3,291
Views
24
CrossRef citations to date
0
Altmetric
Review

The combination of artificial intelligence and systems biology for intelligent vaccine design

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1267-1281 | Received 21 Mar 2020, Accepted 30 Jun 2020, Published online: 14 Jul 2020

References

  • Kanekiyo M, Ellis D, King NP. New vaccine design and delivery technologies. J Infect Dis. 2019;219(Supplement_1):S88-S96.
  • Anasir MI, Poh CL. Structural vaccinology for viral vaccine design. Front Microbiol. 2019;10. DOI:10.3389/fmicb.2019.00738
  • Kaufmann SHE, Juliana McElrath M, Lewis DJM, et al. Challenges and responses in human vaccine development. Curr Opin Immunol. 2014;28:18–26.
  • Fraga AG, Barbosa AM, Ferreira CM, et al. Immune-evasion strategies of mycobacteria and their implications for the protective immune response. Curr Issues Mol Biol 2018;169–198. DOI:10.21775/cimb.025.169.
  • Thakur A, Mikkelsen H, Jungersen G. Intracellular pathogens: host immunity and microbial persistence strategies. J Immunol Res. 2019;2019:1–24.
  • Singh K, Mehta S. The clinical development process for a novel preventive vaccine: an overview. J Postgrad Med. 2016;62(1):4.
  • Gomez PL, Robinson JM. Vaccine manufacturing. Plotkin’s Vaccines. 2018;51–60.e1. DOI:10.1016/B978-0-323-35761-6.00005-5
  • WHO. Guidelines on clinical evaluation of vaccines: regulatory expectations. WHO Tech Rep. [Internet]. 2017;35–102. Available from: https://apps.who.int/medicinedocs/en/m/abstract/Js23328en/
  • Rolling KE, Hayney MS. The vaccine development process. J Am Pharm Assoc. 2016;56(6):687–689.
  • Han S. Clinical vaccine development. Clin Exp Vaccine Res. 2015;4(1):46.
  • European medicines agency, CAT secretariat & US food and drug administration. Regen Med. 2011;6(6 Suppl):90–96. DOI:10.2217/rme.11.86
  • Miller MA, Rathore MH. Immunization in special populations. Adv Pediatr. 2012;59(1):95–136.
  • Cagigi A, Rinaldi S, Di Martino A, et al. Premature immune senescence during HIV-1 vertical infection relates with response to influenza vaccination. J Allergy Clin Immunol. 2014;133(2):592–594.e1.
  • Jędrychowski M, Czepiel J, Michalak M, et al. Influenza vaccination in HIV-infected patients. HIV AIDS Rev. 2019;18(1):44–49.
  • Trovato M, D’Apice L, Prisco A, et al. HIV vaccination: A roadmap among advancements and concerns. Int J Mol Sci. 2018;19(4):1241.
  • Falsey AR, Treanor JJ, Tornieporth N, et al. Randomized, double‐blind controlled phase 3 trial comparing the immunogenicity of high‐dose and standard‐dose influenza vaccine in adults 65 years of age and older. J Infect Dis. 2009;200(2):172–180.
  • Haks MC, Bottazzi B, Cecchinato V, et al. Molecular signatures of immunity and immunogenicity in infection and vaccination. Front Immunol. 2017;8. DOI:10.3389/fimmu.2017.01563.
  • Klasse PJ. Neutralization of virus infectivity by antibodies: old problems in new perspectives. Adv Biol. 2014;2014:1–24.
  • Zhang N, Bevan MJ. CD8+ T cells: foot soldiers of the immune system. Immunity. 2011;35(2):161–168.
  • Cotugno N, Ruggiero A, Santilli V, et al. OMIC Technologies and vaccine development: from the identification of vulnerable individuals to the formulation of invulnerable vaccines. J Immunol Res. 2019;2019:1–10.
  • Bachmann MF, Jennings GT. Therapeutic vaccines for chronic diseases: successes and technical challenges. Philos Trans R Soc B Biol Sci. 2011;366(1579):2815–2822.
  • Mondal B. Artificial intelligence: state of the art. Intell Syst Ref Libr. 2019:172:389–425.
  • Stair R, Reynolds G, Jr R K, et al. Principles of information systems. System. 2017.
  • Chen SH, Jakeman AJ, Norton JP. Artificial Intelligence techniques: an introduction to their use for modelling environmental systems. Math Comput Simul. 2008;78(2–3):379–400.
  • Tiwari AK. Introduction to machine learning. In: Information Resources Management Association, IGI Global, editor. Deep Learning and Neural Networks: Concepts, Methodologies, Tools, and Applications. 2020. pp. 41–51. DOI:10.4018/978-1-7998-0414-7.ch003
  • Kotsiantis SB. Supervised machine learning: a review of classification techniques. Inform. 2007;31:249–268.
  • Usama M, Qadir J, Raza A, et al. Unsupervised machine learning for networking: techniques, applications and research challenges. IEEE Access. 2019;7:65579–65615.
  • François-Lavet V, Henderson P, Islam R, et al. An introduction to deep reinforcement learning. Found Trends Mach Learn. 2018;11(3–4):219–354.
  • Macal CM. Agent based modeling and artificial life. In: Meyers R, editors. Encyclopedia of Complexity and Systems Science. 2009. New York, NY: Springer. ISBN:978-0-387-30440-3. DOI: 10.1007/978-0-387-30440-3
  • Lundegaard C, Lund O, Nielsen M. Prediction of epitopes using neural network based methods. J Immunol Methods. 2011;374(1–2):26–34.
  • Nanni L, Brahnam S, Lumini A. Artificial intelligence systems based on texture descriptors for vaccine development. Amino Acids. 2011;40(2):443–451.
  • Jabbari P, Rezaei N. Artificial intelligence and immunotherapy. Expert Rev Clin Immunol. 2019;15(7):689–691.
  • Mak KK, Pichika MR. Artificial intelligence in drug development: present status and future prospects. Drug Discov Today. 2019;24(3):773–780.
  • Pappalardo F, Flower D, Russo G, et al. Computational modelling approaches to vaccinology. Pharmacol Res [Internet]. 2015;92:40–45. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1043661814001431.
  • Barman RK, Saha S, Das S. Prediction of interactions between viral and host proteins using supervised machine learning methods. PLoS One. 2014;9(11):e112034.
  • Qiu X, Duvvuri VR, Bahl J. Computational approaches and challenges to developing universal influenza vaccines. Vaccines (Basel). 2019;7(2):45.
  • Yermanos AD, Dounas AK, Stadler T, et al. Tracing antibody repertoire evolution by systems phylogeny. Front Immunol. 2018;9. DOI:10.3389/fimmu.2018.02149.
  • Ayers D, Day PJ. Systems medicine: the application of systems biology approaches for modern medical research and drug development. Mol Biol Int. 2015;2015:1–8.
  • Nakaya HI, Li S, Pulendran B. Systems vaccinology: learning to compute the behavior of vaccine induced immunity. Wiley interdiscip. Rev Syst Biol Med. 2012;4(2):193–205.
  • Germain RN. Will systems biology deliver its promise and contribute to the development of new or improved vaccines? Cold Spring Harb Perspect Biol. 2018;10(8):a033308.
  • Tsang JS. Utilizing population variation, vaccination, and systems biology to study human immunology. Trends Immunol. 2015;36(8):479–493.
  • Pulendran B, Li S, Nakaya HI. Systems vaccinology. Immunity. 2010;33(4):516–529.
  • Lewis DJM, Lythgoe MP. Application of “systems vaccinology” to evaluate inflammation and reactogenicity of adjuvanted preventative vaccines. J Immunol Res. 2015;2015:1–11.
  • Pulendran B. Systems vaccinology: probing humanity’s diverse immune systems with vaccines. Proc Natl Acad Sci U S A. 2014;111(34):12300–12306.
  • Buonaguro L, Wang E, Tornesello ML, et al. Systems biology applied to vaccine and immunotherapy development. BMC Syst Biol. 2011;5(1):146.
  • Raeven RHM, van Riet E, Meiring HD, et al. Systems vaccinology and big data in the vaccine development chain. Immunology. 2019;156(1):33–46.
  • Postnikova E, Cong Y, DeWald LE, et al. Testing therapeutics in cell-based assays: factors that influence the apparent potency of drugs. PLoS One. 2018;13(3):e0194880.
  • Galassie AC, Link AJ. Proteomic contributions to our understanding of vaccine and immune responses. Proteomics - Clin Appl. 2015;9(11–12):972–989.
  • Barton AJ, Hill J, Pollard AJ, et al. Transcriptomics in human challenge models. Front Immunol. 2017;8. DOI:10.3389/fimmu.2017.01839.
  • Cappuccio A, Tieri P, Castiglione F. Multiscale modelling in immunology: A review. Brief Bioinform. 2016;17(3):408–418.
  • Castiglione F, Pappalardo F, Bianca C, et al. Modeling biology spanning different scales: an open challenge. Biomed Res Int [Internet]. 2014;2014:1–9. Available from: http://www.hindawi.com/journals/bmri/2014/902545/
  • Passini E, Britton OJ, Lu HR, et al. Human in silico drug trials demonstrate higher accuracy than animal models in predicting clinical pro-arrhythmic cardiotoxicity. Front Physiol2017;8. DOI:10.3389/fphys.2017.00668.
  • Pappalardo F, Russo G, Tshinanu FM, et al. In silico clinical trials: concepts and early adoptions. Brief Bioinform. 2018;20(5):1699–1708.
  • Viceconti M, Juarez MA, Curreli C, et al. Credibility of in silico trial technologies—a theoretical framing. IEEE J Biomed Heal Inf. [Internet]. 2020;24(1):4–13. Available from: https://ieeexplore.ieee.org/document/8884189/
  • Viceconti M, Pappalardo F, Rodriguez B, et al. In silico trials: verification, validation and uncertainty quantification of predictive models used in the regulatory evaluation of biomedical products. Methods [Internet]. 2020; Available from: https://linkinghub.elsevier.com/retrieve/pii/S1046202319302452
  • Hepatitis B vaccines: WHO position paper – july 2017. Relev Epidemiol Hebd. 2017.
  • Tetanus vaccines: WHO position paper, February 2017 – recommendations. Vaccine. 2018.
  • World Health Organization. Hepatitis B vaccines: WHO position paper, July 2017 - Recommendations. Vaccine. 2019;37(2):223–225. DOI:10.1016/j.vaccine.2017.07.046
  • Van Damme P, De Coster I, Bandyopadhyay AS, et al. The safety and immunogenicity of two novel live attenuated monovalent (serotype 2) oral poliovirus vaccines in healthy adults: a double-blind, single-centre phase 1 study. Lancet. 2019;394(10193):148–158.
  • Bergman H, Buckley BS, Villanueva G, et al. Comparison of different human papillomavirus (HPV) vaccine types and dose schedules for prevention of HPV-related disease in females and males. Cochrane Database Syst Rev. 2019. DOI:10.1002/14651858.CD013479.
  • Htar MTT, Stuurman AL, Ferreira G, et al. Effectiveness of pneumococcal vaccines in preventing pneumonia in adults, a systematic review and meta-analyses of observational studies. PLoS One. 2017;12(5):e0177985. DOI:10.1371/journal.pone.0177985
  • World Health Organization. WHO position paper, Meningococcal A conjugate vaccine: updated guidance, February 2015. Vaccine. 2018;36(24):3421–3422.
  • Hollingsworth RE, Jansen K. Turning the corner on therapeutic cancer vaccines. Npj Vaccines. 2019;4(1). DOI:10.1038/s41541-019-0103-y
  • Qu C, Chen T, Fan C, et al. Efficacy of neonatal HBV vaccination on liver cancer and other liver diseases over 30-year follow-up of the qidong hepatitis B intervention study: a cluster randomized controlled trial. PLoS Med. 2014;11(12):e1001774.
  • Joura EA, Kyrgiou M, Bosch FX, et al. Human papillomavirus vaccination: the ESGO–EFC position paper of the European society of gynaecologic oncology and the European federation for colposcopy. Eur J Cancer. 2019;116:21–26.
  • Vermaelen K. Vaccine strategies to improve anticancer cellular immune responses. Front Immunol. 2019;10. DOI:10.3389/fimmu.2019.00008
  • Anassi E, Ndefo UA. Sipuleucel-T (Provenge) injection: the first immunotherapy agent (vaccine) for hormone-refractory prostate cancer. P T. 2011 Apr;36(4):197–202. PMID: 21572775.
  • Cheever MA, Higano CS. PROVENGE (sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res. 2011;17(11):3520–3526.
  • Kruger S, Ilmer M, Kobold S, et al. Advances in cancer immunotherapy 2019 - Latest trends. J Exp Clin Cancer Res. 2019;38(1). DOI:10.1186/s13046-019-1266-0.
  • Wraith DC. The future of immunotherapy: A 20-year perspective. Front Immunol. 2017;8. DOI:10.3389/fimmu.2017.01668
  • Ponda P, Hirsch D. Antigen-based immunotherapy for autoimmune disease: current status. ImmunoTargets Ther. 2014;1. DOI:10.2147/ITT.S49656
  • Sharpe M, Mount N. Genetically modified T cells in cancer therapy: opportunities and challenges. DMM Dis Model Mech. 2015;8(4):337–350.
  • Marhelava K, Pilch Z, Bajor M, et al. Targeting negative and positive immune checkpoints with monoclonal antibodies in therapy of cancer. Cancers (Basel). 2019;11(11):1756.
  • Baecher-Allan C, Kaskow BJ, Weiner HL. Multiple sclerosis: mechanisms and immunotherapy. Neuron. 2018;97(4):742–768.
  • Reynolds G, Cooles FAH, Isaacs JD, et al. Emerging immunotherapies for rheumatoid arthritis. Hum Vaccin Immunother. 2014;10(4):822–837.
  • Sutcliffe S, Kalyan S, Pankovich J, et al. Novel microbial-based immunotherapy approach for crohn’s disease. Front Med. 2019;6. DOI:10.3389/fmed.2019.00170.
  • Lugowska I, Teterycz P, Rutkowski P. Immunotherapy of melanoma. Contemp Oncol (Pozn). 2018 Mar;22(1A):61–67. DOI:10.5114/wo.2018.73889. Epub 2018 Mar 5. PMID: 29628796; PMCID: PMC5885078.
  • Corrales L, Scilla K, Caglevic C, et al. Immunotherapy in lung cancer: A new age in cancer treatment. Adv Exp Med Biol. 2018;995:65–95.
  • Santoni M, Massari F, Di Nunno V, et al. Immunotherapy in renal cell carcinoma: latest evidence and clinical implications. Drugs in Context. 2018;7:1–8.
  • Konala VM, Adapa S, Aronow WS. Immunotherapy in bladder cancer. Am J Ther. 2019. DOI:10.1097/MJT.0000000000000934
  • Greenplate AR, Johnson DB, Ferrell PB, et al. Systems immune monitoring in cancer therapy. Eur J Cancer. 2016;61:77–84.
  • Wooden SL, Koff WC. The human vaccines project: towards a comprehensive understanding of the human immune response to immunization. Hum Vaccin Immunother. 2018;14(9):2214–2216.
  • Michel-Todó L, Reche PA, Bigey P, et al. In silico design of an epitope-based vaccine ensemble for chagas disease. Front Immunol. 2019;10. DOI:10.3389/fimmu.2019.02698.
  • Li Y, Niu M, Zou Q. ELM-MHC: an improved MHC identification method with extreme learning machine algorithm. J Proteome Res. 2019;18(3):1392–1401.
  • De Groot AS, Bosma A, Chinai N, et al. From genome to vaccine: in silico predictions, ex vivo verification. Vaccine. 2001;19(31):4385–4395. .
  • Schafer JRA, Jesdale BM, George JA, et al. Prediction of well-conserved HIV-1 ligands using a matrix-based algorithm, EpiMatrix. Vaccine. 1998;16(19):1880–1884.
  • Meister GE, Roberts CGP, Berzofsky JA, et al. Two novel T cell epitope prediction algorithms based on MHC-binding motifs; comparison of predicted and published epitopes from Mycobacterium tuberculosis and HIV protein sequences. Vaccine. 1995;13(6):581–591.
  • Hagmann M. Computers aid vaccine design. Science. 2000;290(5489):80–82.
  • Tomic A, Tomic I, Rosenberg-Hasson Y, et al. SIMON, an automated machine learning system, reveals immune signatures of influenza vaccine responses. J Immunol. 2019;203(3):749–759.
  • Petrovsky N. Vaccines immunother. Vaxine Hum. 201612(11):2726–2728.
  • Pennisi M, Giulia R, Giuseppe S, et al. Predicting the artificial immunity induced by RUTI (®) vaccine against tuberculosis using Universal Immune System Simulator (UISS). BMC Bioinformatics. 2019;20(S6). DOI:10.1186/s12859-019-3045-5.
  • Pappalardo F, Fichera E, Paparone N, et al. A computational model to predict the immune system activation by citrus-derived vaccine adjuvants. Bioinformatics. Internet]. 2016;32(17):2672–2680. Available from: http://bioinformatics.oxfordjournals.org/content/early/2016/05/08/bioinformatics.btw293.abstract
  • Pennisi M, Russo G, Ravalli S, et al. Combining agent based-models and virtual screening techniques to predict the best citrus-derived vaccine adjuvants against human papilloma virus. BMC Bioinformatics. [Internet]. 2017;18(S16):544. Available from: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1961-9
  • Chiacchio F, Pennisi M, Russo G, et al. Agent-based modeling of the immune system: NetLogo, a promising framework. Biomed Res Int [Internet]. 2014;2014:1–6. Available from: http://www.hindawi.com/journals/bmri/2014/907171/
  • Pellequer JL, Westhof E, Van Regenmortel MHV. Correlation between the location of antigenic sites and the prediction of turns in proteins. Immunol Lett. 1993;36(1):83–99.
  • Khan A, Shin OS, Na J, et al. A systems vaccinology approach reveals the mechanisms of immunogenic responses to hantavax vaccination in humans. Sci Rep. 2019;6:62.
  • Kuleš J, Horvatić A, Guillemin N, et al. New approaches and omics tools for mining of vaccine candidates against vector-borne diseases. Mol Biosyst. 2016;12(9):2680–2694.
  • Bragazzi NL, Gianfredi V, Villarini M, et al. Vaccines meet big data: state-of the- Art and future prospects. From the classical 3is (“isolate-inactivate- inject”) vaccinology 1.0 to vaccinology 3.0, vaccinomics, and Beyond: A historical overview. Front Public Health. 2018;6. DOI:10.3389/fpubh.2018.00062.
  • Costa V, Angelini C, De Feis I, et al. Uncovering the complexity of transcriptomes with RNA-Seq. J Biomed Biotechnol. 2010;2010:1–19.
  • Avey S, Cheung F, Fermin D, et al. Multicohort analysis reveals baseline transcriptional predictors of influenza vaccination responses. Sci Immunol. 2017;9:2315.
  • Mizukami T, Momose H, Kuramitsu M, et al. System vaccinology for the evaluation of influenza vaccine safety by multiplex gene detection of novel biomarkers in a preclinical study and batch release test. PLoS One. 2014;9(7):e101835.
  • Bidmos FA, Siris S, Gladstone CA, et al. Bacterial vaccine antigen discovery in the reverse vaccinology 2.0 Era: progress and challenges. Front Immunol. 2018;9. DOI:10.3389/fimmu.2018.02315.
  • Moxon R, Reche PA, Rappuoli R. Editorial: reverse Vaccinology. Front Immunol. 2019;10:1–2.
  • Vivona S, Bernante F, Filippini F. NERVE: new enhanced reverse vaccinology environment. BMC Biotechnol. 2006;6(1):35.
  • He Y, Xiang Z, Mobley HLT. Vaxign: the first web-based vaccine design program for reverse vaccinology and applications for vaccine development. J Biomed Biotechnol. 2010;2010:1–15.
  • Doytchinova IA, Flower DR. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics. 2007;8(1). DOI:10.1186/1471-2105-8-4
  • Jaiswal V, Chanumolu SK, Gupta A, et al. Jenner-predict server: prediction of protein vaccine candidates (PVCs) in bacteria based on host-pathogen interactions. BMC Bioinformatics. 2013;14(1):211.
  • Rizwan M, Naz A, Ahmad J, et al. VacSol: A high throughput in silico pipeline to predict potential therapeutic targets in prokaryotic pathogens using subtractive reverse vaccinology. BMC Bioinformatics. 2017;18(1). DOI:10.1186/s12859-017-1540-0.
  • Ong E, Wang H, Wong MU, et al. Vaxign-ML: supervised machine learning reverse vaccinology model for improved prediction of bacterial protective antigens. Bioinformatics. 2020;36(10):3185–3191. .
  • Sanchez-Trincado JL, Gomez-Perosanz M, Reche PA. Fundamentals and methods for T- and B-cell epitope prediction. J Immunol Res. 2017;2017:1–14.
  • Hopp TP, Woods KR. Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci U S A. 1981;78(6):3824–3828.
  • Hopp TP, Woods KR. A computer program for predicting protein antigenic determinants. Mol Immunol. 1983;20(4):483–489.
  • Karplus PA, Schulz GE. Prediction of chain flexibility in proteins - A tool for the selection of peptide antigens. Naturwissenschaften. 1985;72(4):212–213.
  • Emini EA, Hughes JV, Perlow DS, et al. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol. 1985;55(3):836–839.
  • Jespersen MC, Peters B, Nielsen M, et al. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 2017;45(W1):W24-W29.
  • Saha S, Raghava GPS. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins Struct Funct Genet. 2006;65(1):40–48.
  • Yao B, Zhang L, Liang S, et al. SVMTriP: a method to predict antigenic epitopes using support vector machine to integrate tri-peptide similarity and propensity. PLoS One. 2012;7(9):e45152.
  • Levitt M. Nature of the protein universe. Proc Natl Acad Sci U S A. 2009;106(27):11079–11084.
  • Kulkarni-Kale U, Bhosle S, Kolaskar AS. CEP: A conformational epitope prediction server. Nucleic Acids Res. 2005;33(Web Server):W168-W171.
  • Sweredoski MJ, Baldi P. PEPITO: improved discontinuous B-cell epitope prediction using multiple distance thresholds and half sphere exposure. Bioinformatics. 2008;24(12):1459–1460.
  • Rubinstein ND, Mayrose I, Martz E, et al. Epitopia: A web-server for predicting B-cell epitopes. BMC Bioinformatics. 2009;10(1):287.
  • Krawczyk K, Liu X, Baker T, et al. Improving B-cell epitope prediction and its application to global antibody-antigen docking. Bioinformatics. 2014;30(16):2288–2294.
  • Sela-Culang I, Ashkenazi S, Peters B, et al. PEASE: predicting B-cell epitopes utilizing antibody sequence. Bioinformatics. 2015;31(8):1313–1315.
  • Paul WE. Fundamental Immunology. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2013.
  • Lafuente E, Reche P. Prediction of MHC-peptide binding: a systematic and comprehensive overview. <![CDATA[Current Pharmaceutical Design]]>. 2009;15(28):3209–3220.
  • Trolle T, Metushi IG, Greenbaum JA, et al. Automated benchmarking of peptide-MHC class i binding predictions. Bioinformatics. 2015;31(13):2174–2181.
  • Andreatta M, Trolle T, Yan Z, et al. An automated benchmarking platform for MHC class II binding prediction methods. Bioinformatics. 2018;34(9):1522–1528.
  • Zhang Q, Wang P, Kim Y, et al. Immune epitope database analysis resource (IEDB-AR). Nucleic Acids Res. 2008;36(Web Server):W513-W518.
  • Rammensee HG, Bachmann J, Emmerich NPN, et al. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics. 1999;50(3–4):213–219.
  • Reche PA, Glutting J-P, Zhang H, et al. Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics. 2004;56(6). DOI:10.1007/s00251-004-0709-7.
  • Diez-Rivero CM, Chenlo B, Zuluaga P, et al. Quantitative modeling of peptide binding to TAP using support vector machine. Proteins Struct Funct Bioinforma. 2010;78(1):63–72.
  • Diez-Rivero CM, Lafuente EM, Reche PA. Computational analysis and modeling of cleavage by the immunoproteasome and the constitutive proteasome. BMC Bioinformatics. 2010;11(1):479.
  • Doytchinova IA, Guan P, Flower DR. EpiJen: A server for multistep T cell epitope prediction. BMC Bioinformatics. 2006;7(1):131.
  • Larsen MV, Lundegaard C, Lamberth K, et al. An integrative approach to CTL epitope prediction: A combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions. Eur J Immunol. 2005;35(8):2295–2303.
  • Schneidman-Duhovny D, Khuri N, Dong GQ, et al. Predicting CD4 T-cell epitopes based on antigen cleavage, MHCII presentation, and TCR recognition. PLoS One. 2018;13(11):e0206654.
  • Reche PA, Reinherz EL. Sequence variability analysis of human class I and class II MHC molecules: functional and structural correlates of amino acid polymorphisms. J Mol Biol. 2003;331(3):623–641.
  • Terasaki PI. A brief history of HLA. Immunol Res. 2007;38(1–3):139–148.
  • Reche PA, Reinherz EL. PEPVAC: A web server for multi-epitope vaccine development based on the prediction of supertypic MHC ligands. Nucleic Acids Res. 2005;33(Web Server):W138-W142.
  • Molero-Abraham M, Lafuente EM, Flower DR, et al. Selection of conserved epitopes from hepatitis c virus for pan-populational stimulation of T-cell responses. Clin Dev Immunol. 2013;2013:1–10.
  • Brown SD, Raeburn LA, Holt RA. Profiling tissue-resident T cell repertoires by RNA sequencing. Genome Med. 2015;7(1). DOI:10.1186/s13073-015-0248-x
  • Mose LE, Selitsky SR, Bixby LM, et al. Assembly-based inference of B-cell receptor repertoires from short read RNA sequencing data with V’DJer. Bioinformatics. 2016;32(24):3729–3734.
  • Stubbington MJT, Lönnberg T, Proserpio V, et al. T cell fate and clonality inference from single-cell transcriptomes. Nat Methods. 2016;13(4):329–332.
  • Miho E, Yermanos A, Weber CR, et al. Computational strategies for dissecting the high-dimensional complexity of adaptive immune repertoires. Front Immunol. 2018;9. DOI:10.3389/fimmu.2018.00224.
  • Shugay M, Bagaev DV, Zvyagin IV, et al. VDJdb: A curated database of T-cell receptor sequences with known antigen specificity. Nucleic Acids Res. 2018;46(D1):D419-D427.
  • Zhang W, Wang L, Liu K, et al. PIRD: pan immune repertoire database. Bioinformatics. 2020;359(6382):1355–1360.
  • Sahin U, Türeci Ö. Personalized vaccines for cancer immunotherapy. Science (80). 2018;359(6382):1355–1360.
  • Türeci Ö, Vormehr M, Diken M, et al. Targeting the heterogeneity of cancer with individualized neoepitope vaccines. Clin Cancer Res. 2016;22(8):1885–1896.
  • Heymann D, Téllez-Gabriel M. Circulating tumor cells: the importance of single cell analysis. Adv Exp Med Biol. 2018;25(6):1034–1042.
  • Parvizpour S, Pourseif MM, Razmara J, et al. Epitope-based vaccine design: a comprehensive overview of bioinformatics approaches. Drug Discov Today. 2020;25(6):1034–1042.
  • Parvizpour S, Razmara J, Omidi Y. Breast cancer vaccination comes to age: impacts of bioinformatics. BioImpacts. 2018;8(3):223–235.
  • Wolfram S. Universality and complexity in cellular automata. Phys D Nonlinear Phenom. 1984;10(1–2):1–35.
  • Pennisi M, Russo G, Motta S, et al. Agent based modeling of the effects of potential treatments over the blood–brain barrier in multiple sclerosis. J Immunol Methods [Internet]. 2015;427:6–12. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0022175915300417
  • Celada F, Seiden PE. A computer model of cellular interactions in the immune system. Immunol Today [Internet]. 1992;13:56–62. Available from: https://linkinghub.elsevier.com/retrieve/pii/016756999290135T
  • Madonia A, Melchiorri C, Bonamano S, et al. Computational modeling of immune system of the fish for a more effective vaccination in aquaculture. Bioinformatics. 2017;33(19):3065–3071.
  • Pennisi M, Rajput AM, Toldo L, et al. Agent based modeling of Treg-Teff cross regulation in relapsing-remitting multiple sclerosis. BMC Bioinformatics. 2013;14(S16). DOI:10.1186/1471-2105-14-S16-S9.
  • Meier-Schellersheim M, Mack G. SIMMUNE, a tool for simulating and analyzing immune system behavior. 1999 [cited 2020 Jul 9];1–23. Available from: http://arxiv.org/abs/cs/9903017.
  • Warrender C, Forrest S, Segel L. Homeostasis of peripheral immune effectors. Bull Math Biol. 2004;66(6):1493–1514.
  • Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39(Web Server issue):W29-W37. DOI:10.1093/nar/gkr367
  • Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 2020;48(W1):W449-W454. doi:10.1093/nar/gkaa379

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.