotine withdrawal. Biol Psychiatry. 2017 Apr 1;81(7):625–634.
  • Cahill K, Ussher M. Cannabinoid type 1 receptor antagonists (rimonabant) for smoking cessation. Cochrane Database Syst Rev. 2007 Jul;18(3):Cd005353.
  • Aydin C, Oztan O, Isgor C. Nicotine-induced anxiety-like behavior in a rat model of the novelty-seeking phenotype is associated with long-lasting neuropeptidergic and neuroplastic adaptations in the amygdala: effects of the cannabinoid receptor 1 antagonist AM251. Neuropharmacology. 2012 Dec;63(8):1335–1345.
  • Bahi A, Al Mansouri S, Al Memari E, et al. beta-Caryophyllene, a CB2 receptor agonist produces multiple behavioral changes relevant to anxiety and depression in mice. Physiol Behav. 2014 Aug;135:119–124.
  • Muldoon PP, Lichtman AH, Parsons LH, et al. The role of fatty acid amide hydrolase inhibition in nicotine reward and dependence. Life Sci. 2013 Mar 19;92(8–9):458–462.
  • Cippitelli A, Astarita G, Duranti A, et al. Endocannabinoid regulation of acute and protracted nicotine withdrawal: effect of FAAH inhibition. PloS One. 2011;6(11):e28142.
  • Bedse G, Bluett RJ, Patrick TA, et al. Therapeutic endocannabinoid augmentation for mood and anxiety disorders: comparative profiling of FAAH, MAGL and dual inhibitors. Transl Psychiatry. 2018 Apr 26;8(1):92.
  • Bortolato M, Mangieri RA, Fu J, et al. Antidepressant-like activity of the fatty acid amide hydrolase inhibitor URB597 in a rat model of chronic mild stress. Biol Psychiatry. 2007 Nov 15;62(10):1103–1110.
  • Simonnet A, Zamberletti E, Cador M, et al. Chronic FAAH inhibition during nicotine abstinence alters habenular CB1 receptor activity and precipitates depressive-like behaviors. Neuropharmacology. 2017 Feb;113(Pt A):252–259.
  • Contarini G, Ferretti V, Papaleo F. Acute administration of URB597 fatty acid amide hydrolase inhibitor prevents attentional impairments by distractors in adolescent mice. Front Pharmacol. 2019;10:787.
  • Hlavacova N, Chmelova M, Danevova V, et al. Inhibition of fatty-acid amide hydrolyse (FAAH) exerts cognitive improvements in male but not female rats. Endocr Regul. 2015 Jul;49(3):131–136.
  • Saravia R, Ten-Blanco M, Grande MT, et al. Anti-inflammatory agents for smoking cessation? Focus on cognitive deficits associated with nicotine withdrawal in male mice. Brain Behav Immun. 2019 Jan;75:228–239.
  • Muldoon PP, Chen J, Harenza JL, et al. Inhibition of monoacylglycerol lipase reduces nicotine withdrawal. Br J Pharmacol. 2015 Feb;172(3):869–882.
  • Batista LA, Gobira PH, Viana TG, et al. Inhibition of endocannabinoid neuronal uptake and hydrolysis as strategies for developing anxiolytic drugs. Behav Pharmacol. 2014 Sep;25(5–6):425–433.
  • Ramesh D, Gamage TF, Vanuytsel T, et al. Dual inhibition of endocannabinoid catabolic enzymes produces enhanced antiwithdrawal effects in morphine-dependent mice. Neuropsychopharmacol. 2013 May;38(6):1039–1049.
  • Diamond A. Executive functions. Annu Rev Psychol. 2013;64(1):135–168.
  • Butler K, Le Foll B. Impact of substance use disorder pharmacotherapy on executive function: a narrative review. Front Psychiatry. 2019;10:98.
  • Ruiz-Contreras AE, Roman-Lopez TV, Caballero-Sanchez U, et al. Because difficulty is not the same for everyone: the impact of complexity in working memory is associated with cannabinoid 1 receptor genetic variation in young adults. Memory. 2017 Mar;25(3):335–343.
  • Ruiz-Contreras AE, Carrillo-Sanchez K, Ortega-Mora I, et al. Performance in working memory and attentional control is associated with the rs2180619 SNP in the CNR1 gene. Genes Brain Behav. 2014 Feb;13(2):173–178.
  • Ruiz-Contreras AE, Carrillo-Sanchez K, Gomez-Lopez N, et al. Working memory performance in young adults is associated to the AATn polymorphism of the CNR1 gene. Behav Brain Res. 2013 Jan 1;236(1):62–66.
  • Laurikainen H, Tuominen L, Tikka M, et al. Sex difference in brain CB1 receptor availability in man. NeuroImage. 2019 Jan 1;184:834–842.
  • Klugmann M, Goepfrich A, Friemel CM, et al. AAV-mediated overexpression of the CB1 receptor in the mPFC of adult rats alters cognitive flexibility, social behavior, and emotional reactivity. Front Behav Neurosci. 2011;5:37.
  • Lee TT, Filipski SB, Hill MN, et al. Morphological and behavioral evidence for impaired prefrontal cortical function in female CB1 receptor deficient mice. Behav Brain Res. 2014 Sep 1;271:106–110.
  • Varvel SA, Lichtman AH. Evaluation of CB1 receptor knockout mice in the Morris water maze. J Pharmacol Exp Ther. 2002 Jun;301(3):915–924.
  • Terranova JP, Storme JJ, Lafon N, et al. Improvement of memory in rodents by the selective CB1 cannabinoid receptor antagonist, SR 141716. Psychopharmacology (Berl). 1996 Jul;126(2):165–172.
  • de Bruin NM, Lange JH, Kruse CG, et al. SLV330, a cannabinoid CB(1) receptor antagonist, attenuates ethanol and nicotine seeking and improves inhibitory response control in rats. Behav Brain Res. 2011 Mar 1;217(2):408–415.
  • Boomhower SR, Rasmussen EB. Haloperidol and rimonabant increase delay discounting in rats fed high-fat and standard-chow diets. Behav Pharmacol. 2014 Dec;25(8):705–716.
  • Seillier A, Advani T, Cassano T, et al. Inhibition of fatty-acid amide hydrolase and CB1 receptor antagonism differentially affect behavioural responses in normal and PCP-treated rats. Int J Neuropsychopharmacol. 2010 Apr;13(3):373–386.
  • Varvel SA, Cravatt BF, Engram AE, et al. Fatty acid amide hydrolase (-/-) mice exhibit an increased sensitivity to the disruptive effects of anandamide or oleamide in a working memory water maze task. J Pharmacol Exp Ther. 2006 Apr;317(1):251–257.
  • Pekala K, Michalak A, Kruk-Slomka M, et al. Impacts of cannabinoid receptor ligands on nicotine- and chronic mild stress-induced cognitive and depression-like effects in mice. Behav Brain Res. 2018 Jul 16;347:167–174.
  • de Bruin NM, Prickaerts J, Lange JH, et al. SLV330, a cannabinoid CB1 receptor antagonist, ameliorates deficits in the T-maze, object recognition and social recognition tasks in rodents. Neurobiol Learn Mem. 2010 May;93(4):522–531.
  • Mallet PE, Beninger RJ. The cannabinoid CB1 receptor antagonist SR141716A attenuates the memory impairment produced by delta9-tetrahydrocannabinol or anandamide. Psychopharmacology (Berl). 1998 Nov;140(1):11–19.
  • Hernandez G, Oleson EB, Gentry RN, et al. Endocannabinoids promote cocaine-induced impulsivity and its rapid dopaminergic correlates. Biol Psychiatry. 2014 Mar 15;75(6):487–498.
  • Wiskerke J, van Mourik Y, Schetters D, et al. On the role of cannabinoid CB1- and mu-opioid receptors in motor impulsivity. Front Pharmacol. 2012;3:108.
  • Knowles MD, de la Tremblaye PB, Azogu I, et al. Endocannabinoid CB1 receptor activation upon global ischemia adversely impact recovery of reward and stress signaling molecules, neuronal survival and behavioral impulsivity. Prog Neuropsychopharmacol Biol Psychiatry. 2016 Apr 3;66:8–21.
  • Wiskerke J, Stoop N, Schetters D, et al. Cannabinoid CB1 receptor activation mediates the opposing effects of amphetamine on impulsive action and impulsive choice. PloS One. 2011;6(10):e25856.
  • Sokolic L, Long LE, Hunt GE, et al. Disruptive effects of the prototypical cannabinoid Delta(9)-tetrahydrocannabinol and the fatty acid amide inhibitor URB-597 on go/no-go auditory discrimination performance and olfactory reversal learning in rats. Behav Pharmacol. 2011 Jun;22(3):191–202.
  • Khani A, Kermani M, Hesam S, et al. Activation of cannabinoid system in anterior cingulate cortex and orbitofrontal cortex modulates cost-benefit decision making. Psychopharmacology (Berl). 2015 Jun;232(12):2097–2112.
  • Fatahi Z, Reisi Z, Rainer G, et al. Cannabinoids induce apathetic and impulsive patterns of choice through CB1 receptors and TRPV1 channels. Neuropharmacology. 2018 May 1;133:75–84.
  • Gomes FV, Guimaraes FS, Grace AA. Effects of pubertal cannabinoid administration on attentional set-shifting and dopaminergic hyper-responsivity in a developmental disruption model of schizophrenia. Int J Neuropsychopharmacol. 2015 Jan;18(2):1–10.
  • Johnson KR, Boomhower SR, Newland MC. Behavioral effects of chronic WIN 55,212-2 administration during adolescence and adulthood in mice. Exp Clin Psychopharmacol. 2019 Aug;27(4):348–358.
  • Lichtman AH, Dimen KR, Martin BR. Systemic or intrahippocampal cannabinoid administration impairs spatial memory in rats. Psychopharmacology (Berl). 1995 Jun;119(3):282–290.
  • Pushkin AN, Eugene AJ, Lallai V, et al. Cannabinoid and nicotine exposure during adolescence induces sex-specific effects on anxiety- and reward-related behaviors during adulthood. PloS One. 2019;14(1):e0211346.
  • Hill MN, Patel S, Carrier EJ, et al. Downregulation of endocannabinoid signaling in the hippocampus following chronic unpredictable stress. Neuropsychopharmacol. 2005 Mar;30(3):508–515.
  • Alteba S, Korem N, Akirav I. Cannabinoids reverse the effects of early stress on neurocognitive performance in adulthood. Learn Mem. 2016 Jul;23(7):349–358.
  • Adriani W, Caprioli A, Granstrem O, et al. The spontaneously hypertensive-rat as an animal model of ADHD: evidence for impulsive and non-impulsive subpopulations. Neurosci Biobehav Rev. 2003 Nov;27(7):639–651.
  • Li Y, Kim J. Distinct roles of neuronal and microglial CB2 cannabinoid receptors in the mouse hippocampus. Neuroscience. 2017 Nov 5;363:11–25.
  • Li Y, Kim J. CB2 cannabinoid receptor knockout in mice impairs contextual long-term memory and enhances spatial working memory. Neural Plast. 2016;2016:9817089.
  • Lindsey LP, Daphney CM, Oppong-Damoah A, et al. The cannabinoid receptor 2 agonist, beta-caryophyllene, improves working memory and reduces circulating levels of specific proinflammatory cytokines in aged male mice. Behav Brain Res. 2019 Oct 17;372:112012.
  • Fagundo AB, de la Torre R, Jimenez-Murcia S, et al. Modulation of the Endocannabinoids N-Arachidonoylethanolamine (AEA) and 2-Arachidonoylglycerol (2-AG) on executive functions in humans. PloS One. 2013;8(6):e66387.
  • Selvaraj P, Wen J, Tanaka M, et al. Therapeutic effect of a novel fatty acid amide hydrolase inhibitor PF04457845 in the repetitive closed head injury mouse model. J Neurotrauma. 2019 May 15;36(10):1655–1669.
  • Tchantchou F, Tucker LB, Fu AH, et al. The fatty acid amide hydrolase inhibitor PF-3845 promotes neuronal survival, attenuates inflammation and improves functional recovery in mice with traumatic brain injury. Neuropharmacology. 2014 Oct;85:427–439.
  • Marco EM, Adriani W, Canese R, et al. Enhancement of endocannabinoid signalling during adolescence: modulation of impulsivity and long-term consequences on metabolic brain parameters in early maternally deprived rats. Pharmacol Biochem Behav. 2007 Feb;86(2):334–345.
  • Panlilio LV, Thorndike EB, Nikas SP, et al. Effects of fatty acid amide hydrolase (FAAH) inhibitors on working memory in rats. Psychopharmacology (Berl). 2016 May;233(10):1879–1888.
  • Kangas BD, Leonard MZ, Shukla VG, et al. Comparisons of delta9-Tetrahydrocannabinol and anandamide on a battery of cognition-related behavior in nonhuman primates. J Pharmacol Exp Ther. 2016 Apr;357(1):125–133.
  • Hindocha C, Freeman TP, Grabski M, et al. The effects of cannabidiol on impulsivity and memory during abstinence in cigarette dependent smokers. Sci Rep. 2018 May 15;8(1):7568.
  • Tchantchou F, Zhang Y. Selective inhibition of alpha/beta-hydrolase domain 6 attenuates neurodegeneration, alleviates blood brain barrier breakdown, and improves functional recovery in a mouse model of traumatic brain injury. J Neurotrauma. 2013 Apr 1;30(7):565–579.
  • Wise LE, Long KA, Abdullah RA, et al. Dual fatty acid amide hydrolase and monoacylglycerol lipase blockade produces THC-like Morris water maze deficits in mice. ACS Chem Neurosci. 2012 May 16;3(5):369–378.
  • Hirvonen J, Zanotti-Fregonara P, Gorelick DA, et al. Decreased cannabinoid CB1 receptors in male tobacco smokers examined with positron emission tomography. Biol Psychiatry. 2018 Nov 15;84(10):715–721.
  • Chen X, Williamson VS, An SS, et al. Cannabinoid receptor 1 gene association with nicotine dependence. Arch Gen Psychiatry. 2008 Jul;65(7):816–824.
  • Ward SJ, Raffa RB. Rimonabant redux and strategies to improve the future outlook of CB1 receptor neutral-antagonist/inverse-agonist therapies. Obesity (Silver Spring, Md). 2011 Jul;19(7):1325–1334.
  • Czoty PW, Stoops WW, Rush CR. Evaluation of the “Pipeline” for development of medications for cocaine use disorder: a review of translational preclinical, human laboratory, and clinical trial research. Pharmacol Rev. 2016 Jul;68(3):533–562.
  • Haney M, Spealman R. Controversies in translational research: drug self-administration. Psychopharmacology (Berl). 2008 Aug;199(3):403–419.
  • Mello NK, Negus SS. Preclinical evaluation of pharmacotherapies for treatment of cocaine and opioid abuse using drug self-administration procedures. Neuropsychopharmacol. 1996 Jun;14(6):375–424.
  • Schindler CW, Scherma M, Redhi GH, et al. Self-administration of the anandamide transport inhibitor AM404 by squirrel monkeys. Psychopharmacology (Berl). 2016 May;233(10):1867–1877.
  • Justinova Z, Mangieri RA, Bortolato M, et al. Fatty acid amide hydrolase inhibition heightens anandamide signaling without producing reinforcing effects in primates. Biol Psychiatry. 2008 Dec 1;64(11):930–937.
  • Gendy MNS, Di Ciano P, Kowalczyk WJ, et al. Testing the PPAR hypothesis of tobacco use disorder in humans: A randomized trial of the impact of gemfibrozil (a partial PPARalpha agonist) in smokers. PloS One. 2018;13(9):e0201512.
  • Oz M, Al Kury L, Keun-Hang SY, et al. Cellular approaches to the interaction between cannabinoid receptor ligands and nicotinic acetylcholine receptors. Eur J Pharmacol. 2014 May 15;731:100–105.
  • Butt C, Alptekin A, Shippenberg T, et al. Endogenous cannabinoid anandamide inhibits nicotinic acetylcholine receptor function in mouse thalamic synaptosomes. J Neurochem. 2008 May;105(4):1235–1243.
  • Oz M, Ravindran A, Diaz-Ruiz O, et al. The endogenous cannabinoid anandamide inhibits alpha7 nicotinic acetylcholine receptor-mediated responses in Xenopus oocytes. J Pharmacol Exp Ther. 2003 Sep;306(3):1003–1010.
  • Khurana L, Mackie K, Piomelli D, et al. Modulation of CB1 cannabinoid receptor by allosteric ligands: pharmacology and therapeutic opportunities. Neuropharmacology. 2017 Sep 15;124:3–12.
  • Le Foll B, Goldberg SR, Sokoloff P. The dopamine D3 receptor and drug dependence: effects on reward or beyond? Neuropharmacology. 2005 Sep;49(4):525–541.
  • De Simone A, Russo D, Ruda GF, et al. Design, synthesis, structure-activity relationship studies, and three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling of a series of O-Biphenyl carbamates as dual modulators of dopamine D3 receptor and fatty acid amide hydrolase. J Med Chem. 2017 Mar 23;60(6):2287–2304.
  • Le Foll B, Goldberg SR. Control of the reinforcing effects of nicotine by associated environmental stimuli in animals and humans. Trends Pharmacol Sci. 2005 Jun;26(6):287–293.
  • D’Souza DC, Cortes-Briones J, Creatura G, et al. Efficacy and safety of a fatty acid amide hydrolase inhibitor (PF-04457845) in the treatment of cannabis withdrawal and dependence in men: a double-blind, placebo-controlled, parallel group, phase 2a single-site randomised controlled trial. Lancet Psychiatry. 2019 Jan;6(1):35–45.
  • Elsaid S, Kloiber S, Le Foll B. Effects of cannabidiol (CBD) in neuropsychiatric disorders: A review of pre-clinical and clinical findings. Prog Mol Biol Transl Sci. 2019;167:25–75.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.