368
Views
16
CrossRef citations to date
0
Altmetric
Review

Antimicrobial peptides: a promising strategy for lung cancer drug discovery?

, , , ORCID Icon, , , , & show all
Pages 1343-1354 | Received 05 Apr 2020, Accepted 30 Jun 2020, Published online: 04 Aug 2020

References

  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019 Jan 01;69(1):7–34.
  • de Groot PM, Wu CC, Carter BW, et al. The epidemiology of lung cancer. Transl Lung Cancer Res. 2018;7(3):220–233.
  • Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015 Mar 01;136(5):E359–E386.
  • Lum C, Technological AM. Therapeutic advances in advanced small cell lung cancer. Cancers (Basel). 2019 Oct 15;11(10). DOI:10.3390/cancers11101570.
  • Skoulidis F, Heymach JV. Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy. Nat Rev Cancer. 2019 Sep;19(9):495–509.
  • Molina JR, Yang P, Cassivi SD, et al. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 2008 May 01;83(5):584–594.
  • Kalemkerian GP, Akerley W, Bogner P, et al. Small cell lung cancer. J Natl Compr Canc Netw. 2013 Jan 1;11(1):78–98.
  • Hirsch FR, Scagliotti GV, Mulshine JL, et al. Lung cancer: current therapies and new targeted treatments. Lancet. 2017 Jan 21;389(10066):299–311.
  • Zappa C, Mousa SA. Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res. 2016;5(3):288–300.
  • Hirsch FR, Suda K, Wiens J, et al. New and emerging targeted treatments in advanced non-small-cell lung cancer. Lancet. 2016 Sep 03;388(10048):1012–1024.
  • Aghapour M, Raee P, Moghaddam SJ, et al. Airway epithelial barrier dysfunction in chronic obstructive pulmonary disease: role of cigarette smoke exposure. Am J Respir Cell Mol Biol. 2018 Feb 01;58(2):157–169.
  • Zugazagoitia J, Guedes C, Ponce S, et al. Current challenges in cancer treatment. Clin Ther. 2016 Jul 01;38(7):1551–1566.
  • Tartarone A, Giordano P, Lerose R, et al. Progress and challenges in the treatment of small cell lung cancer. Med Oncol. 2017 Apr 29;34(6):110.
  • Yu G, Baeder DY, Regoes RR, et al. Combination effects of antimicrobial peptides. Antimicrob Agents Chemother. 2016;60(3):1717. .
  • Hancock REW, Haney EF, Gill EE. The immunology of host defence peptides: beyond antimicrobial activity. Nat Rev Immunol. 2016 May 01;16(5):321–334.
  • He X, Yang S, Wei L, et al. Antimicrobial peptide diversity in the skin of the torrent frog, Amolops jingdongensis. Amino Acids. 2013 Feb 01;44(2):481–487.
  • Schmitt P, Rosa RD, Destoumieux-Garzón D. An intimate link between antimicrobial peptide sequence diversity and binding to essential components of bacterial membranes. Biochim Biophys Acta - Biomembr. 2016 May 01;1858(5):958–970.
  • Wiesner J, Vilcinskas A. Antimicrobial peptides: the ancient arm of the human immune system. Virulence. 2010 Sep 01;1(5):440–464.
  • Dennison SR, Harris F, Bhatt T, et al. A theoretical analysis of secondary structural characteristics of anticancer peptides. Mol Cell Biochem. 2009 Jul 21;333(1):129.
  • Migoń D, Neubauer D, Kamysz W. Hydrocarbon stapled antimicrobial peptides. Protein J. 2018 Feb 01;37(1):2–12.
  • Vakharia PP, Silverberg JI. New therapies for atopic dermatitis: additional treatment classes. J Am Acad Dermatol. 2018 Mar 01;78(3, Supplement 1):S76–S83.
  • Trivedi MK, Bosanac SS, Sivamani RK, et al. Emerging therapies for acne vulgaris. Am J Clin Dermatol. 2018 Aug 01;19(4):505–516.
  • Madden GR, Sifri CD. Antimicrobial resistance to agents used for staphylococcus aureus decolonization: is there a reason for concern? Curr Infect Dis Rep. 2018 Jun 07;20(8):26.
  • Dolkar T, Trinidad CM, Nelson KC, et al. Dermatologic toxicity from novel therapy using antimicrobial peptide LL-37 in melanoma: A detailed examination of the clinicopathologic features. J Cutan Pathol. 2018 jul 01;45(7):539–544.
  • Gronberg A, Mahlapuu M, Stahle M, et al. Treatment with LL-37 is safe and effective in enhancing healing of hard-to-heal venous leg ulcers: a randomized, placebo-controlled clinical trial. Wound Repair Regen. 2014 Sep-Oct;22(5):613–621.
  • Sierra JM, Fusté E, Rabanal F, et al. An overview of antimicrobial peptides and the latest advances in their development. Expert Opin Biol Ther. 2017 Jun 03;17(6):663–676.
  • Sztukowska MN, Roky M, Demuth DR. Peptide and non-peptide mimetics as potential therapeutics targeting oral bacteria and oral biofilms. Mol Oral Microbiol. 2019 Oct 01;34(5):169–182.
  • Baker JL, He X, Shi W. Precision reengineering of the oral microbiome for caries management. Adv Dent Res. 2019 Nov 01;30(2):34–39.
  • Milgrom PM, Horst JA. The effect of new oral care technologies on the need for dentists in 2040. J Dent Educ. 2017;81(8):eS126.
  • Silva JP, Appelberg R, Gama FM. Antimicrobial peptides as novel anti-tuberculosis therapeutics. Biotechnol Adv. 2016 Sep 01;34(5):924–940.
  • Martin-Loeches I, Dale GE, Torres A. Murepavadin: a new antibiotic class in the pipeline. Expert Rev Anti Infect Ther. 2018 Apr 03;16(4):259–268.
  • Bader JC, Lakota EA, Dale GE, et al. Pharmacokinetic-pharmacodynamic evaluation of ertapenem for patients with hospital-acquired or ventilator-associated bacterial pneumonia. Antimicrob Agents Chemother. 2019;63(6):e00318–19.
  • Kudrimoti M, Curtis A, Azawi S, et al. Dusquetide: reduction in oral mucositis associated with enduring ancillary benefits in tumor resolution and decreased mortality in head and neck cancer patients. Biotechnol Reports. 2017 Sep 01;15:24–26. .
  • Sun E, Belanger CR, Haney EF, et al. 10 - Host defense (antimicrobial) peptides. In: Koutsopoulos S, editor. Peptide applications in biomedicine, biotechnology and bioengineering. Cambridge (UK): Woodhead Publishing; 2018. p. 253–285.
  • Molchanova N, Hansen RP, Franzyk H. Advances in development of antimicrobial peptidomimetics as potential drugs. Molecules. 2017;22:9.
  • Easton DM, Nijnik A, Mayer ML, et al. Potential of immunomodulatory host defense peptides as novel anti-infectives. Trends Biotechnol. 2009 Oct 01;27(10):582–590.
  • Yeung ATY, Gellatly SL, Hancock REW. Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci. 2011 May 15;68(13):2161.
  • Sortino O, Hullsiek KH, Richards E, et al. The effects of recombinant human lactoferrin on immune activation and the intestinal microbiome among persons living with human immunodeficiency virus and receiving antiretroviral therapy. J Infect Dis. 2019;219(12):1963–1968.
  • Butler MS, Blaskovich MAT, Cooper MA. Antibiotics in the clinical pipeline at the end of 2015. J Antibiot (Tokyo). 2017 Jan 01;70(1):3–24.
  • Nilsson AC, Janson H, Wold H, et al. LTX-109 is a novel agent for nasal decolonization of methicillin-resistant and -sensitive staphylococcus aureus. Antimicrob Agents Chemother. 2015;59(1):145–151. .
  • Wang J, Dou X, Song J, et al. Antimicrobial peptides: promising alternatives in the post feeding antibiotic era. Med Res Rev. 2019 May 01;39(3):831–859.
  • Battersby AJ, Khara J, Wright VJ, et al. Antimicrobial proteins and peptides in early life: ontogeny and translational opportunities [10.3389/fimmu.2016.00309]. Front Immunol. 2016;7:309.
  • Brouwer CPJM, Rahman M, Welling MM. Discovery and development of a synthetic peptide derived from lactoferrin for clinical use. Peptides. 2011 Sep 01;32(9):1953–1963.
  • Bassetti M, Righi E. Development of novel antibacterial drugs to combat multiple resistant organisms. Langenbecks Arch Surg. 2015 Feb 01;400(2):153–165.
  • Flamm RK, Rhomberg PR, Farrell DJ, et al. In vitro spectrum of pexiganan activity; bactericidal action and resistance selection tested against pathogens with elevated MIC values to topical agents. Diagn Microbiol Infect Dis. 2016 Sep 01;86(1):66–69.
  • Javia A, Amrutiya J, Lalani R, et al. Antimicrobial peptide delivery: an emerging therapeutic for the treatment of burn and wounds. Ther Deliv. 2018 May 01;9(5):375–386.
  • van Groenendael R, Beunders R, Kox M, et al. The human chorionic gonadotropin derivate EA-230 modulates the immune response and exerts renal protective properties: therapeutic potential in humans. Semin Nephrol. 2019 Sep;39(5):496–504. .
  • van Groenendael R, Aarnoutse R, Kox M, et al. Pharmacokinetics, safety and tolerability of the novel beta-hCG derived immunomodulatory compound, EA-230. Br J Clin Pharmacol. 2019 Jul;85(7):1572–1584. .
  • Domingues MM, Santos NC, Castanho MA. Antimicrobial peptide rBPI21: a translational overview from bench to clinical studies. Curr Protein Pept Sci. 2012 Nov;13(7):611–619.
  • Raghay K, Akki R, Bensaid D, et al. Ghrelin as an anti-inflammatory and protective agent in ischemia/reperfusion injury. Peptides. 2020 Feb;124:170226.
  • Schalla MA, Stengel A. LEAP2: A novel regulator of food intake and body weight? Nat Clin Pract Gastroenterol Hepatol. 2019 Dec 01;16(12):711–712.
  • Kudrimoti M, Curtis A, Azawi S, et al. Dusquetide: A novel innate defense regulator demonstrating a significant and consistent reduction in the duration of oral mucositis in preclinical data and a randomized, placebo-controlled phase 2a clinical study. J Biotechnol. 2016 Dec 10;239:115–125.
  • Blakaj A, Bonomi M, Gamez ME, et al. Oral mucositis in head and neck cancer: evidence-based management and review of clinical trial data. Oral Oncol. 2019 Aug;95:29–34.
  • Gazdar AF, Girard L, Lockwood WW, et al. Lung cancer cell lines as tools for biomedical discovery and research. J Natl Cancer Inst. 2010 Sep 8;102(17):1310–1321.
  • Du A, Jiang Y, Fan C. NDRG1 downregulates ATF3 and inhibits cisplatin-induced cytotoxicity in lung cancer A549 cells. Int J Med Sci. 2018;15(13):1502–1507.
  • Camerlingo R, Miceli R, Marra L, et al. Conditioned medium of primary lung cancer cells induces EMT in A549 lung cancer cell line by TGF-ß1 and miRNA21 cooperation. PLoS One. 2019;14(7):e0219597.
  • Zhang H, Feng QQ, Gong JH, et al. Anticancer effects of isofraxidin against A549 human lung cancer cells via the EGFR signaling pathway. Mol Med Rep. 2018 Jul;18(1):407–414. .
  • Wang Y, Jiang M, Du C, et al. Utilization of lung cancer cell lines for the study of lung cancer stem cells. Oncol Lett. 2018 May;15(5):6791–6798. .
  • Ahn MJ, Sun JM, Lee SH, et al. EGFR TKI combination with immunotherapy in non-small cell lung cancer. Expert Opin Drug Saf. 2017 Apr;16(4):465–469. .
  • Yang F, Li Y, Liu B, et al. Cancer stem cell-like population is preferentially suppressed by EGFR-TKIs in EGFR-mutated PC-9 tumor models. Exp Cell Res. 2018 Jan 1;362(1):195–202.
  • Gazdar AF, Gao B, Minna JD. Lung cancer cell lines: useless artifacts or invaluable tools for medical science? Lung Cancer. 2010 Jun;68(3):309–318.
  • Roed H, Vindeløv LL. Can human small-cell lung cancer cell lines be applied for optimizing chemotherapy? Cancer Treat Res. 1989;45:151–172.
  • Wilding JL, Bodmer WF. Cancer cell lines for drug discovery and development. Cancer Res. 2014 May 1;74(9):2377–2384.
  • Melo MN, Ferre R, Feliu L, et al. Prediction of antibacterial activity from physicochemical properties of antimicrobial peptides. Plos One. 2011;6(12):e28549. .
  • Yavari B, Mahjub R, Saidijam M, et al. The potential use of peptides in cancer treatment. Current Protein Pept Sci. 2018;19(8):759–770. .
  • Utsugi T, Schroit AJ, Connor J, et al. Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res. 1991;51(11):3062.
  • Kim IW, Lee JH, Kwon YN, et al. Anticancer activity of a synthetic peptide derived from harmoniasin, an antibacterial peptide from the ladybug Harmonia axyridis. Int J Oncol. 2013 Aug;43(2):622–628.
  • Berger M, Motta C, Boiret N, et al. Membrane fluidity and adherence to extracellular matrix components are related to blast cell count in acute myeloid leukemia. Leuk Lymphoma. 1994 Oct;15(3–4):297–302. .
  • Sok M, Šentjurc M, Schara M, et al. Cell membrane fluidity and prognosis of lung cancer. Ann Thorac Surg. 2002 May 01;73(5):1567–1571.
  • Zhuang L, Lin J, Lu ML, et al. Cholesterol-rich lipid rafts mediate akt-regulated survival in prostate cancer cells. Cancer Res. 2002;62(8):2227.
  • Papaccio F, Paino F, Regad T, et al. Concise review: cancer cells, cancer stem cells, and mesenchymal stem cells: influence in cancer development. Stem Cells Transl Med. 2017 Dec 01;6(12):2115–2125.
  • Felicio MR, Silva ON, Goncalves S, et al. Peptides with dual antimicrobial and anticancer activities. Front Chem. 2017;5:5.
  • Peng KC, Lee SH, Hour AL, et al. Five different piscidins from Nile tilapia, Oreochromis niloticus: analysis of their expressions and biological functions. PLoS One. 2012;7(11):e50263.
  • Ting C-H, Chen J-Y. Nile tilapia derived TP4 shows broad cytotoxicity toward to non-small-cell lung cancer cells. Mar Drugs. 2018;16(12):506.
  • Ting C-H, Liu Y-C, Lyu P-C, et al. Nile tilapia derived antimicrobial peptide TP4 exerts antineoplastic activity through microtubule disruption. Mar Drugs. 2018;16(12):462.
  • Jiang S, Jia Y, Tang Y, et al. Anti-proliferation activity of a decapeptide from perinereies aibuhitensis toward human lung cancer H1299 cells. Mar Drugs. 2019;17(2):122. .
  • Yu HY, Huang KC, Yip BS, et al. Rational design of tryptophan-rich antimicrobial peptides with enhanced antimicrobial activities and specificities. Chembiochem. 2010 Nov 2;11(16):2273–2282.
  • Chu HL, Yip BS, Chen KH, et al. Novel antimicrobial peptides with high anticancer activity and selectivity. PLoS One. 2015;10(5):e0126390. .
  • Lei J, Sun L, Huang S, et al. The antimicrobial peptides and their potential clinical applications. Am J Transl Res. 2019;11(7):3919–3931.
  • Ciumac D, Gong H, Hu X, et al. Membrane targeting cationic antimicrobial peptides. J Colloid Interface Sci. 2019 Mar 01;537:163–185. .
  • Mookherjee N, Anderson MA, Haagsman HP, et al. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov. 2020 May 01;19(5):311–332.
  • Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002 Jan 01;415(6870):389–395.
  • Divyashree M, Mani MK, Reddy D, et al. Clinical applications of antimicrobial peptides (AMPs): where do we stand now? Protein Pept Lett. 2020;27(2):120–134.
  • Aaghaz S, Gohel V, Kamal A. Peptides as potential anticancer agents. Curr Top Med Chem. 2019;19(17):1491–1511. .
  • Iwasaki T, Ishibashi J, Tanaka H, et al. Selective cancer cell cytotoxicity of enantiomeric 9-mer peptides derived from beetle defensins depends on negatively charged phosphatidylserine on the cell surface. Peptides. 2009 Apr 01;30(4):660–668.
  • Boohaker J, R W, Lee M, et al. The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem. 2012;19(22):3794–3804. .
  • Deslouches B, Di YP. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget. 2017;8(28):46635–46651.
  • Tarp MA, Clausen H. Mucin-type O-glycosylation and its potential use in drug and vaccine development. Biochim Biophys Acta Gen Subj. 2008 Mar 01;1780(3):546–563.
  • Wu X, Pan J, Wu Y, et al. PSN-PC: a novel antimicrobial and anti-biofilm peptide from the skin secretion of phyllomedusa-camba with cytotoxicity on human lung cancer cell. Molecules. 2017;22(11):1896. .
  • Liu J, Wu Q, Li L, et al. Discovery of phylloseptins that defense against gram-positive bacteria and inhibit the proliferation of the non-small cell lung cancer cell line, from the skin secretions of phyllomedusa frogs. Molecules. 2017;22:9.
  • Hansen T, Ausbacher D, Zachariassen ZG, et al. Anticancer activity of small amphipathic β2,2-amino acid derivatives. Eur J Med Chem. 2012 Dec 01;58:22–29. .
  • Guy Evans H,W, Guthrie J, Jujjavarapu M, et al. D-amino acid analogues of the antimicrobial peptide CDT exhibit anti- cancer properties in A549, a human lung adenocarcinoma cell line. Protein Pept Lett. 2017;24(7):590–598. .
  • Ting C-H, Lee K-Y, Wu S-M, et al. FOSB–PCDHB13 axis disrupts the microtubule network in non-small cell lung cancer. Cancers (Basel). 2019;11:1.
  • Ashitani J-I, Nakazato M, Mukae H, et al. Recombinant granulocyte colony-stimulating factor induces production of human neutrophil peptides in lung cancer patients with neutropenia. Regul Pept. 2000 Nov 24;95(1):87–92.
  • Mahlapuu M, Håkansson J, Ringstad L, et al. Antimicrobial peptides: an emerging category of therapeutic agents [10.3389/fcimb.2016.00194]. Front Cell Infect Microbiol. 2016;6:194.
  • Varney KM, Bonvin AMJJ, Pazgier M, et al. Turning defense into offense: defensin mimetics as novel antibiotics targeting lipid II. PLoS Pathog. 2013;9(11):e1003732. .
  • Hanaoka Y, Yamaguchi Y, Yamamoto H, et al. In vitro and in vivo anticancer activity of human β-defensin-3 and its mouse homolog. Anticancer Res. 2016;36(11):5999–6004. .
  • Fabrias G, Bedia C, Casas J, et al. Ceramidases in hematological malignancies: senseless or neglected target? Anti-Cancer Agents Med Chem. 2011;11(9):830–843.
  • Wang S, Tu J, Zhou C, et al. The effect of Lfcin-B on non-small cell lung cancer H460 cells is mediated by inhibiting VEGF expression and inducing apoptosis. Arch Pharm Res. 2015 Feb 01;38(2):261–271.
  • Ganea D, Delgado M. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) as modulators of both innate and adaptive immunity. Crit Rev Oral Biol Med. 2002 May 01;13(3):229–237.
  • Danaher RJ, Savells-Arb AD, Black SA, et al. Herpesvirus quiescence in neuronal cells IV: virus activation induced by pituitary adenylate cyclase-activating polypeptide (PACAP) involves the protein kinase A pathway. J Neurovirol. 2001 Mar 01;7(2):163–168.
  • Elefsiniotis IS, Ketikoglou I, Kafiri G, et al. Plasma pituitary adenylate cyclase activating polypeptide (PACAP) levels in chronic hepatitis B patients under lamivudine treatment. Eur J Gastroenterol Hepatol. 2003 Nov;15(11):1209–1216. .
  • Lugo JM, Tafalla C, Oliva A, et al. Evidence for antimicrobial and anticancer activity of pituitary adenylate cyclase-activating polypeptide (PACAP) from North African catfish (Clarias gariepinus): its potential use as novel therapeutic agent in fish and humans. Fish Shellfish Immunol. 2019 Mar 01;86:559–570.
  • Koehbach J, Craik DJ. The vast structural diversity of antimicrobial peptides. Trends Pharmacol Sci. 2019 Jul 01;40(7):517–528.
  • Lee T-H N, Hall K, Aguilar M-I. Antimicrobial peptide structure and mechanism of action: a focus on the role of membrane structure. Curr Top Med Chem. 2016;16(1):25–39.
  • Tian Y, Wang H, Li B, et al. The cathelicidin-BF Lys16 mutant Cbf-K16 selectively inhibits non-small cell lung cancer proliferation in vitro. Oncol Rep. 2013 Nov;30(5):2502–2510.
  • Huang C-Y, Huang H-Y, Forrest MD, et al. inhibition effect of a custom peptide on lung tumors. Plos One. 2014;9(10):e109174.
  • Koszałka P, Kamysz E, Wejda M, et al. Antitumor activity of antimicrobial peptides against U937 histiocytic cell line. Acta Biochim Pol. 2011;58(1):111–117.
  • Vragniau C, J-M H, Beidler P, et al. Studies on the interaction of tumor-derived HD5 alpha defensins with adenoviruses and implications for oncolytic adenovirus therapy. J Virol. 2017;91(6):e02030–16.
  • Ji P, Zhou Y, Yang Y, et al. Myeloid cell-derived LL-37 promotes lung cancer growth by activating Wnt/β-catenin signaling. Theranostics. 2019;9(8):2209–2223.
  • Hao X, Yan Q, Zhao J, et al. TAT modification of alpha-helical anticancer peptides to improve specificity and efficacy. Plos One. 2015;10(9):e0138911.
  • Aghamiri S, Jafarpour A, Malekshahi ZV, et al. Targeting siRNA in colorectal cancer therapy: nanotechnology comes into view. J Cell Physiol. 2019 Sep 01;234(9):14818–14827.
  • Aghamiri S, Mehrjardi KF, Shabani S, et al. Nanoparticle-siRNA: a potential strategy for ovarian cancer therapy? Nanomedicine. 2019 Aug 01;14(15):2083–2100.
  • Aghamiri S, Jafarpour A, Gomari MM, et al. siRNA nanotherapeutics: a promising strategy for anti-HBV therapy. IET Nanobiotechnol. 2019;13(5):457–463.
  • Aghamiri S, Talaei S, Roshanzamiri S, et al. Delivery of genome editing tools: A promising strategy for HPV-related cervical malignancy therapy. Expert Opin Drug Deliv. 2020;;17(6):753–766.
  • Zandsalimi F, Aghamiri S, Roshanzamiri S, et al. The emerging role of cold atmospheric plasma in glioblastoma therapy. Plasma Process Polym. 2020 Apr 28;n/a(n/a):e1900189.
  • Kelly GJ, Kia -AF-A, Hassan F, et al. Polymeric prodrug combination to exploit the therapeutic potential of antimicrobial peptides against cancer cells [10.1039/C6OB01815G]. Org Biomol Chem. 2016;14(39):9278–9286.
  • Aoki W, Kuroda K, Ueda M. Next generation of antimicrobial peptides as molecular targeted medicines. J Biosci Bioeng. 2012 Oct 01;114(4):365–370.
  • Tong CWS, Wu WKK, Loong HHF, et al. Drug combination approach to overcome resistance to EGFR tyrosine kinase inhibitors in lung cancer. Cancer Lett. 2017 Oct 01;405:100–110. .
  • Wang K-R, Yan J-X, Zhang B-Z, et al. Novel mode of action of polybia-MPI, a novel antimicrobial peptide, in multi-drug resistant leukemic cells. Cancer Lett. 2009 Jun 08;278(1):65–72.
  • Ghorbani J, Rahban D, Aghamiri S, et al. Photosensitizers in antibacterial photodynamic therapy: an overview. Laser Ther. 2018 Dec 31;27(4):293–302.
  • Aghamiri S, Jafarpour A, Zandsalimi F, et al. Effect of resveratrol on the radiosensitivity of 5-FU in human breast cancer MCF-7 cells. J Cell Biochem. 2019 Sep 01;120(9):15671–15677.
  • Aghamiri S, Talaei S, Ghavidel AA, et al. Nanoparticles-mediated CRISPR/Cas9 delivery: recent advances in cancer treatment. J Drug Delivery Sci Technol. 2020 Apr 01;56:101533. .
  • Jaber G, Dariush R, Shahin A, et al. Photosensitizers in antibacterial photodynamic therapy: an overview. Laser Ther. 2018;27(4):293–302.
  • Moret F, Gobbo M, Reddi E. Conjugation of photosensitisers to antimicrobial peptides increases the efficiency of photodynamic therapy in cancer cells [10.1039/C5PP00038F]. Photochem Photobiol Sci. 2015;14(7):1238–1250.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.