674
Views
15
CrossRef citations to date
0
Altmetric
Review

Drug development for noise-induced hearing loss

, , , &
Pages 1457-1471 | Received 23 Mar 2020, Accepted 03 Aug 2020, Published online: 25 Aug 2020

References

  • World Health Organization. . Addressing the rising prevalence of hearing loss. World Health Organization; 2018. Available from: https://apps.who.int/iris/handle/10665/260336. License: CC BY-NC-SA 3.0 IGO. ISBN 9789241550260.
  • Tikka C, Verbeek JH, Kateman E, et al. Interventions to prevent occupational noise-induced hearing loss. Cochrane Database Syst Rev. 2017;7:Cd006396.
  • Le TN, Straatman LV, Lea J, et al. Current insights in noise-induced hearing loss: a literature review of the underlying mechanism, pathophysiology, asymmetry, and management options. J Otolaryngol Head Neck Surg. 46(1): 41. 2017.
  • Seidman MD, Standring RT. Noise and quality of life. Int J Environ Res Public Health. 2010;7(10):3730–3738.
  • Graydon K, Waterworth C, Miller H, et al. Global burden of hearing impairment and ear disease. J Laryngol Otol. 2019;133(1):18–25.
  • Gupta A, Gupta A, Jain K, et al. Noise pollution and impact on children health. Indian J Pediatr. 2018;85(4):300–306.
  • Neitzel RL, Fligor BJ. Risk of noise-induced hearing loss due to recreational sound: review and recommendations. J Acoust Soc Am. 2019;146(5):3911.
  • Beach EF, Gilliver M, Williams W. Leisure noise exposure: participation trends, symptoms of hearing damage, and perception of risk. Int J Audiol. 2013;52(Suppl 1):S20–5.
  • Fligor BJ, Levey S, Levey T. Cultural and demographic factors influencing noise exposure estimates from use of portable listening devices in an urban environment. J Speech Lang Hear Res. 2014;57(4):1535–1547.
  • Gilles A, Van Hal G, De Ridder D, et al. Epidemiology of noise-induced tinnitus and the attitudes and beliefs towards noise and hearing protection in adolescents. PLoS One. 2013;8(7):e70297.
  • Dauman R, Bouscau-Faure F. Assessment and amelioration of hyperacusis in tinnitus patients. Acta Otolaryngol. 2005;125(5):503–509.
  • Chadha S, Cieza A. Promoting global action on hearing loss: world hearing day. Int J Audiol. 2017;56(3):145–147.
  • World Health Organization. Hearing loss due to recreational exposure to loud sounds: a review. Geneva: World Health Organization; 2015. Available from: https://apps.who.int/iris/handle/10665/154589. Gov't Doc #9789241508513.
  • Griest SE, Folmer RL, Martin WH. Effectiveness of “Dangerous Decibels,” a school-based hearing loss prevention program. Am J Audiol. 2007;16(2):S165–81.
  • Konings A, Van Laer L, Van Camp G. Genetic studies on noise-induced hearing loss: a review. Ear Hear. 2009;30(2):151–159.
  • White PM. Genetic susceptibility to hearing loss from noise exposure. Hearing J. 2019;72(10):8,9.
  • Grondin Y, Bortoni ME, Sepulveda R, et al. Genetic polymorphisms associated with hearing threshold shift in subjects during first encounter with occupational impulse noise. PLoS One. 2015;10(6):e0130827.
  • Spankovich C, Le Prell CG. The role of diet in vulnerability to noise-induced cochlear injury and hearing loss. J Acoust Soc Am. 2019;146(5):4033.
  • Wu HP, Cheng TJ, Tan CT, et al. Diabetes impairs recovery from noise-induced temporary hearing loss. Laryngoscope. 2009;119(6):1190–1194.
  • Wang B, Han L, Dai S, et al. Hearing loss characteristics of workers with hypertension exposed to occupational noise: a cross-sectional study of 270,033 participants. Biomed Res Int. 2018;2018:8541638.
  • Wang J, Puel JL. Toward cochlear therapies. Physiol Rev. 2018;98(4):2477–2522.
  • Rabinowitz PM, Galusha D, Slade MD, et al. Audiogram notches in noise-exposed workers. Ear Hear. 2006;27(6):742–750.
  • Lutman ME, Coles RR, Buffin JT. Guidelines for quantification of noise-induced hearing loss in a medicolegal context. Clin Otolaryngol. 2016;41(4):347–357.
  • Mehrparvar AH, Mirmohammadi SJ, Ghoreyshi A, et al. High-frequency audiometry: a means for early diagnosis of noise-induced hearing loss. Noise Health. 2011;13(55):402–406.
  • Liberman MC, Epstein MJ, Cleveland SS, et al. Toward a differential diagnosis of hidden hearing loss in humans. PLoS One. 2016;11(9):e0162726.
  • Moser T, Starr A. Auditory neuropathy–neural and synaptic mechanisms. Nat Rev Neurol. 2016;12(3):135–149.
  • Kujawa SG, Liberman MC. Synaptopathy in the noise-exposed and aging cochlea: primary neural degeneration in acquired sensorineural hearing loss. Hear Res. 2015;330(Pt B):191–199.
  • Shi L, Chang Y, Li X, et al. Cochlear synaptopathy and noise-induced hidden hearing loss. Neural Plast. 2016;2016:6143164.
  • Prendergast G, Couth S, Millman RE, et al. Effects of age and noise exposure on proxy measures of cochlear synaptopathy. Trends Hear. 2019;23:2331216519877301.
  • Guest H, Munro KJ, Prendergast G, et al. Impaired speech perception in noise with a normal audiogram: no evidence for cochlear synaptopathy and no relation to lifetime noise exposure. Hear Res. 2018;364:142–151.
  • Masterson EA, Themann CL, Luckhaupt SE, et al. Hearing difficulty and tinnitus among U.S. workers and non-workers in 2007. Am J Ind Med. 2016;59(4):290–300.
  • Bhatt JM, Lin HW, Prevalence BN, et al. Treatment patterns of tinnitus in the United States. JAMA Otolaryngol Head Neck Surg. 2016;142(10):959–965.
  • Ryan D, Bauer CA. Neuroscience of tinnitus. Neuroimaging Clin N Am. 2016;26(2):187–196.
  • Baguley D, McFerran D, Hall D. Tinnitus. Lancet. 2013;382(9904):1600–1607.
  • Shore SE, Wu C. Mechanisms of noise-induced tinnitus: insights from cellular studies. Neuron. 2019;103(1):8–20.
  • Di Stadio A, Dipietro L, Ricci G, et al. Hearing loss, tinnitus, hyperacusis, and diplacusis in professional musicians: a systematic review. Int J Environ Res Public Health. 2018;15(10):2120.
  • Duarte AS, Ng RT, de Carvalho GM, et al. High levels of sound pressure: acoustic reflex thresholds and auditory complaints of workers with noise exposure. Braz J Otorhinolaryngol. 2015;81(4):374–383.
  • Radziwon K, Auerbach BD, Ding D, et al. Noise-induced loudness recruitment and hyperacusis: insufficient central gain in auditory cortex and amygdala. Neuroscience. 2019;422:212–227.
  • Golz A, Westerman ST, Westerman LM, et al. The effects of noise on the vestibular system. Am J Otolaryngol. 2001;22(3):190–196.
  • Wang YP, Young YH. Vestibular-evoked myogenic potentials in chronic noise-induced hearing loss. Otolaryngol Head Neck Surg. 2007;137(4):607–611.
  • Kumar K, Vivarthini CJ, Bhat JS. Vestibular evoked myogenic potential in noise-induced hearing loss. Noise Health. 2010;12(48):191–194.
  • Heffner HE, Heffner RS. Hearing ranges of laboratory animals. J Am Assoc Lab Anim Sci. 2007;46(1):20–22.
  • Sanz L, Murillo-Cuesta S, Cobo P, et al. Swept-sine noise-induced damage as a hearing loss model for preclinical assays. Front Aging Neurosci. 2015;7:7.
  • Kujawa SG, Liberman MC. Translating animal models to human therapeutics in noise-induced and age-related hearing loss. Hear Res. 2019;377:44–52.
  • Ryan AF, Kujawa SG, Hammill T, et al. Temporary and permanent noise-induced threshold shifts: a review of basic and clinical observations. Otol Neurotol. 2016;37(8):e271–5.
  • Park SN, Back SA, Park KH, et al. Comparison of functional and morphologic characteristics of mice models of noise-induced hearing loss. Auris Nasus Larynx. 2013;40(1):11–17.
  • Quirk WS, Seidman MD. Cochlear vascular changes in response to loud noise. Am J Otol. 1995;16(3):322–325.
  • Wang Y, Hirose K, Liberman MC. Dynamics of noise-induced cellular injury and repair in the mouse cochlea. J Assoc Res Otolaryngol. 2002;3(3):248–268.
  • Kujawa SG, Liberman MC. Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci. 2009;29(45):14077–14085.
  • Fernandez KA, Guo D, Micucci S, et al. Noise-induced cochlear synaptopathy with and without sensory cell loss. Neuroscience. 2020;427:43–57.
  • Murillo-Cuesta S, Rodriguez-de la Rosa L, Contreras J, et al. Transforming growth factor beta1 inhibition protects from noise-induced hearing loss. Front Aging Neurosci. 2015;7:32.
  • Willott JF. Overview of methods for assessing the mouse auditory system. Curr Protoc Neurosci. 2006;Chapter 8:Unit821A.
  • Trevino M, Lobarinas E, Maulden AC, et al. The chinchilla animal model for hearing science and noise-induced hearing loss. J Acoust Soc Am. 2019;146(5):3710.
  • Dunn DE, Davis RR, Merry CJ, et al. Hearing loss in the chinchilla from impact and continuous noise exposure. J Acoust Soc Am. 1991;90(4 Pt 1):1979–1985.
  • Radziwon KE, Sheppard A, Salvi RJ. Psychophysical changes in temporal processing in chinchillas with noise-induced hearing loss: A literature review. J Acoust Soc Am. 2019;146(5):3733.
  • Kopke RD, Coleman JK, Liu J, et al. Candidate’s thesis: enhancing intrinsic cochlear stress defenses to reduce noise-induced hearing loss. Laryngoscope. 2002;112(9):1515–1532.
  • Coleman JK, Littlesunday C, Jackson R, et al. AM-111 protects against permanent hearing loss from impulse noise trauma. Hear Res. 2007;226(1–2):70–78.
  • Naert G, Pasdelou MP, Le Prell CG. Use of the guinea pig in studies on the development and prevention of acquired sensorineural hearing loss, with an emphasis on noise. J Acoust Soc Am. 2019;146(5):3743.
  • Conlee JW, Abdul-Baqi KJ, McCandless GA, et al. Differential susceptibility to noise-induced permanent threshold shift between albino and pigmented guinea pigs. Hear Res. 1986;23(1):81–91.
  • Lin HW, Furman AC, Kujawa SG, et al. Primary neural degeneration in the Guinea pig cochlea after reversible noise-induced threshold shift. J Assoc Res Otolaryngol. 2011;12(5):605–616.
  • Shi L, Liu L, He T, et al. Ribbon synapse plasticity in the cochleae of Guinea pigs after noise-induced silent damage. PLoS One. 2013;8(12):e81566.
  • Escabi CD, Frye MD, Trevino M, et al. The rat animal model for noise-induced hearing loss. J Acoust Soc Am. 2019;146(5):3692.
  • Carreres Pons M, Chalansonnet M, Venet T, et al. Carbon disulfide potentiates the effects of impulse noise on the organ of Corti. Neurotoxicology. 2017;59:79–87.
  • Syka J, Rybalko N. Threshold shifts and enhancement of cortical evoked responses after noise exposure in rats. Hear Res. 2000;139(1–2):59–68.
  • Fernandez KA, Jeffers PW, Lall K, et al. Aging after noise exposure: acceleration of cochlear synaptopathy in “recovered” ears. J Neurosci. 2015;35(19):7509–7520.
  • Hickox AE, Larsen E, Heinz MG, et al. Translational issues in cochlear synaptopathy. Hear Res. 2017;349:164–171.
  • Muca A, Standafer E, Apawu AK, et al. Tinnitus and temporary hearing loss result in differential noise-induced spatial reorganization of brain activity. Brain Struct Funct. 2018;223(5):2343–2360.
  • Myint A, White CH, Ohmen JD, et al. Large-scale phenotyping of noise-induced hearing loss in 100 strains of mice. Hear Res. 2016;332:113–120.
  • Ohlemiller KK. Mouse methods and models for studies in hearing. J Acoust Soc Am. 2019;146(5):3668.
  • Murillo-Cuesta S, Contreras J, Zurita E, et al. Melanin precursors prevent premature age-related and noise-induced hearing loss in albino mice. Pigment Cell Melanoma Res. 2010;23(1):72–83.
  • Ohlemiller KK, Wright JS, Heidbreder AF. Vulnerability to noise-induced hearing loss in ‘middle-aged’ and young adult mice: a dose-response approach in CBA, C57BL, and BALB inbred strains. Hear Res. 2000;149(1–2):239–247.
  • Ohlemiller KK, Gagnon PM. Genetic dependence of cochlear cells and structures injured by noise. Hear Res. 2007;224(1–2):34–50.
  • Bramhall N, Beach EF, Epp B, et al. The search for noise-induced cochlear synaptopathy in humans: mission impossible? Hear Res. 2019;377:88–103.
  • Davis RR, Newlander JK, Ling X, et al. Genetic basis for susceptibility to noise-induced hearing loss in mice. Hear Res. 2001;155(1–2):82–90.
  • Street VA, Kujawa SG, Manichaikul A, et al. Resistance to noise-induced hearing loss in 129S6 and MOLF mice: identification of independent, overlapping, and interacting chromosomal regions. J Assoc Res Otolaryngol. 2014;15(5):721–738.
  • Partearroyo T, Murillo-Cuesta S, Vallecillo N, et al. Betaine-homocysteine S-methyltransferase deficiency causes increased susceptibility to noise-induced hearing loss associated with plasma hyperhomocysteinemia. Faseb J. 2019;33(5):5942–5956.
  • Celaya AM, Sanchez-Perez I, Bermudez-Munoz JM, et al. Deficit of mitogen-activated protein kinase phosphatase 1 (DUSP1) accelerates progressive hearing loss. Elife. 2019;8:e39159. Published 2019 Apr 2. doi:10.7554/eLife.39159.
  • McFadden SL, Ohlemiller KK, Ding D, et al. The influence of superoxide dismutase and glutathione peroxidase deficiencies on noise-induced hearing loss in mice. Noise Health. 2001;3(11):49–64.
  • Lavinsky J, Crow AL, Pan C, et al. Genome-wide association study identifies nox3 as a critical gene for susceptibility to noise-induced hearing loss. PLoS Genet. 2015;11(4):e1005094.
  • Ohlemiller KK, McFadden SL, Ding DL, et al. Targeted deletion of the cytosolic Cu/Zn-superoxide dismutase gene (Sod1) increases susceptibility to noise-induced hearing loss. Audiol Neurootol. 1999;4(5):237–246.
  • Tabuchi K, Suzuki M, Mizuno A, et al. Hearing impairment in TRPV4 knockout mice. Neurosci Lett. 2005;382(3):304–308.
  • de Iriarte Rodriguez R, Magarinos M, Pfeiffer V, et al. C-Raf deficiency leads to hearing loss and increased noise susceptibility. Cell Mol Life Sci. 2015;72(20):3983–3998.
  • Christie KW, Sivan-Loukianova E, Smith WC, et al. Physiological, anatomical, and behavioral changes after acoustic trauma in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2013;110(38):15449–15454.
  • Schuck JB, Smith ME. Cell proliferation follows acoustically-induced hair cell bundle loss in the zebrafish saccule. Hear Res. 2009;253(1–2):67–76.
  • Coffin AB, Ou H, Owens KN, et al. Chemical screening for hair cell loss and protection in the zebrafish lateral line. Zebrafish. 2010;7(1):3–11.
  • Saunders JC. The role of hair cell regeneration in an avian model of inner ear injury and repair from acoustic trauma. Ilar J. 2010;51(4):326–337.
  • Burton JA, Valero MD, Hackett TA, et al. The use of nonhuman primates in studies of noise injury and treatment. J Acoust Soc Am. 2019;146(5):3770.
  • Kurabi A, Keithley EM, Housley GD, et al. Cellular mechanisms of noise-induced hearing loss. Hear Res. 2017;349:129–137.
  • Yang SM, Chen W, Guo WW, et al. Regeneration of stereocilia of hair cells by forced Atoh1 expression in the adult mammalian cochlea. PLoS One. 2012;7(9):e46355.
  • Fujioka M, Kanzaki S, Okano HJ, et al. Proinflammatory cytokines expression in noise-induced damaged cochlea. J Neurosci Res. 2006;83(4):575–583.
  • Tan WJ, Thorne PR, Vlajkovic SM. Characterisation of cochlear inflammation in mice following acute and chronic noise exposure. Histochem Cell Biol. 2016;146(2):219–230.
  • Landegger LD, Vasilijic S, Fujita T, et al. Cytokine levels in inner ear fluid of young and aged mice as molecular biomarkers of noise-induced hearing loss. Front Neurol. 2019;10:977.
  • Khan MJ, Seidman MD, Quirk WS, et al. Effects of kynurenic acid as a glutamate receptor antagonist in the guinea pig. Eur Arch Otorhinolaryngol. 2000;257(4):177–181.
  • Mutlu A, Ocal FCA, Erbek S, et al. The protective effect of adrenocorticotropic hormone treatment against noise-induced hearing loss. Auris Nasus Larynx. 2018;45(5):929–935.
  • Gumrukcu SS, Topaloglu I, Salturk Z, et al. Effects of intratympanic dexamethasone on noise-induced hearing loss: an experimental study. Am J Otolaryngol. 2018;39(1):71–73.
  • Maeda Y, Omichi R, Sugaya A, et al. Cochlear transcriptome following acoustic trauma and dexamethasone administration identified by a combination of RNA-seq and DNA microarray. Otol Neurotol. 2017;38(7):1032–1042.
  • Heinrich UR, Strieth S, Schmidtmann I, et al. Dexamethasone prevents hearing loss by restoring glucocorticoid receptor expression in the guinea pig cochlea. Laryngoscope. 2016;126(1):E29–34.
  • Shih CP, Chen HC, Lin YC, et al. Middle-ear dexamethasone delivery via ultrasound microbubbles attenuates noise-induced hearing loss. Laryngoscope. 2019;129(8):1907–1914.
  • Zhu C, Gausterer JC, Schopper H, et al. Evaluation of sustained-release steroid hydrogels in a guinea pig model for noise-induced hearing loss. Audiol Neurootol. 2018;23(2):73–81.
  • Takemura K, Komeda M, Yagi M, et al. Direct inner ear infusion of dexamethasone attenuates noise-induced trauma in guinea pig. Hear Res. 2004;196(1–2):58–68.
  • Muller M, Tisch M, Maier H, et al. Reduction of permanent hearing loss by local glucocorticoid application: guinea pigs with acute acoustic trauma. HNO. 2017;65(Suppl 1):59–67.
  • Zhang J, Song YL, Tian KY, et al. Minocycline attenuates noise-induced hearing loss in rats. Neurosci Lett. 2017;639:31–35.
  • Singer W, Kasini K, Manthey M, et al. The glucocorticoid antagonist mifepristone attenuates sound-induced long-term deficits in auditory nerve response and central auditory processing in female rats. Faseb J. 2018;32(6):3005–3019.
  • Yamaguchi T, Yoneyama M, Onaka Y, et al. Preventive effect of curcumin and its highly bioavailable preparation on hearing loss induced by single or repeated exposure to noise: A comparative and mechanistic study. J Pharmacol Sci. 2017;134(4):225–233.
  • Soyalic H, Gevrek F, Karaman S. Curcumin protects against acoustic trauma in the rat cochlea. Int J Pediatr Otorhinolaryngol. 2017;99:100–106.
  • Shim HJ, Kang HH, Ahn JH, et al. Retinoic acid applied after noise exposure can recover the noise-induced hearing loss in mice. Acta Otolaryngol. 2009;129(3):233–238.
  • Kwak SH, Nam GS, Bae SH, et al. Effect of specific retinoic acid receptor agonists on noise-induced hearing loss. Int J Environ Res Public Health. 2019;16(18):3428.
  • Wang J, Van De Water TR, Bonny C, et al. A peptide inhibitor of c-Jun N-terminal kinase protects against both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss. J Neurosci. 2003;23(24):8596–8607.
  • Wang J, Ruel J, Ladrech S, et al. Inhibition of the c-Jun N-terminal kinase-mediated mitochondrial cell death pathway restores auditory function in sound-exposed animals. Mol Pharmacol. 2007;71(3):654–666.
  • Kayyali MN, Wooltorton JRA, Ramsey AJ, et al. A novel nanoparticle delivery system for targeted therapy of noise-induced hearing loss. J Control Release. 2018;279:243–250.
  • Teitz T, Fang J, Goktug AN, et al. CDK2 inhibitors as candidate therapeutics for cisplatin- and noise-induced hearing loss. J Exp Med. 2018;215(4):1187–1203.
  • Abaamrane L, Raffin F, Schmerber S, et al. Intracochlear perfusion of leupeptin and z-VAD-FMK: influence of antiapoptotic agents on gunshot-induced hearing loss. Eur Arch Otorhinolaryngol. 2011;268(7):987–993.
  • Han MA, Back SA, Kim HL, et al. Therapeutic effect of dexamethasone for noise-induced hearing loss: systemic versus intratympanic injection in mice. Otol Neurotol. 2015;36(5):755–762.
  • Cervantes B, Arana L, Murillo-Cuesta S, et al. Solid lipid nanoparticles loaded with glucocorticoids protect auditory cells from cisplatin-induced ototoxicity. J Clin Med. 2019;8(9):1464.
  • Harrop-Jones A, Wang X, Fernandez R, et al. The sustained-exposure dexamethasone formulation OTO-104 offers effective protection against noise-induced hearing loss. Audiol Neurootol. 2016;21(1):12–21.
  • Wang Y, Han L, Diao T, et al. A comparison of systemic and local dexamethasone administration: from perilymph/cochlea concentration to cochlear distribution. Hear Res. 2018;370:1–10.
  • Arpornchayanon W, Canis M, Ihler F, et al. TNF-alpha inhibition using etanercept prevents noise-induced hearing loss by improvement of cochlear blood flow in vivo. Int J Audiol. 2013;52(8):545–552.
  • Wakabayashi K, Fujioka M, Kanzaki S, et al. Blockade of interleukin-6 signaling suppressed cochlear inflammatory response and improved hearing impairment in noise-damaged mice cochlea. Neurosci Res. 2010;66(4):345–352.
  • Sun Y, Yu J, Lin X, et al. Inhibition of cyclooxygenase-2 by NS398 attenuates noise-induced hearing loss in mice. Sci Rep. 2016;6:22573.
  • Bielefeld EC. Reduction in impulse noise-induced permanent threshold shift with intracochlear application of an NADPH oxidase inhibitor. J Am Acad Audiol. 2013;24(6):461–473.
  • Varela-Nieto I, Palmero I, Magarinos M. Complementary and distinct roles of autophagy, apoptosis and senescence during early inner ear development. Hear Res. 2019;376:86–96.
  • Yuan H, Wang X, Hill K, et al. Autophagy attenuates noise-induced hearing loss by reducing oxidative stress. Antioxid Redox Signal. 2015;22(15):1308–1324.
  • Heinrich UR, Fischer I, Brieger J, et al. Ascorbic acid reduces noise-induced nitric oxide production in the guinea pig ear. Laryngoscope. 2008;118(5):837–842.
  • Pourbakht A, Yamasoba T. Ebselen attenuates cochlear damage caused by acoustic trauma. Hear Res. 2003;181(1–2):100–108.
  • Fetoni AR, Mancuso C, Eramo SL, et al. In vivo protective effect of ferulic acid against noise-induced hearing loss in the guinea-pig. Neuroscience. 2010;169(4):1575–1588.
  • Sjostrand AP, Dogan R, Kocyigit A, et al. Therapeutic efficacy of Ginkgo biloba for early-period noise-induced hearing loss: an experimental animal study. Am J Otolaryngol. 2016;37(5):416–424.
  • Krauss P, Tziridis K, Buerbank S, et al. Therapeutic value of ginkgo biloba extract EGb 761(R) in an animal model (Meriones unguiculatus) for noise trauma induced hearing loss and tinnitus. PLoS One. 2016;11(6):e0157574.
  • Ohinata Y, Yamasoba T, Schacht J, et al. Glutathione limits noise-induced hearing loss. Hear Res. 2000;146(1–2):28–34.
  • Ewert D, Hu N, Du X, et al. HPN-07, a free radical spin trapping agent, protects against functional, cellular and electrophysiological changes in the cochlea induced by acute acoustic trauma. PLoS One. 2017;12(8):e0183089.
  • Lu J, Li W, Du X, et al. Antioxidants reduce cellular and functional changes induced by intense noise in the inner ear and cochlear nucleus. J Assoc Res Otolaryngol. 2014;15(3):353–372.
  • Kesici GG, Ocal FCA, Gurgen SG, et al. The protective effect of metformin against the noise-induced hearing loss. Eur Arch Otorhinolaryngol. 2018;275(12):2957–2966.
  • Ada S, Hanci D, Ulusoy S, et al. Potential protective effect of N-acetyl cysteine in acoustic trauma: an experimental study using scanning electron microscopy. Adv Clin Exp Med. 2017;26(6):893–897.
  • Fetoni AR, Piacentini R, Fiorita A, et al. Water-soluble Coenzyme Q10 formulation (Q-ter) promotes outer hair cell survival in a guinea pig model of noise induced hearing loss (NIHL). Brain Res. 2009;1257:108–116.
  • Xiong H, Ou Y, Xu Y, et al. Resveratrol promotes recovery of hearing following intense noise exposure by enhancing cochlear SIRT1 activity. Audiol Neurootol. 2017;22(4–5):303–310.
  • Li IH, Shih JH, Jhao YT, et al. Regulation of noise-induced loss of serotonin transporters with resveratrol in a rat model using 4-[(18)F]-ADAM/small-animal positron emission tomography. Molecules. 2019;24(7):1344. Published 2019 Apr 5. doi:10.3390/molecules24071344.
  • Seidman M, Babu S, Tang W, et al. Effects of resveratrol on acoustic trauma. Otolaryngol Head Neck Surg. 2003;129(5):463–470.
  • Fetoni AR, Paciello F, Rolesi R, et al. Rosmarinic acid up-regulates the noise-activated Nrf2/HO-1 pathway and protects against noise-induced injury in rat cochlea. Free Radic Biol Med. 2015;85:269–281.
  • Fetoni AR, Eramo SLM, Di Pino A, et al. The antioxidant effect of rosmarinic acid by different delivery routes in the animal model of noise-induced hearing loss. Otol Neurotol. 2018;39(3):378–386.
  • Yamashita D, Jiang HY, Le Prell CG, et al. Post-exposure treatment attenuates noise-induced hearing loss. Neuroscience. 2005;134(2):633–642.
  • Ogurlu M, Celebi Erdivanli O, Tumkaya L, et al. The therapeutic effect of thymoquinone on acoustic trauma-induced hearing loss in rats. Eur Arch Otorhinolaryngol. 2017;274(2):743–749.
  • Hanci D, Ulusoy S, Acar M, et al. Potential protective effect of resveratrol on acoustic trauma: electron microscopy study. Eur Rev Med Pharmacol Sci. 2016;20(16):3469–3475.
  • Partearroyo T, Vallecillo N, Pajares MA, et al. Cochlear homocysteine metabolism at the crossroad of nutrition and sensorineural hearing loss. Front Mol Neurosci. 2017;10:107.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.