7,558
Views
15
CrossRef citations to date
0
Altmetric
Review

Opportunities and challenges for drug discovery in modulating Adhesion G protein-coupled receptor (GPCR) functions

, , , , &
Pages 1291-1307 | Received 03 Mar 2020, Accepted 30 Jun 2020, Published online: 10 Jul 2020

References

  • Hauser A, Attwood M, Rask-Andersen M, et al. Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov. 2017;16:829–842.
  • Fredriksson R, Lagerström MC, Lundin LG, et al. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol. 2003;63:1256–1272.
  • Lagerström M, Schiöth H. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov. 2008;7:339–357. DOI:10.1038/nrd2518
  • Pándy-Szekeres G, Munk C, Tsonkov TM, et al. GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids Res. 2017 Nov 16. DOI:10.1093/nar/gkx1109.
  • Hamann J, Aust G, Arac D, et al. International Union of basic and clinical pharmacology. XCIV. Adhesion G protein-coupled receptors. Pharmacol Rev. 2015;67:338–367.
  • Purcell RH, Hall RA. Adhesion G protein–coupled receptors as drug targets. Annu Rev Pharmacol Toxicol. 2018;58:429–449.
  • Bassilana F, Nash M, Ludwig M. Adhesion G protein-coupled receptors: opportunities for drug discovery. Nat Rev Drug Discov. 2019;18:869–884.
  • Bjarnadóttir TK, Fredriksson R, Höglund PJ, et al. The human and mouse repertoire of the adhesion family of G-protein-coupled receptors. Genomics. 2004;84(1):23–33.
  • Nordström KJ, SällmanAlmén M, Edstam MM, et al. Independent HHsearch, Needleman–Wunsch-based, and motif analyses reveal the overall hierarchy for most of the G protein-coupled receptor families. Mol Biol Evol. 2011;28:2471–2480.
  • Nordström KJ, Lagerström MC, Wallér LM, et al. The Secretin GPCRs descended from the family of Adhesion GPCRs. Mol Biol Evol. 2009;26:71–84.
  • Krishnan A, Almén MS, Fredriksson R, et al. The origin of GPCRs: identification of mammalian like rhodopsin, adhesion, glutamate and frizzled GPCRs in fungi. PLoS One. 2012;7:e29817.
  • Araç D, Boucard AA, Bolliger MF, et al. A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis. Embo J. 2012;31(6):1364‐1378.
  • Lin HH, Stacey M, Yona S, et al. GPS proteolytic cleavage of adhesion-GPCRs. Adv Exp Med Biol. 2010;706:49‐58.
  • Liebscher I, Schön J, Petersen SC, et al. A tethered agonist within the ectodomain activates the adhesion g protein-coupled receptors GPR126 and GPR133. Cell Rep. 2014;9:2018–2026.
  • Langenhan T, Aust G, Hamann J. Sticky signaling–adhesion class G protein-coupled receptors take the stage. Sci Signal. 2013;6(276):re3.
  • Liebscher I, Schöneberg T, Prömel S. Progress in demystification of adhesion G protein-coupled receptors. Biol Chem. 2013;394(8):937‐950.
  • Coleman JLJ, Ngo T, Smith NJ. The G protein-coupled receptor N-terminus and receptor signalling: N-tering a new era. Cell Signal. 2017;33:1–9.
  • Posokhova E, Shukla A, Seaman S, et al. GPR124 functions as a WNT7-specific coactivator of canonical β-catenin signaling. Cell Rep. 2015;10(2):123‐130.
  • Stacey M, Chang GW, Davies JQ, et al. The epidermal growth factor-like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans. Blood. 2003;102(8):2916‐2924.
  • Hamoud N, Tran V, Aimi T, et al. Spatiotemporal regulation of the GPCR activity of BAI3 by C1qL4 and Stabilin-2 controls myoblast fusion. Nat Commun. 2018;9(1):4470.
  • Chen H, Nwe PK, Yang Y, et al. A forward chemical genetic screen reveals gut microbiota metabolites that modulate host physiology. Cell. 2019 May 16;177(5):1217–1231.e18.
  • Luo R, Jeong SJ, Jin Z, et al. G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination.Proc. Natl Acad Sci U S A. 2011 Aug 2;108(31):12925–12930.
  • Küffer A, Lakkaraju AK, Mogha A, et al. The prion protein is an agonistic ligand of the G protein-coupled receptor Adgrg6. Nature. 2016 Aug 25;536(7617):464–468.
  • Paavola KJ, Sidik H, Zuchero JB, et al. Type IV collagen is an activating ligand for the adhesion G protein-coupled receptor GPR126. Sci Signal. 2014 Aug 12;7(338):ra76.
  • Petersen SC, Luo R, Liebscher I, et al. The adhesion GPCR GPR126 has distinct, domain-dependent functions in Schwann cell development mediated by interaction with laminin-211. Neuron. 2015 Feb 18;85(4):755–769.
  • Hamann J, Wishaupt JO, van Lier RA, et al. Expression of the activation antigen CD97 and its ligand CD55 in rheumatoid synovial tissue. Arthritis Rheum. 1999 Apr;42(4):650–658.
  • Cork SM, Kaur B, Devi NS, et al. A proprotein convertase/MMP-14 proteolytic cascade releases a novel 40 kDavasculostatin from tumor suppressor BAI1. Oncogene. 2012;31(50):5144‐5152.
  • Kaur B, Brat DJ, Devi NS, et al. Vasculostatin, a proteolytic fragment of brain angiogenesis inhibitor 1, is an antiangiogenic and antitumorigenic factor. Oncogene. 2005;24(22):3632‐3642.
  • Boucard AA, Ko J, Südhof TC. High affinity neurexin binding to cell adhesion G-protein-coupled receptor CIRL1/latrophilin-1 produces an intercellular adhesion complex.J. BiolChem. 2012 Mar 16;287(12):9399–9413.
  • Hamann J, Vogel B, Van Schijndel GM, et al. The seven-span transmembrane receptor CD97 has a cellular ligand (CD55, DAF).J. Exp Med. 1996 Sep 1;184(3):1185–1189.
  • Wandel E, Saalbach A, Sittig D, et al. Thy-1 (CD90) is an interacting partner for CD97 on activated endothelial cells. J Immunol. 2012 Feb 1;188(3):1442–1450.
  • Silva JP, Lelianova VG, Ermolyuk YS, et al. Latrophilin 1 and its endogenous ligand Lasso/teneurin-2 form a high-affinity transsynaptic receptor pair with signaling capabilities. Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):12113–12118.
  • Little KD, Hemler ME, Stipp CS. Dynamic regulation of a GPCR-tetraspanin-G protein complex on intact cells: central role of CD81 in facilitating GPR56-Galpha q/11 association. MolBiol Cell. 2004 May;15(5):2375–2387.
  • Ward Y, Lake R, Yin JJ, et al. LPA receptor heterodimerizes with CD97 to amplify LPA-initiated RHO-dependent signaling and invasion in prostate cancer cells. Cancer Res. 2011 Dec 1;71(23):7301–7311.
  • Langenhan T. Adhesion G protein-coupled receptors - candidate metabotropic mechanosensors and novel drug targets. Basic Clin Pharmacol Toxicol. 2019;00:1–12.
  • Wang XJ, Zhang DL, Xu ZG, et al. Understanding cadherin EGF LAG seven-pass G-type receptors. J Neurochem. 2014;131(6):699–711.
  • Hashimoto M, Shinohara K, Wang J, et al. Planar polarization of node cells determines the rotational axis of node cilia. Nat Cell Biol. 2010;12(2):170–176.
  • Antic D, Stubbs JL, Suyama K, et al. Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and Xenopus embryogenesis. PLoS One. 2010;5(2):e8999.
  • Stephenson JR, Purcell RH, Hall RA. The BAI subfamily of adhesion GPCRs: synaptic regulation and beyond. Trends Pharmacol Sci. 2014;35(4):208–215.
  • Hamann J, Vogel B, van Schijndel GM, et al. The seven-span transmembrane receptor CD97 has a cellular ligand (CD55, DAF). J Exp Med. 1996;184(3):1185–1189.
  • Yona S, Lin HH, Dri P, et al. Ligation of the adhesion-GPCR EMR2 regulates human neutrophil function. Faseb J. 2008;22:741–751.
  • Koirala S, Jin Z, Piao X, et al. GPR56-regulated granule cell adhesion is essential for rostral cerebellar development. J Neurosci. 2009;29(23):7439–7449.
  • Saito Y, Kaneda K, Suekane A, et al. Maintenance of the hematopoietic stem cell pool in bone marrow niches by EVI1-regulated GPR56. Leukemia. 2013;27(8):1637–1649.
  • Valtcheva N, Primorac A, Jurisic G, et al. The orphan adhesion G protein-coupled receptor GPR97 regulates migration of lymphatic endothelial cells via the small GTPases RhoA and Cdc42. J Biol Chem. 2013;288(50):35736–35748.
  • Kuhnert F, Mancuso MR, Shamloo A, et al. Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124. Science. 2010;330(6006):985–989.
  • Galle J, Sittig D, Hanisch I, et al. Individual cell-based models of tumor-environment interactions: multiple effects of CD97 on tumor invasion. Am J Pathol. 2006;169(5):1802–1811.
  • Qu Y, Glasco DM, Zhou L, et al. Atypical cadherins Celsr1-3 differentially regulate migration of facial branchiomotor neurons in mice. J Neurosci. 2010;30(28):9392–9401.
  • Doyle SE, Scholz MJ, Greer KA, et al. Latrophilin-2 is a novel component of the epithelial-mesenchymal transition within the atrioventricular canal of the embryonic chicken heart. Dev Dyn. 2006;235(12):3213–3221.
  • Mogha A, Benesh AE, Patra C, et al. Gpr126 functions in Schwann cells to control differentiation and myelination via G-protein activation. J Neurosci. 2013;33(46):17976–17985.
  • Koh JT, Kook H, Kee HJ, et al. Extracellular fragment of brain-specific angiogenesis inhibitor 1 suppresses endothelial cell proliferation by blocking alphavbeta5 integrin. Exp Cell Res. 2004;294(1):172–184.
  • Hochreiter-Hufford AE, Lee CS, Kinchen JM, et al. Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion. Nature. 2013;497(7448):263–267.
  • Hamoud N, Tran V, Croteau LP, et al. G-protein coupled receptor BAI3 promotes myoblast fusion in vertebrates. Proc Natl Acad Sci U S A. 2014;111(10):3745–3750.
  • Lin HH, Hsiao CC, Pabst C, et al. Adhesion GPCRs in regulating immune responses and inflammation. G protein-coupled receptors in immune response and regulation. AdvImmunol. 2017;136:163–201.
  • Ferrand N, Pessah M, Frayon S, et al. Olfactory receptors, Golf alpha and adenylyl cyclase mRNA expressions in the rat heart during ontogenic development. J Mol Cell Cardiol. 1999;31(5):1137–1142.
  • Waller-Evans H, Prömel S, Langenhan T, et al. The orphan adhesion-GPCR GPR126 is required for embryonic development in the mouse. PLoS One. 2010;5(11):e14047.
  • Patra C, van Amerongen MJ, Ghosh S, et al. Organ-specific function of adhesion G protein-coupled receptor GPR126 is domain-dependent [published correction appears in Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):1222]. Proc Natl Acad Sci U S A. 2013;110(42):16898–16903.
  • Wang T, Ward Y, Tian L, et al. CD97, an adhesion receptor on inflammatory cells, stimulates angiogenesis through binding integrin counterreceptors on endothelial cells. Blood. 2005;105(7):2836–2844.
  • Masiero M, Simões FC, Han HD, et al. A core human primary tumor angiogenesis signature identifies the endothelial orphan receptor ELTD1 as a key regulator of angiogenesis. Cancer Cell. 2013;24(2):229–241.
  • Ludwig MG, Seuwen K, Bridges JP. Adhesion GPCR function in pulmonary development and disease. HandbExpPharmacol. 2016;234:309–327.
  • Folts CJ, Giera S, Li T, et al. Adhesion G protein-coupled receptors as drug targets for neurological diseases. TrendsPharmacolSci. 2019;40:278–293.
  • White JP. Control of skeletal muscle cell growth and size through adhesion GPCRs. HandbExpPharmacol. 2016;234:299–308.
  • Luo J, Sun P, Siwko S, et al. The role of GPCRs in bone diseases and dysfunctions. Bone Res. 2019;7:19.
  • Chen G, Yang L, Begum S, et al. GPR56 is essential for testis development and male fertility in mice. Dev Dyn. 2010;239(12):3358–3367.
  • Kirchhoff C, Osterhoff C, Samalecos A. HE6/GPR64 adhesion receptor co-localizes with apical and subapical F-actin scaffold in male excurrent duct epithelia. Reproduction. 2008;136(2):235–245.
  • Cazorla-Vázquez S, Engel FB. Adhesion GPCRs in kidney development and disease. Front Cell Dev Biol. 2018;6;6:9.
  • Prömel S, Waller-Evans H, Dixon J, et al. Characterization and functional study of a cluster of four highly conserved orphan adhesion-GPCR in mouse. Dev Dyn. 2012;241(10):1591–1602.
  • Devenport D, Fuchs E. Planar polarization in embryonic epidermis orchestrates global asymmetric morphogenesis of hair follicles. Nat Cell Biol. 2008;10(11):1257–1268.
  • Haitina T, Olsson F, Stephansson O, et al. Expression profile of the entire family of Adhesion G protein-coupled receptors in mouse and rat. BMC Neurosci. 2008;9:43.
  • Olaniru OE, Persaud SJ. Adhesion G-protein coupled receptors: implications for metabolic function. PharmacolTher. 2019;198:123–134.
  • Kathiresan S, Melander O, Guiducci C, et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans [published correction appears in Nat Genet. 2008 Nov;40(11):1384]. Nat Genet. 2008;40(2):189–197.
  • Becker S, Wandel E, Wobus M, et al. Overexpression of CD97 in intestinal epithelial cells of transgenic mice attenuates colitis by strengthening adherens junctions. PLoS One. 2010;5(1):e8507.
  • Harty BL, Krishnan A, Sanchez NE, et al. Defining the gene repertoire and spatiotemporal expression profiles of adhesion G protein-coupled receptors in zebrafish. BMC Genomics. 2015;16(1):62.
  • Aust G, Zhu D, Van Meir EG, et al. Adhesion GPCRs in Tumorigenesis. HandbExpPharmacol. 2016;234:369–396.
  • White GR, Varley JM, Heighway J. Isolation and characterization of a human homologue of the latrophilin gene from a region of 1p31.1 implicated in breast cancer [published correction appears in Oncogene 1999 Mar 25;18(12):2167]. Oncogene. 1998;17(26):3513‐3519.
  • Hsu YC, Yuan S, Chen HY, et al. A four-gene signature from NCI-60 cell line for survival prediction in non-small cell lung cancer. Clin Cancer Res. 2009;15(23):7309‐7315.
  • Zhang S, Liu Y, Liu Z, et al. Transcriptome profiling of a multiple recurrent muscle-invasive urothelial carcinoma of the bladder by deep sequencing. PLoS One. 2014;9(3):e91466.
  • Towner RA, Jensen RL, Colman H, et al. ELTD1, a potential new biomarker for gliomas. Neurosurgery. 2013;72(1):77‐91.
  • Davies JQ, Lin HH, Stacey M, et al. Leukocyte adhesion-GPCR EMR2 is aberrantly expressed in human breast carcinomas and is associated with patient survival. Oncol Rep. 2011;25(3):619‐627.
  • Rutkowski MJ, Sughrue ME, Kane AJ, et al. Epidermal growth factor module-containing mucin-like receptor 2 is a newly identified adhesion G protein-coupled receptor associated with poor overall survival and an invasive phenotype in glioblastoma. J Neurooncol. 2011;105(2):165‐171.
  • Kane AJ, Sughrue ME, Rutkowski MJ, et al. EMR-3: a potential mediator of invasive phenotypic variation in glioblastoma and novel therapeutic target. Neuroreport. 2010;21(16):1018‐1022.
  • Charfi C, Edouard E, Rassart E. Identification of GPM6A and GPM6B as potential new human lymphoid leukemia-associated oncogenes. Cell Oncol (Dordr). 2014;37(3):179‐191.
  • Kaucká M, Plevová K, Pavlová S, et al. The planar cell polarity pathway drives pathogenesis of chronic lymphocytic leukemia by the regulation of B-lymphocyte migration. Cancer Res. 2013;73(5):1491‐1501.
  • Del Giudice I, Messina M, Chiaretti S, et al. Behind the scenes of non-nodal MCL: downmodulation of genes involved in actin cytoskeleton organization, cell projection, cell adhesion, tumour invasion, TP53 pathway and mutated status of immunoglobulin heavy chain genes. Br J Haematol. 2012;156(5):601‐611.
  • Katoh M, Katoh M. Comparative integromics on non-canonical WNT or planar cell polarity signaling molecules: transcriptional mechanism of PTK7 in colorectal cancer and that of SEMA6A in undifferentiated ES cells. Int J Mol Med. 2007;20(3):405‐409.
  • Ammerpohl O, Pratschke J, Schafmayer C, et al. Distinct DNA methylation patterns in cirrhotic liver and hepatocellular carcinoma. Int J Cancer. 2012;130(6):1319‐1328.
  • Liao S, Desouki MM, Gaile DP, et al. Differential copy number aberrations in novel candidate genes associated with progression from in situ to invasive ductal carcinoma of the breast. Genes Chromosomes Cancer. 2012;51(12):1067‐1078.
  • Tang X, Jin R, Qu G, et al. GPR116, an adhesion G-protein-coupled receptor, promotes breast cancer metastasis via the Gαq-p63RhoGEF-Rho GTPase pathway. Cancer Res. 2013;73(20):6206‐6218.
  • Davidson B, Stavnes HT, Risberg B, et al. Gene expression signatures differentiate adenocarcinoma of lung and breast origin in effusions. Hum Pathol. 2012;43(5):684‐694.
  • Kaur B, Brat DJ, Calkins CC, et al. Brain angiogenesis inhibitor 1 is differentially expressed in normal brain and glioblastoma independently of p53 expression. Am J Pathol. 2003;162(1):19‐27.
  • Hatanaka H, Oshika Y, Abe Y, et al. Vascularization is decreased in pulmonary adenocarcinoma expressing brain-specific angiogenesis inhibitor 1 (BAI1). Int J Mol Med. 2000;5(2):181‐183.
  • Miyamoto N, Yamamoto H, Taniguchi H, et al. Differential expression of angiogenesis-related genes in human gastric cancers with and those without high-frequency microsatellite instability. Cancer Lett. 2007;254(1):42‐53.
  • Fukushima Y, Oshika Y, Tsuchida T, et al. Brain-specific angiogenesis inhibitor 1 expression is inversely correlated with vascularity and distant metastasis of colorectal cancer. Int J Oncol. 1998;13(5):967‐970.
  • Yoshida Y, Oshika Y, Fukushima Y, et al. Expression of angiostatic factors in colorectal cancer. Int J Oncol. 1999;15(6):1221‐1225.
  • Meisen WH, Dubin S, Sizemore ST, et al. Changes in BAI1 and nestin expression are prognostic indicators for survival and metastases in breast cancer and provide opportunities for dual targeted therapies. Mol Cancer Ther. 2015;14(1):307‐314.
  • Kim JC, Kim SY, Roh SA, et al. Gene expression profiling: canonical molecular changes and clinicopathological features in sporadic colorectal cancers. World J Gastroenterol. 2008;14(43):6662‐6672.
  • Wang Q. Identification of biomarkers for metastatic osteosarcoma based on DNA microarray data. Neoplasma. 2015;62(3):365‐371.
  • Bari MF, Brown H, Nicholson AG, et al. BAI3, CDX2 and VIL1: a panel of three antibodies to distinguish small cell from large cell neuroendocrine lung carcinomas. Histopathology. 2014;64(4):547‐556.
  • Hao C, Wang L, Peng S, et al. Gene mutations in primary tumors and corresponding patient-derived xenografts derived from non-small cell lung cancer. Cancer Lett. 2015;357(1):179‐185.
  • Richter GH, Fasan A, Hauer K, et al. G-Protein coupled receptor 64 promotes invasiveness and metastasis in Ewing sarcomas through PGF and MMP1. J Pathol. 2013;230(1):70‐81.
  • Whittier KL, Boese EA, Gibson-Corley KN, et al. G-protein coupled receptor expression patterns delineate medulloblastoma subgroups. ActaNeuropatholCommun. 2013;1:66.
  • Leja J, Essaghir A, Essand M, et al. Novel markers for enterochromaffin cells and gastrointestinal neuroendocrine carcinomas. Mod Pathol. 2009;22(2):261‐272.
  • Piao X, Basel-Vanagaite L, Straussberg R, et al. An autosomal recessive form of bilateral frontoparietal polymicrogyria maps to chromosome 16q12.2-21. Am J Hum Genet. 2002;70:1028–1033.
  • Piao X, Hill RS, Bodell A, et al. G protein-coupled receptor-dependent development of human frontal cortex. Science. 2004;303:2033–2036.
  • Singer K, Luo R, Jeong SJ, et al. GPR56 and the developing cerebral cortex: cells, matrix, and neuronal migration. MolNeurobiol. 2013;47:186–196.
  • Luo R, Jin Z, Deng Y, et al. Disease-associated mutations prevent GPR56-collagen III interaction. PLoS ONE. 2012;7(1):e29818.
  • Bahi-Buisson N, Poirier K, Boddaert N, et al. GPR56-related bilateral frontoparietal polymicrogyria: further evidence for an overlap with the cobblestone complex. Brain. 2010;133(11):3194–3209.
  • Greene NDE, Copp AJ. Neural tube defects. AnnuRevNeurosci. 2014;37:221–242.
  • Robinson A, Escuin S, Doudney K, et al. Mutations in the planar cell polarity genes CELSR1 and SCRIB are associated with the severe neural tube defect craniorachischisis. HumanMutat. 2012;33:440–447.
  • Lei Y, Zhu H, Yang W, et al. Identification of Novel CELSR1 mutations in Spina Bifida. PLoS ONE. 2014;9(3):e92207.
  • Allache R, De Marco P, Merello E, et al. Role of the planar cell polarity gene CELSR1 in neural tube defects and caudal agenesis. Birth Defects Research Part A: Clinical and Molecular Teratology. 2012;94(3):176–181.
  • Qiao X, Liu Y, Li P, et al. Genetic analysis of rare coding mutations of CELSR1–3 in congenital heart and neural tube defects in Chinese people. Clinical Science. 2016;130(24):2329–2340.
  • Sharma A, Couture J. A review of the pathophysiology, etiology, and treatment of attention-deficit hyperactivity disorder (ADHD). AnnPharmacother. 2014;48:209–225.
  • Arcos-Burgos M, Jain M, Acosta MT, et al., A common variant of the latrophilin 3 gene, LPHN3, confers susceptibility to ADHD and predicts effectiveness of stimulant medication. Mol Psychiatry. 2010;15(11):1053–1066.
  • Labbe A, Liu A, Atherton J, et al., Refining psychiatric phenotypes for response to treatment: contribution of LPHN3 in ADHD. Am J Med Genet B Neuropsychiatr Genet. 2012;159B(7):776–785.
  • Choudhry Z, Sengupta SM, Grizenko N, et al. LPHN3 and attention-deficit/hyperactivity disorder: interaction with maternal stress during pregnancy. J Child Psychol Psychiatry. 2012;53:892–902.
  • Kappel DB, Schuch JB, Rovaris DL, et al. ADGRL3 rs6551665 as a common vulnerability factor underlying attention-deficit/hyperactivity disorder and autism spectrum disorder. Neuromolecular Med. 2019;21:60–67.
  • Huang X, Zhang Q, Gu X, et al. LPHN3 gene variations and susceptibility to ADHD in Chinese Han population: a two-stage case–control association study and gene–environment interactions. Eur Child Adolesc Psychiatry. 2019;28:861–873.
  • Bonaglia MC, Marelli S, Novara F, et al. Genotype–phenotype relationship in three cases with overlapping 19p13.12 microdeletions. Eur J Hum Genet. 2010;18:1302–1309.
  • Roth J. The colorful spectrum of Tourette syndrome and its medical, surgical and behavioral therapies. Parkinsonism Relat Disord. 2018;46:S75–S79.
  • Willsey AJ, Fernandez TV, Yu D, et al. De novo coding variants are strongly associated with tourette disorder. Neuron. 2017;94(486–499.e9). DOI:10.1016/j.neuron.2017.04.024.
  • Wang S, Mandell JD, Kumar Y, et al. De Novo sequence and copy number variants are strongly associated with tourette disorder and implicate cell polarity in pathogenesis. Cell Rep. 2018;24(3441–3454.e12). DOI:10.1016/j.celrep.2018.08.082.
  • Zhao X, Wang S, Hao J, et al. A Whole-Exome Sequencing Study of Tourette Disorder in a Chinese Population. DNA Cell Biol. 2019 published online 2019 Dec 19. DOI:10.1089/dna.2019.4746.
  • Purcell RH, Toro C, Gahl WA, et al. A disease-associated mutation in the adhesion GPCR BAI2 (ADGRB2) increases receptor signaling activity. Hum Mutat. 2017;38:1751–1760.
  • Myers KA, Nasioulas S, Boys A, et al. ADGRV1 is implicated in myoclonic epilepsy. Epilepsia. 2018;59(2):381–388.
  • Libé-Philippot B, Michel V, Boutet de Monvel J, et al. Auditory cortex interneuron development requires cadherins operating hair-cell mechanoelectrical transduction. Proc Natl Acad Sci U S A. 2017;114(30):7765–7774.
  • Kang X, Xiao X, Harata M, et al. Antiangiogenic activity of BAI1 in vivo: implications for gene therapy of human glioblastomas. Cancer Gene Ther. 2006;13(4):385‐392.
  • St Croix B, Rago C, Velculescu V, et al. Genes expressed in human tumor endothelium. Science. 2000;289(5482):1197‐1202.
  • Steinert M, Wobus M, Boltze C, et al. Expression and regulation of CD97 in colorectal carcinoma cell lines and tumor tissues. Am J Pathol. 2002;161(5):1657‐1667.
  • Saito Y, Kaneda K, Suekane A, et al. Maintenance of the hematopoietic stem cell pool in bone marrow niches by EVI1-regulated GPR56. Leukemia. 2013;27(8):1637‐1649.
  • Scholz N. Cancer cell mechanics: Adhesion G protein-coupled receptors in action? Front Oncol. 2018;8:59.
  • Aust G, Eichler W, Laue S, et al. CD97: a dedifferentiation marker in human thyroid carcinomas. Cancer Res. 1997;57(9):1798‐1806.
  • Zendman AJ, Cornelissen IM, Weidle UH, et al. TM7XN1, a novel human EGF-TM7-like cDNA, detected with mRNA differential display using human melanoma cell lines with different metastatic potential. FEBS Lett. 1999;446(2–3):292‐298.
  • Safaee M, Clark AJ, Oh MC, et al. Overexpression of CD97 confers an invasive phenotype in glioblastoma cells and is associated with decreased survival of glioblastoma patients. PLoS One. 2013;8(4):e62765.
  • Wu J, Lei L, Wang S, et al. Immunohistochemical expression and prognostic value of CD97 and its ligand CD55 in primary gallbladder carcinoma. J Biomed Biotechnol. 2012;2012:587672.
  • Aust G, Steinert M, Schütz A, et al. CD97, but not its closely related EGF-TM7 family member EMR2, is expressed on gastric, pancreatic, and esophageal carcinomas. Am J Clin Pathol. 2002;118(5):699‐707.
  • Ward Y, Lake R, Yin JJ, et al. LPA receptor heterodimerizes with CD97 to amplify LPA-initiated RHO-dependent signaling and invasion in prostate cancer cells. Cancer Res. 2011;71(23):7301‐7311.
  • Coustan-Smith E, Song G, Clark C, et al. New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood. 2011;117(23):6267‐6276.
  • Mirkowska P, Hofmann A, Sedek L, et al. Leukemia surfaceome analysis reveals new disease-associated features. Blood. 2013;121(25):e149‐e159.
  • Bonardi F, Fusetti F, Deelen P, et al. A proteomics and transcriptomics approach to identify leukemic stem cell (LSC) markers. Mol Cell Proteomics. 2013;12(3):626‐637.
  • Zyryanova T, Schneider R, Adams V, et al. Skeletal muscle expression of the adhesion-GPCR CD97: CD97 deletion induces an abnormal structure of the sarcoplasmatic reticulum but does not impair skeletal muscle function. PLoS One. 2014;9(6):e100513.
  • Aust G, Wandel E, Boltze C, et al. Diversity of CD97 in smooth muscle cells. Cell Tissue Res. 2006;324(1):139‐147.
  • Park GB, Kim D. MicroRNA-503-5p inhibits the CD97-mediated JAK2/STAT3 pathway in metastatic or paclitaxel-resistant ovarian cancer cells. Neoplasia. 2019;21:206–215.
  • Kleo K, Dimitrova L, Oker E, et al. Identification of ADGRE5 as discriminating MYC target between Burkitt lymphoma and diffuse large B-cell lymphoma. BMC Cancer. 2019;19:322.
  • Shashidhar S, Lorente G, Nagavarapu U, et al. GPR56 is a GPCR that is overexpressed in gliomas and functions in tumor cell adhesion. Oncogene. 2005;24(10):1673‐1682.
  • Guo R, Wu G, Li H, et al. Promoter methylation profiles between human lung adenocarcinoma multidrug resistant A549/cisplatin (A549/DDP) cells and its progenitor A549 cells. Biol Pharm Bull. 2013;36(8):1310‐1316.
  • Ke N, Sundaram R, Liu G, et al. Orphan G protein-coupled receptor GPR56 plays a role in cell transformation and tumorigenesis involving the cell adhesion pathway. Mol Cancer Ther. 2007;6(6):1840‐1850.
  • Kausar T, Sharma R, Hasan MR, et al. Clinical significance of GPR56, transglutaminase 2, and NF-κB in esophageal squamous cell carcinoma. Cancer Invest. 2011;29(1):42‐48.
  • Silveira VS, Scrideli CA, Moreno DA, et al. Gene expression pattern contributing to prognostic factors in childhood acute lymphoblastic leukemia. Leuk Lymphoma. 2013;54(2):310‐314.
  • Pabst C, Bergeron A, Lavallée VP, et al. GPR56 identifies primary human acute myeloid leukemia cells with high repopulating potential in vivo. Blood. 2016;127(16):2018‐2027.
  • Moreno M, Pedrosa L, Paré L, et al. GPR56/ADGRG1 inhibits mesenchymal differentiation and radioresistance in glioblastoma. Cell Rep. 2017;21:2183–2197.
  • Gao Y, Fan X, Li W, et al. miR-138-5p reverses gefitinib resistance in non-small cell lung cancer cells via negatively regulating G protein-coupled receptor 124. Biochem Biophys Res Commun. 2014;446:179–186.
  • Xie K, Ye Y, Zeng Y, et al. Polymorphisms in genes related to epithelial-mesenchymal transition and risk of non-small cell lung cancer. Carcinogenesis. 2017;38:1029–1035.
  • Lum AM, Wang BB, Beck-Engeser GB, et al. Orphan receptor GPR110, an oncogene overexpressed in lung and prostate cancer. BMC Cancer. 2010;10:40.
  • Bhat RR, Yadav P, Sahay D, et al. GPCRs profiling and identification of GPR110 as a potential new target in HER2+ breast cancer. Breast Cancer Res Treat. 2018;170:279–292.
  • Tate JG, Bamford S, Jubb HC, et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019;47:D941–D947.
  • Bamshad M, Van Heest AE, Pleasure D. Arthrogryposis: a review and update. J Bone Joint Surg Am. 2009;91(Suppl 4):40–46.
  • Ravenscroft G, Nolent F, Rajagopalan S, et al. Mutations of GPR126 are responsible for severe arthrogryposis multiplex congenita. Am J Hum Genet. 2015;96:955–961.
  • Mogha A, Benesh AE, Patra C, et al. Gpr126 functions in schwann cells to control differentiation and myelination via g-protein activation. J Neurosci. 2013;33:17976–17985.
  • Cheng JC, Castelein RM, Chu WC, et al. Adolescent idiopathic scoliosis. Nat Rev Dis Primers. 2015;1:15030.
  • Kou I, Takahashi Y, Johnson TA, et al. Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis. Nat Genet. 2013;45(6):676–679.
  • Kou I, Watanabe K, Takahashi Y, et al. A multi-ethnic meta-analysis confirms the association of rs6570507 with adolescent idiopathic scoliosis. Sci Rep. 2018;8:11575.
  • Khanshour AM, Kou I, Fan Y, et al. Genome-wide meta-analysis and replication studies in multiple ethnicities identify novel adolescent idiopathic scoliosis susceptibility loci. Hum Mol Genet. 2018;27:3986–3998.
  • Qin X, Xu L, Xia C, et al. Genetic variant of GPR126 gene is functionally associated with adolescent idiopathic scoliosis in Chinese population. Spine (Phila Pa 1976). 2017;42:E1098–E1103.
  • Xu E, Shao W, Jiang H, et al. A genetic variant in GPR126 causing a decreased inclusion of Exon 6 is associated with cartilage development in adolescent idiopathic scoliosis population. BioMed Res Int. 2019;2019:1–8.
  • Soranzo N, Rivadeneira F, Chinappen-Horsley U, et al. Meta-analysis of genome-wide scans for human adult stature identifies novel loci and associations with measures of skeletal frame size. PLoS Genet. 2009;5:e1000445.
  • Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers. 2017;3:17038.
  • Kitagaki J, Miyauchi S, Asano Y, et al. A putative association of a single nucleotide polymorphism in GPR126 with aggressive periodontitis in a Japanese population. PLoS ONE. 2016;11:e0160765.
  • Weston MD, Luijendijk MWJ, Humphrey KD, et al. Mutations in the VLGR1 gene implicate G-protein signaling in the pathogenesis of usher syndrome Type II. Am J Hum Genet. 2004;74:357–366.
  • Schwartz SB, Aleman TS, Cideciyan AV, et al. Disease expression in usher syndrome caused byVLGR1Gene mutation (USH2C) and comparison withUSH2APhenotype. Invest Ophthalmol Vis Sci. 2005;46:734–743.
  • Richardson GP, Petit C. Hair-bundle links: genetics as the gateway to function. Cold Spring Harb Perspect Med. 2019;9(12):a033142.
  • Besnard T, Vaché C, Baux D, et al. Non-USH2A mutations in USH2 patients. Hum Mutat. 2012;33:504–510.
  • Fuster-García C, García-García G, Jaijo T, et al. High-throughput sequencing for the molecular diagnosis of Usher syndrome reveals 42 novel mutations and consolidates CEP250 as Usher-like disease causative. Sci Rep. 2018;8:17133.
  • Pater JA, Green J, O’Rielly DD, et al. Novel Usher syndrome pathogenic variants identified in cases with hearing and vision loss. BMC Med Genet. 2019;20:68.
  • Shin D, Lin ST, Fu YH, et al. Very large G protein-coupled receptor 1 regulates myelin-associated glycoprotein via G s/G q-mediated protein kinases A/C. Proc Natl Acad Sci U S A. 2013;110:19101–19106.
  • Hu QX, Dong JH, Du HB, et al. Constitutive Gαi coupling activity of very large G Protein-coupled Receptor 1 (VLGR1) and its regulation by PDZD7 protein. J Biol Chem. 2014;289:24215–24225.
  • Patterson R, Mellies C, Blankenship M, et al. Vibratory angioedema: A hereditary type of physical hypersensitivity. J Allergy Clin Immunol. 1972;50:174–182.
  • Abajian M, Schoepke N, Altrichter S, et al. Physical Urticarias and Cholinergic Urticaria. Immunol Allergy Clin North Am. 2014;34:73–88.
  • Boyden SE, Desai A, Cruse G, et al. Vibratory urticaria associated with a missense variant in ADGRE2. N Engl J Med. 2016;374:656–663.
  • Nie T, Hui X, Gao X, et al. Adipose tissue deletion of Gpr116 impairs insulin sensitivity through modulation of adipose function. FEBS Lett. 2012;586(20):3618–3625.
  • Cortijo C, Gouzi M, Tissir F, et al. Planar cell polarity controls pancreatic beta cell differentiation and glucose homeostasis. Cell Rep. 2012;2(6):1593‐1606.
  • Gupta R, Nguyen DC, Schaid MD, et al. Complement 1q like-3 protein inhibits insulin secretion from pancreatic β-cells via the cell adhesion G protein–coupled receptor BAI3. J Biol Chem. 2018;293:18086–18098.
  • Olaniru OE, Pingitore A, Giera S, et al. The adhesion receptor GPR56 is activated by extracellular matrix collagen III to improve β-cell function. Cell Mol Life Sci. 2018;75:4007–4019.
  • Dunér P, Al-Amily IM, Soni A, et al. Adhesion G protein-coupled receptor G1 (ADGRG1/GPR56) and Pancreatic β-cell function. J Clin Endocrinol Metab. 2016;101:4637–4645.
  • Bruneau B. The developmental genetics of congenital heart disease. Nature. 2008;451:943–948.
  • Pierpont ME, Brueckner M, Chung WK, et al. Genetic basis for congenital heart disease. Circulation. 2018;138:e653–e711.
  • Nebigil CG, Désaubry L. The role of GPCR signaling in cardiac epithelial to mesenchymal transformation (EMT). Trends Cardiovasc Med. 2019;29:200–204.
  • Khera AV, Kathiresan S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat Rev Genet. 2017;18:331–344.
  • Yasukochi Y, Sakuma J, Takeuchi I, et al. Six novel susceptibility loci for coronary artery disease and cerebral infarction identified by longitudinal exome-wide association studies in a Japanese population. Biomed Rep. 2018;9:123–134.
  • Yamada Y, Kato K, Oguri M, et al. Identification of 13 novel susceptibility loci for early-onset myocardial infarction, hypertension, or chronic kidney disease. Int J Mol Med. 2018;42:2415–2436.
  • Gupte J, Swaminath G, Danao J, et al. Signaling property study of adhesion G-protein-coupled receptors. FEBS Lett. 2012;586:1214–1219.
  • Southern C, Cook JM, Neetoo-Isseljee Z, et al. Screening β-arrestin recruitment for the identification of natural ligands for orphan G-protein–coupled receptors. J Biomol Screen. 2013;18:599–609.
  • Stoveken HM, Larsen SD, Smrcka AV, et al. Gedunin- and khivorin-derivatives are small-molecule partial agonists for Adhesion G protein-coupled receptors GPR56/ADGRG1 and GPR114/ADGRG5. Mol Pharmacol. 2018;93:477–488.
  • Stoveken HM, Bahr LL, Anders MW, et al. Dihydromunduletone is a small-molecule selective Adhesion G protein-coupled receptor antagonist. Mol Pharmacol. 2016;90:214–224.
  • De Groot DM, Vogel G, Dulos J, et al. Therapeutic antibody targeting of CD97 in experimental arthritis: the role of antigen expression, shedding, and internalization on the pharmacokinetics of Anti-CD97 monoclonal antibody 1B2. J Immunol. 2009;183:4127–4134.
  • Veninga H, Becker S, Hoek RM, et al. Analysis of CD97 expression and manipulation: antibody treatment but not gene targeting curtails granulocyte migration. J Immunol. 2008;181:6574–6583.
  • Iguchi T, Sakata K, Yoshizaki K, et al. Orphan G protein-coupled receptor GPR56 regulates neural progenitor cell migration via a Gα12/13 and Rho pathway. J Biol Chem. 2008;283:14469–14478.
  • Jo M, Jung ST. Engineering therapeutic antibodies targeting G-protein-coupled receptors. Exp Mol Med. 2016;48:e207.
  • Hutchings CJ, Koglin M, Olson WC, et al. Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. Nat Rev Drug Discov. 2017;16:787–810.
  • Kim HY, Spector AA. N- Docosahexaenoylethanolamine: A neurotrophic and neuroprotective metabolite of docosahexaenoic acid. Mol Aspects Med. 2018;64:34–44.
  • Park T, Chen H, Kim HY. GPR110 (ADGRF1) mediates anti-inflammatory effects of N-docosahexaenoylethanolamine. J Neuroinflammation. 2019;16:225.
  • Lee JW, Huang BX, Kwon H, et al. Orphan GPR110 (ADGRF1) targeted by N-docosahexaenoylethanolamine in development of neurons and cognitive function. Nat Commun. 2016;7:13123.
  • Demberg LM, Winkler J, Wilde C, et al. Activation of Adhesion G Protein-coupled Receptors: AGONIST SPECIFICITY OF STACHEL SEQUENCE-DERIVED PEPTIDES. J Biol Chem. 2017;292:4383–4394.
  • Leon K, Cunningham RL, Riback JA, et al. Structural basis for adhesion G protein-coupled receptor Gpr126 function. Nat Commun. 2020;11(1):194.