749
Views
22
CrossRef citations to date
0
Altmetric
Review

An update on dengue vaccine development, challenges, and future perspectives

, &
Pages 47-58 | Received 07 Jul 2020, Accepted 14 Aug 2020, Published online: 25 Aug 2020

References

  • Bhatt S, Gething P, Brady O, et al. The global distribution and burden of dengue. Nature. 2013;496(7446): 504–507. .
  • Muller D, Depelsenaire A, Young P. Clinical and laboratory diagnosis of dengue virus infection. J Infect Dis. 2017;215:S89–S95.
  • Halstead S. Neutralization and antibody-dependent enhancement of dengue viruses. Adv Virus Res. 2003;60:421–467.
  • Dejnirattisai W, Jumnainsong A, Onsirisakul N, et al. Cross-reacting antibodies enhance dengue virus infection in humans. Science. 2010;328:745–748.
  • Stevens A, Gahan M, Mahalingam S, et al. The medicinal chemistry of dengue fever. J Med Chem. 2009;52:7911–7926.
  • Kuhn R, Zhang W, Rossmann M, et al. Structure of dengue virus: implications for flavivirus organization, maturation and fusion. Cell. 2002;108:717–725.
  • Katzelnik L, Coloma J, Dengue: EH. Knowledge gaps, unmet needs, and research priorities. Lancet Infect Dis. 2017;17(3):e88–e100.
  • Wilder-Smith A, Ooi E, Horstick O, et al. Dengue. Lancet. 2019;393(10169):350–363. .
  • Sato R, Hamada N, Kashiwagi T, et al. Dengue hemorrhagic fever in a Japanese traveler with preexisting Japanese Encephalitis virus antibody. Trop Med Health. 2015;43:85–88.
  • Ubol S, Halstead S. How innate immune mechanisms contribute to antibody-enhanced viral infections. Clin Vaccine Immunol. 2010;17:1829–1835.
  • Rivino L. T cell immunity to dengue virus and implications for vaccine design. Expert Rev Vaccines. 2016;15(4):443–453.
  • Lee PX, Ting DHR, Boey CPH, et al. Relative contribution of nonstructural protein 1 in dengue pathogenesis. J Exp Med. 2020 Sep 7;217(9). DOI: 10.1084/jem.20191548.
  • Libraty D, Young P, Pickering D, et al. High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. J Infect Dis. 2002;186(8):1165–1168.
  • Adikari T, Gomes L, Nw N, et al. Dengue NS1 antigen contributes to disease severity by inducing interleukin (IL)-10 by monocytes. Clin Exp Immunol. 2016;184(1):90–100.
  • Fox A, Le N, Simmons C, et al. Immunological and viral determinants of dengue severity in hospitalized adults in Ha Noi, Viet Nam. PLoS Negl Trop Dis. 2011;5(3):e967.
  • Halstead S. Insights from direct studies on human dengue infections. Proc Natl Acad Sci. 2019;116:17–19.
  • Guirakhoo F, Arroyo J, Pugachev KV, et al. Construction, safety, and immunogenicity in nonhuman primates of a chimeric yellow fever-dengue virus tetravalent vaccine. J Virol. 2001 Aug;75(16):7290–7304.
  • Sabchareon A, Wallace D, Sirivichayakul C, et al. Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: a randomised, controlled phase 2b trial. Lancet. 2012 Nov 3;380(9853):1559–1567.
  • Capeding MR, Tran NH, Hadinegoro SR, et al. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: a phase 3, randomised, observer-masked, placebo-controlled trial. Lancet. 2014 Oct 11;384(9951):1358–1365.
  • Villar L, Dayan GH, Arredondo-Garcia JL, et al. Efficacy of a tetravalent dengue vaccine in children in Latin America. N Engl J Med. 2015 Jan 8;372(2):113–123.
  • Sridhar S, Luedtke A, Langevin E, et al. Effect of Dengue Serostatus on Dengue Vaccine Safety and Efficacy. N Engl J Med. 2018 Jul 26;379(4):327–340. .
  • Halstead SB. Dengvaxia sensitizes seronegatives to vaccine enhanced disease regardless of age. Vaccine. 2017 Nov 7;35(47):6355–6358.
  • Fatima K, Syed NI. Dengvaxia controversy: impact on vaccine hesitancy. J Glob Health. 2018 Dec;8(2):010312.
  • World Health Organization. Dengue vaccine: WHO position paper, September 2018 - Recommendations. Vaccine. 2019 Aug 14;37(35):4848–4849.
  • Osorio JE, Huang CY, Kinney RM, et al. Development of DENVax: a chimeric dengue-2 PDK-53-based tetravalent vaccine for protection against dengue fever. Vaccine. 2011 Sep 23;29(42):7251–7260.
  • George SL, Wong MA, Dube TJ, et al. Safety and Immunogenicity of a live attenuated tetravalent dengue vaccine candidate in flavivirus-naive adults: a randomized, double-blinded phase 1 clinical trial. J Infect Dis. 2015 Oct 1;212(7):1032–1041.
  • Osorio JE, Velez ID, Thomson C, et al. Safety and immunogenicity of a recombinant live attenuated tetravalent dengue vaccine (DENVax) in flavivirus-naive healthy adults in Colombia: a randomised, placebo-controlled, phase 1 study. Lancet Infect Dis. 2014 Sep;14(9):830–838.
  • Rupp R, Luckasen GJ, Kirstein JL, et al. Safety and immunogenicity of different doses and schedules of a live attenuated tetravalent dengue vaccine (TDV) in healthy adults: a phase 1b randomized study. Vaccine. 2015 Nov 17;33(46):6351–6359.
  • Saez-Llorens X, Tricou V, Yu D, et al. Immunogenicity and safety of one versus two doses of tetravalent dengue vaccine in healthy children aged 2-17 years in Asia and Latin America: 18-month interim data from a phase 2, randomised, placebo-controlled study. Lancet Infect Dis. 2018 Feb;18(2):162–170.
  • Saez-Llorens X, Tricou V, Yu D, et al. Safety and immunogenicity of one versus two doses of Takeda’s tetravalent dengue vaccine in children in Asia and Latin America: interim results from a phase 2, randomised, placebo-controlled study. Lancet Infect Dis. 2017 Jun;17(6):615–625.
  • Sirivichayakul C, Barranco-Santana EA, Esquilin-Rivera I, et al. Safety and Immunogenicity of a tetravalent dengue vaccine candidate in healthy children and adults in dengue-endemic regions: a randomized, placebo-controlled phase 2 study. J Infect Dis. 2016 May 15;213(10):1562–1572.
  • Tricou V, Saez-Llorens X, Yu D, et al. Safety and immunogenicity of a tetravalent dengue vaccine in children aged 2-17 years: a randomised, placebo-controlled, phase 2 trial. Lancet. 2020 May 2;395(10234):1434–1443.
  • Biswal S, Borja-Tabora C, Martinez Vargas L, et al. Efficacy of a tetravalent dengue vaccine in healthy children aged 4-16 years: a randomised, placebo-controlled, phase 3 trial. Lancet. 2020 May 2;395(10234):1423–1433. .
  • Chu H, George SL, Stinchcomb DT, et al. CD8+ T-cell responses in flavivirus-naive individuals following immunization with a live-attenuated tetravalent dengue vaccine candidate. J Infect Dis. 2015 Nov 15;212(10):1618–1628.
  • Whitehead SS. Development of TV003/TV005, a single dose, highly immunogenic live attenuated dengue vaccine; what makes this vaccine different from the Sanofi-Pasteur CYD vaccine? Expert Rev Vaccines. 2016;15(4):509–517.
  • Durbin AP, Kirkpatrick BD, Pierce KK, et al. A single dose of any of four different live attenuated tetravalent dengue vaccines is safe and immunogenic in flavivirus-naive adults: a randomized, double-blind clinical trial. J Infect Dis. 2013 Mar 15;207(6):957–965.
  • Kirkpatrick BD, Durbin AP, Pierce KK, et al. Robust and balanced immune responses to all 4 dengue virus serotypes following administration of a single dose of a live attenuated tetravalent dengue vaccine to healthy, flavivirus-naive adults. J Infect Dis. 2015 Sep 1;212(5):702–710.
  • Whitehead SS, Durbin AP, Pierce KK, et al. In a randomized trial, the live attenuated tetravalent dengue vaccine TV003 is well-tolerated and highly immunogenic in subjects with flavivirus exposure prior to vaccination. PLoS Negl Trop Dis. 2017 May;11(5):e0005584.
  • Edelman R, Wasserman SS, Bodison SA, et al. Phase I trial of 16 formulations of a tetravalent live-attenuated dengue vaccine. Am J Trop Med Hyg. 2003 Dec;69(6 Suppl):48–60.
  • Thomas SJ, Eckels KH, Carletti I, et al. A phase II, randomized, safety and immunogenicity study of a re-derived, live-attenuated dengue virus vaccine in healthy adults. Am J Trop Med Hyg. 2013 Jan;88(1):73–88.
  • Watanaveeradej V, Gibbons RV, Simasathien S, et al. Safety and immunogenicity of a rederived, live-attenuated dengue virus vaccine in healthy adults living in Thailand: a randomized trial. Am J Trop Med Hyg. 2014 Jul;91(1):119–128.
  • Bauer K, Esquilin IO, Cornier AS, et al. A phase II, randomized, safety and immunogenicity trial of a re-derived, live-attenuated dengue virus vaccine in healthy children and adults living in puerto rico. Am J Trop Med Hyg. 2015 Sep;93(3):441–453.
  • Watanaveeradej V, Simasathien S, Nisalak A, et al. Safety and immunogenicity of a tetravalent live-attenuated dengue vaccine in flavivirus-naive infants. Am J Trop Med Hyg. 2011 Aug;85(2):341–351.
  • Simasathien S, Thomas SJ, Watanaveeradej V, et al. Safety and immunogenicity of a tetravalent live-attenuated dengue vaccine in flavivirus naive children. Am J Trop Med Hyg. 2008 Mar;78(3):426–433.
  • Schmidt AC, Lin L, Martinez LJ, et al. Phase 1 randomized study of a tetravalent dengue purified inactivated vaccine in healthy adults in the United States. Am J Trop Med Hyg. 2017 Jun;96(6):1325–1337.
  • Diaz C, Koren M, Lin L, et al. Safety and Immunogenicity of different formulations of a tetravalent dengue purified inactivated vaccine in healthy adults from puerto rico: final results after 3 years of follow-up from a randomized, placebo-controlled phase i study. Am J Trop Med Hyg. 2020 May;102(5):951–954.
  • Lam JH, Ong LC, Alonso S. Key concepts, strategies, and challenges in dengue vaccine development: an opportunity for sub-unit candidates? Expert Rev Vaccines. 2016;15(4):483–495.
  • Manoff SB, Sausser M, Falk Russell A, et al. Immunogenicity and safety of an investigational tetravalent recombinant subunit vaccine for dengue: results of a phase I randomized clinical trial in flavivirus-naive adults. Hum Vaccin Immunother. 2019;15(9):2195–2204.
  • Danko JR, Kochel T, Teneza-Mora N, et al. Safety and immunogenicity of a tetravalent dengue DNA vaccine administered with a cationic lipid-based adjuvant in a phase 1 clinical trial. Am J Trop Med Hyg. 2018 Mar;98(3):849–856.
  • Yauch LE, Zellweger RM, Kotturi MF, et al. A protective role for dengue virus-specific CD8+ T cells. J Immunol. 2009 Apr 15;182(8):4865–4873. .
  • Weiskopf D, Angelo M, Azeredo E, et al. Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective for CD8+ T cells. Proc Natl Acad Sci U S A. 2013;110(22):E2046–53.
  • Lam J, Chua Y, Lee P, et al. Dengue vaccine-induced CD8+ T cell immunity confers protection in the context of enhancing, interfering maternal antibodies. JCI Insight. 2017;2(24):e94500. .
  • Rivino L, Kumaran EA, Jovanovic V, et al. Differential targeting of viral components by CD4+ versus CD8+ T lymphocytes in dengue virus infection. J Virol. 2013 Mar;87(5):2693–2706.
  • Costa SM, Yorio AP, Goncalves AJ, et al. Induction of a protective response in mice by the dengue virus NS3 protein using DNA vaccines. PLoS One. 2011;6(10):e25685.
  • Simmons M, Sun P, Putnak R. Recombinant dengue 2 virus NS3 helicase protein enhances antibody and T-cell response of purified inactivated vaccine. PLoS One. 2016;11(4):e0152811.
  • Roth C, Cantaert T, Colas C, et al. A modified mRNA vaccine targeting immunodominant NS epitopes protects against dengue virus infection in HLA class I transgenic mice. Front Immunol. 2019;10:1424.
  • Lazo L, Valdes I, Guillén G, et al. Aiming at the heart: the capsid protein of dengue virus as a vaccine candidate. Expert Rev Vaccines. 2019;18(2):161–173.
  • Kardani K, Bolhassani A, Shahbazi S. Prime-boost vaccine strategy against viral infections: mechanisms and benefits. Vaccine. 2016 Jan 20;34(4):413–423.
  • Valdes I, Lazo L, Hermida L, et al. Can complementary prime-boost immunization strategies be an alternative and promising vaccine approach against dengue virus? Front Immunol. 2019;10:1956. .
  • Qiao M, Shaw D, Forrat R, et al. Priming effect of dengue and yellow fever vaccination on the immunogenicity, infectivity, and safety of a tetravalent dengue vaccine in humans. Am J Trop Med Hyg. 2011 Oct;85(4):724–731.
  • Guy B, Nougarede N, Begue S, et al. Cell-mediated immunity induced by chimeric tetravalent dengue vaccine in naive or flavivirus-primed subjects. Vaccine. 2008 Oct 23;26(45):5712–5721.
  • Durbin AP, Pierce KK, Kirkpatrick BD, et al. Immunogenicity and safety of a tetravalent recombinant subunit dengue vaccine in adults previously vaccinated with a live attenuated tetravalent dengue vaccine: results of a phase-I randomized clinical trial. Am J Trop Med Hyg. 2020 May 11. DOI:10.4269/ajtmh.20-0042.
  • Modhiran N, Watterson D, Muller DA, et al. Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci Transl Med. 2015 Sep 9;7(304):304ra142.
  • Schlesinger JJ, Brandriss MW, Walsh EE. Protection of mice against dengue 2 virus encephalitis by immunization with the dengue 2 virus non-structural glycoprotein NS1. J Gen Virol. 1987 Mar;68(Pt 3):853–857.
  • Henchal EA, Henchal LS, Schlesinger JJ. Synergistic interactions of anti-NS1 monoclonal antibodies protect passively immunized mice from lethal challenge with dengue 2 virus. J Gen Virol. 1988 Aug;69(Pt 8):2101–2107.
  • Beatty PR, Puerta-Guardo H, Killingbeck SS, et al. Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci Transl Med. 2015Sep9;7(304):304ra141. .
  • Costa SM, Freire MS, Alves AM. DNA vaccine against the non-structural 1 protein (NS1) of dengue 2 virus. Vaccine. 2006 May 22;24(21):4562–4564.
  • Falgout B, Bray M, Schlesinger JJ, et al. Immunization of mice with recombinant vaccinia virus expressing authentic dengue virus nonstructural protein NS1 protects against lethal dengue virus encephalitis. J Virol. 1990 Sep;64(9):4356–4363.
  • Amorim JH, Diniz MO, Cariri FA, et al. Protective immunity to DENV2 after immunization with a recombinant NS1 protein using a genetically detoxified heat-labile toxin as an adjuvant. Vaccine. 2012 Jan 20;30(5):837–845.
  • Kao YS, Yu CY, Huang HJ, et al. Combination of modified NS1 and NS3 as a novel vaccine strategy against dengue virus infection. J Immunol. 2019 Oct 1;203(7):1909–1917.
  • Srivastava AK, Putnak JR, Warren RL, et al. Mice immunized with a dengue type 2 virus E and NS1 fusion protein made in Escherichia coli are protected against lethal dengue virus infection. Vaccine. 1995 Sep;13(13):1251–1258.
  • Lu H, Xu XF, Gao N, et al. Preliminary evaluation of DNA vaccine candidates encoding dengue-2 prM/E and NS1: their immunity and protective efficacy in mice. Mol Immunol. 2013 Jun;54(2):109–114.
  • Glasner DR, Puerta-Guardo H, Beatty PR, et al. The bad, and the shocking: the multiple roles of dengue virus nonstructural protein 1 in protection and pathogenesis. Annu Rev Virol. 2018 Sep 29;5(1):227–253.
  • Zellweger R, Prestwood T, Shresta S. Enhanced infection of liver sinusoidal endothelial cells in a mouse model of antibody-induced severe dengue disease. Cell Host Microbe. 2010;7(2):128–139.
  • Ng J, Zhang S, Tan H, et al. First experimental in vivo model of enhanced dengue disease severity through maternally acquired heterotypic dengue antibodies. PLoS Pathog. 2014;10(4):e1004031.
  • Katzelnik L, Montoya MLG, Balmaseda A, et al. Neutralizing antibody titers against dengue virus correlate with protection from symptomatic infection in a longitudinal cohort. Proc Natl Acad Sci. 2016;113(3):728–733.
  • Stettler K, Beltramello M, Espinosa D, et al. Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection. Science. 2016;353(6301):823–826.
  • Dejnirattisai W, Supasa P, Wongwiwat W, et al. Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with Zika virus. Nat Immunol. 2016;17(9):1102–1108.
  • Beltramello M, Williams K, Simmons C, et al. The human immune response to Dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity. Cell Host Microbe. 2010;8(3):271–283.
  • Alwis RD, Williams K, Schmid M, et al. Dengue viruses are enhanced by distinct populations of serotype cross-reactive antibodies in human immune sera. PLoS Pathog. 2014;10(10):e1004386.
  • Fowler A, Tang W, Young M, et al. Maternally acquired Zika antibodies enhance dengue disease severity in mice. Cell Host Microbe. 2018;24(5):743–750.
  • Bardina S, Bunduc P, Tripathi S, et al. Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity. Science. 2017;356(6334):175–180.
  • Brown J, Singh G, Acklin J, et al. Dengue virus immunity increases Zika virus-induced damage during pregnancy. Immunity. 2019;50(3):751–62.e5.
  • Mota J, Rico-Hesse R. Dengue virus tropism in humanized mice recapitulates human dengue fever. PLoS ONE. 2011;6:e20762.
  • EAd S, Fink K. Animal models for dengue and Zika vaccine development. Adv Exp Med Biol. 2018;1062:215–239.
  • Smith D, Holbrok M, Gowen B. Animal models of viral hemorrhagic fever. Antivir Res. 2014;112:59–79.
  • Huang K, Li S, Chen S, et al. Manifestation of thrombocytopenia in dengue-2-virus-infected mice. J Gen Virol. 2000;81:2177–2182.
  • Paes M, Pinhao A, Barreto D, et al. Liver injury and viremia in mice infected with dengue-2 virus. Virology. 2005;338(2):236–246.
  • Velandia-Romero M, Acosta-Losada O, Castellanos J. In vivo infection by a neuroinvasive neurovirulent dengue virus. J Neurovirol. 2012;18:374–387.
  • Zellweger R, Shresta S. Mouse models to study dengue virus immunology and pathogenesis. Front Immunol. 2014;5:151.
  • Tan G, Ng J, Trasti S, et al. A non mouse-adapted dengue virus strain as a new model of severe dengue infection in AG129 mice. PLoS Negl Trop Dis. 2010;4(4):e672.
  • Grant D, Tan G, Qing M, et al. A single amino acid in nonstructural protein NS4B confers virulence to dengue virus in AG129 mice through enhancement of viral RNA synthesis. J Virol. 2011;85(15):7775–7787.
  • Sercan O, Stoycheva D, Hammerling G, et al. IFN-gamma receptor signaling regulates memory CD8+ T cell differentiation. J Immunol. 2010;184(6):2855–2862.
  • Zellweger R, Miller R, Eddy W, et al. Role of humoral versus cellular responses induced by a protective dengue vaccine candidate. PLoS Pathog. 2013;9:e1003723.
  • Yauch L, Prestwood T, May M, et al. CD4+ T cells are not required for the induction of dengue virus-specific CD8+ T cell or antibody responses but contribute to protection after vaccination. J Immunol. 2010;185(9):5405–5416.
  • Prestwood T, Morar M, Zellweger R, et al. Gamma interferon (IFN-y) receptor restricts systemic dengue virus replication and prevents paralysis in IFN-a/B receptor-deficient mice. J Virol. 2012;86(23):12561–12570.
  • Perry S, Prestwood T, Lada S, et al. Cardiff-mediated signaling controls the initial innate response to dengue virus in vivo. J Virol. 2009;83(16):8276–8281.
  • Zust R, Toh YX, Valdes I, et al. Type I interferon signals in macrophages and dendritic cells control dengue virus infection: implications for a new mouse model to test dengue vaccines. J Virol. 2014;88(13):7276–7285.
  • Onlamoon N, Noisakran S, Hsiao H, et al. Dengue virus-induced hemorrhage in a nonhuman primate model. Blood. 2010;115:1823–1834.
  • Kirkpatrick B, Whitehead S, Pierce K, et al. The live attenuated dengue vaccine TV003 elicits complete protection against dengue in a human challenge model. Sci Transl Med. 2016;8(330):330ra36.
  • Mammen M, Lyons A, Innis B, et al. Evaluation of dengue virus strains for human challenge studies. Vaccine. 2014;32(13): 1488–1494. .
  • Sun W, Eckels K, Putnak J, et al. Experimental dengue virus challenge of human subjects previously vaccinated with live attenuated tetravalent dengue vaccines. J Infect Dis. 2013;207(5):700–708.
  • Thomas S, Endy T. Critical issues in dengue vaccine development. Curr Opin Infect Dis. 2011;24:442–450.
  • Thomas S, Nisalak A, Anderson K, et al. Dengue plaque reduction neutralization test (PRNT) in primary and secondary dengue virus infections: how alterations in assay conditions impact performance. Am J Trop Med Hyg. 2009;81(5):825–833.
  • Mukherjee S, Dowd K, Manhart C, et al. Mechanism and significance of cell type-dependent neutralization of flaviviruses. J Virol. 2014;88(13):7210–7220.
  • Ong E, Zhang S, Tan H, et al. Dengue virus compartmentalization during antibody-enhanced infection. Sci Rep. 2017;7(1):40923.
  • Chan C, Low J, Gan E, et al. Antibody-dependent dengue virus entry modulates cell intrinsic responses for enhanced infection. mSphere. 2019;4(5):e00528.
  • Moi M, Lim C, Chua K, et al. Dengue virus infection-enhancing activity in serum samples with neutralizing activity as determined by using FcgR-expressing cells. PLoS Negl Trop Dis. 2012;6:e1536.
  • Buddhari D, Aldstadt J, Endy T, et al. Dengue virus neutralizing antibody levels associated with protection from infection in Thai cluster studies. PLoS Negl Trop Dis. 2014;8(10):e3230.
  • Appanna R, Kg S, Xu M, et al. PLasmablasts during acute dengue infection represent a small subset of a broader virus-specific memory B cell pool. EBioMedicine. 2016;12:178–188.
  • Lindow J, Borochoff-Porte N, Durbin A, et al. Primary vaccination with low dose live dengue 1 virus generates a proinflammatory, multifunctional T cell response in humans. PLoS Negl Trop Dis. 2012;6(7):e1742.
  • Weiskopf D, Angelo M, Bangs D, et al. The human CD8+ T cell responses induced by a live attenuated tetravalent dengue vaccine are directed against highly conserved epitopes. J Virol. 2015;89(1):120–128.
  • Angelo M, Grifoni A, O’Rourke P, et al. Human CD4+ T cell responses to an attenuated tetravalent dengue vaccine parallel those induced by natural infection in magnitude, HLA restriction, and antigen specificity. J Virol. 2017;91(5):e02147–16.
  • Diamond M, Pierson T. Molecular insight into dengue virus pathogenesis and its implications for disease control. Cell. 2015;162(3):488–492.
  • Falcón-Lezama JA, Betancourt-Cravioto M, Tapia-Conyer R. Castanos-Osorio J, Giraldo-Garcia A, Giraldo M. Current status of vaccines against dengue virus. In: Falcon-Lezama J, editor. Dengue fever - a resilient threat in the face of innovation. intechopen; 2018. DOI:10.5772/intechopen.80820, ISBN: 978-1-83881-761-9.
  • Yap S, Nguyen-Khuong T, Rudd P, et al. Dengue virus glycosylation: what do we know? Front Microbiol. 2017;8:1415.
  • Gandon S, Mackinnon M, Nee S, et al. Imperfect vaccines and the evolution of parasite virulence. Nature. 2001;414:751–755.
  • Ahmad Z, Poh C. The conserved molecular determinants of virulence in dengue virus. Int J Med Sci. 2019;16(3):355–365.
  • He P, Zou Y, Hu Z. Advances in aluminum hydroxide-based adjuvant research and its mechanism. Hum Vaccin Immunother. 2015;11(2):477–488.
  • Bonam S, Partidos C, Halmuthur S, et al. An overview of novel adjuvants designed for improving vaccine efficacy. Trends Pharmacol Sci. 2017;38(9):771–793. .
  • Knudsen N, Olsen A, Buosanti C, et al. Different human vaccine adjuvants promote distinct antigen independent immunological signatures tailored to different pathogens. Sci Rep. 2016;6:19570.
  • Calabro S, Tritto E, Pezzotti A, et al. The adjuvant effect of MF59 is due to the oil-in-water emulsion formulation, none of the individual components induce a comparable adjuvant effect. Vaccine. 2013;31:3363–3369.
  • O’Hagan D, Ott G, Gregorio ED, et al. The mechanism of action of MF59-an innate attractive adjuvant formulation. Vaccine. 2012;30:4341–4348.
  • Zhang J, Miao J, Han X, et al. Development of a novel oil-in-water emulsion and evaluation of its potential function in swine influenza vaccine in mice. BMC Vet Res. 2018;14(1):415.
  • Toussi D, Massari P. Immune adjuvant effect of molecularly defines Toll-like receptor ligands. Vaccines (Basel). 2014;2:323–353.
  • Temizoz B, Kuroda E, Ishii K. Combination and inducible adjuvants targeting nucleic acid sensors. Curr Opin Pharmacol. 2018;41:104–113.
  • Levast B, Awate S, Babiuk L, et al. Vaccine potentiation by combination adjuvants. Vaccine. 2014;2:297–322.
  • Bidet K, Ho V, Chu C, et al. Mimicking immune signatures of flavivirus infection with targeted adjuvants improves dengue subunit vaccine immunogenicity. NPJ Vaccines. 2019;4:27.
  • Garg R, Babiuk L, Hurk S-V, et al. A novel combination adjuvant platform for human and animal vaccines. Vaccine. 2017;35(35Pt A):4486–4489.
  • Trovato M, Berardinis PD. Novel antigen delivery systems. World J Virol. 2015;4(3):156–168.
  • Hunsawong T, Sunintaboon P, Warit S, et al. A novel dengue virus serotype-2 nanovaccine induces robust humoral and cell-mediated immunity in mice. Vaccine. 2015;33(14):1702–1710.
  • Metz S, Thomas A, Brackbill A, et al. Nanoparticle delivery of a tetravalent E protein subunit vaccine induces balanced, type-specific neutralizing antibodies to each dengue virus serotype. PLoS Negl Trop Dis. 2018;12(9):e0006793.
  • Hajam I, Dar P, Won G, et al. Bacterial ghosts as adjuvants: mechanisms and potential. Vet Res. 2017;48(1):37.
  • Bosma T, Kanninga R, Neef J, et al. Novel surface display system for proteins on non-genetically modified gram-positive bacteria. Appl Environ Microbiol. 2006;72(1):880–889.
  • Braekel-Budimir NV, Haijema B, Leenhouts K. Bacterium-like particles for efficient immune stimulation of existing vaccines and new subunit vaccines in mucosal applications. Front Immunol. 2013;4:282.
  • Wen J, Yang Y, Zhao G, et al. Salmonella typhi Ty21a bacterial ghost vector augments HIV-1 gp10 DNA vaccine-induced peripheral and mucosal antibody responses via TLR4 pathway. Vaccine. 2012;30(39):5733–5739.
  • Wang F, Kream RM, Stefano GB. An evidence based perspective on mRNA-SARS-CoV-2 vaccine development. Med Sci Monit. 2020 May 5;26:e924700.
  • Zhang C, Maruggi G, Shan H, et al. Advances in mRNA vaccines for infectious diseases. Front Immunol. 2019;10:594.
  • Alberer M, Gnad-Vogt U, Hong H, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet. 2017;390(10101):1511–1520.
  • Gandhi R, Kwon D, Macklin E, et al. Immunization of HIV-1-infected persons with autologous dendritic cells transfected with mRNA encoding HIV-1 Gag and Nef: results of a randomized, placebo-controlled clinical trial. J Acquir Immune Defic Syndr. 2016;71(3):246–253.
  • Craenenbroeck A, Smits E, Anguille S, et al. Induction of cytomegalovirus-specific T cell responses in healthy volunteers and allogeneic stem cell recipients using vaccination with messenger RNA-transfected dendritic cells. Transplantation. 2015;99(1):120–127.
  • Henein S, Swanstrom K, Byers A, et al. Dissecting antibodies induced by chimeric yellow fever-dengue live-attenuated, tetravalent dengue vaccine (CYD-TDV) in naive and dengue-exposed individuals. J Infect Dis. 2017;215(3):351–358.
  • Jentes E, Lash R, Johansson M, et al. Evidence-based risk assessment and communication: a new global dengue-risk map for travelers and clinicians. J Travel Med. 2016;23(6):pii:taw062.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.