181
Views
12
CrossRef citations to date
0
Altmetric
Review

An update of cyclic nucleotide phosphodiesterase as a target for cardiac diseases

&
Pages 183-196 | Received 01 Jul 2020, Accepted 07 Sep 2020, Published online: 21 Sep 2020

References

  • Bender AT, Beavo JA. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev. 2006 Sep;58(3):488–520.
  • Guellich A, Mehel H, Fischmeister R. Cyclic AMP synthesis and hydrolysis in the normal and failing heart. Pflugers Arch. 2014 Jun;466(6):1163–1175.
  • Beavo J, Francis SH, Houslay MD. Cyclic nucleotide phosphodiesterases in health and disease. Boca Raton: CRC Press/Taylor & Francis; 2007.
  • Liu S, Li Y, Kim S, et al. Phosphodiesterases coordinate cAMP propagation induced by two stimulatory G protein-coupled receptors in hearts. Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6578–6583.
  • Lohse MJ, Engelhardt S, Eschenhagen T. What is the role of beta-adrenergic signaling in heart failure? Circ Res. 2003;93(10):896–906.
  • Feldman DS, Elton TS, Sun B, et al. Mechanisms of disease: detrimental adrenergic signaling in acute decompensated heart failure. Nat Clin Pract Cardiovasc Med. 2008 Apr;5(4):208–218.
  • Peart JN, Headrick JP. Adenosinergic cardioprotection: multiple receptors, multiple pathways. Pharmacol Ther. 2007 May;114(2):208–221.
  • Szentmiklosi AJ, Cseppento A, Harmati G, et al. Novel trends in the treatment of cardiovascular disorders: site- and event- selective adenosinergic drugs. Curr Med Chem. 2011;18(8):1164–1187.
  • Okumura S, Takagi G, Kawabe J, et al. Disruption of type 5 adenylyl cyclase gene preserves cardiac function against pressure overload. Proc Natl Acad Sci U S A. 2003;100(17):9986–9990.
  • Okumura S, Vatner DE, Kurotani R, et al. Disruption of type 5 adenylyl cyclase enhances desensitization of cyclic adenosine monophosphate signal and increases Akt signal with chronic catecholamine stress. Circulation. 2007 Oct 16;116(16):1776–1783.
  • Takahashi T, Tang T, Lai NC, et al. Increased cardiac adenylyl cyclase expression is associated with increased survival after myocardial infarction. Circulation. 2006 Aug 1;114(5):388–396.
  • Tang T, Gao MH, Lai NC, et al. Adenylyl cyclase type 6 deletion decreases left ventricular function via impaired calcium handling. Circulation. 2008 Jan 1;117(1):61–69.
  • Knight WE, Chen S, Zhang Y, et al. PDE1C deficiency antagonizes pathological cardiac remodeling and dysfunction. Proc Natl Acad Sci U S A. 2016 Oct 20;113(45):E7116–E7125.
  • Zhang Y, Knight W, Chen S, et al. Multiprotein complex with TRPC (transient receptor potential-canonical) Channel, PDE1C (phosphodiesterase 1C), and A2R (adenosine A2 receptor) plays a critical role in regulating cardiomyocyte cAMP and survival. Circulation. 2018 Oct 30;138(18):1988–2002.
  • Ding B, Abe J, Wei H, et al. Functional role of phosphodiesterase 3 in cardiomyocyte apoptosis: implication in heart failure. Circulation. 2005 May 17;111(19):2469–2476.
  • Tajima M, Bartunek J, Weinberg EO, et al. Atrial natriuretic peptide has different effects on contractility and intracellular pH in normal and hypertrophied myocytes from pressure-overloaded hearts. Circulation. 1998 Dec 15;98(24):2760–2764.
  • Ohte N, Cheng CP, Suzuki M, et al. Effects of atrial natriuretic peptide on left ventricular performance in conscious dogs before and after pacing-induced heart failure. J Pharmacol Exp Ther. 1999 Nov;291(2):589–595.
  • Shah AM, MacCarthy PA. Paracrine and autocrine effects of nitric oxide on myocardial function. Pharmacol Ther. 2000 Apr;86(1):49–86.
  • Pierkes M, Gambaryan S, Boknik P, et al. Increased effects of C-type natriuretic peptide on cardiac ventricular contractility and relaxation in guanylyl cyclase A-deficient mice. Cardiovasc Res. 2002 Mar;53(4):852–861.
  • Su J, Zhang Q, Moalem J, et al. Functional effects of C-type natriuretic peptide and nitric oxide are attenuated in hypertrophic myocytes from pressure-overloaded mouse hearts. Am J Physiol Heart Circ Physiol. 2005 Mar;288(3):H1367–73.
  • Hammond J, Balligand JL. Nitric oxide synthase and cyclic GMP signaling in cardiac myocytes: from contractility to remodeling. J Mol Cell Cardiol. 2012 Feb;52(2):330–340.
  • Bice JS, Burley DS, Baxter GF. Novel approaches and opportunities for cardioprotective signaling through 3ʹ,5ʹ-cyclic guanosine monophosphate manipulation. J Cardiovasc Pharmacol Ther. 2014 May;19(3):269–282.
  • Su J, Scholz PM, Weiss HR. Differential effects of cGMP produced by soluble and particulate guanylyl cyclase on mouse ventricular myocytes. Exp Biol Med (Maywood). 2005 Apr;230(4):242–250.
  • Fischmeister R, Castro LR, Abi-Gerges A, et al. Compartmentation of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases. Circ Res. 2006 Oct 13;99(8):816–828.
  • Zaccolo M, Di Benedetto G, Lissandron V, et al. Restricted diffusion of a freely diffusible second messenger: mechanisms underlying compartmentalized cAMP signalling. Biochem Soc Trans. 2006 Aug;34(Pt 4):495–497.
  • Stangherlin A, Zaccolo M. Phosphodiesterases and subcellular compartmentalized cAMP signaling in the cardiovascular system. Am J Physiol Heart Circ Physiol. 2012 Jan;302(2):H379–90.
  • Lomas O, Zaccolo M. Phosphodiesterases maintain signaling fidelity via compartmentalization of cyclic nucleotides. Physiology (Bethesda). 2014 Mar;29(2):141–149.
  • Brescia M, Zaccolo M. Modulation of compartmentalised cyclic nucleotide signalling via local inhibition of phosphodiesterase activity. Int J Mol Sci. 2016 2;17(10):Oct. .
  • Schleicher K, Zaccolo M. Using cAMP sensors to study cardiac nanodomains. J Cardiovasc Dev Dis. 2018 Mar 13;5(1):17.
  • Chao YC, Surdo NC, Pantano S, et al. Imaging cAMP nanodomains in the heart. Biochem Soc Trans. 2019 Oct 31;47(5):1383–1392.
  • Bork NI, Nikolaev VO. cGMP signaling in the cardiovascular system-the role of compartmentation and its live cell imaging. Int J Mol Sci. 2018 Mar 10;19(3). DOI:https://doi.org/10.3390/ijms19030801
  • Miller CL, Oikawa M, Cai Y, et al. Role of Ca2+/calmodulin-stimulated cyclic nucleotide phosphodiesterase 1 in mediating cardiomyocyte hypertrophy. Circ Res. 2009 Nov 6;105(10):956–964.
  • Knight WE, Chen S, Zhang Y, et al. PDE1C deficiency antagonizes pathological cardiac remodeling and dysfunction. Proc Natl Acad Sci U S A. 2016 Nov 8;113(45):E7116–E7125.
  • Zoccarato A, Surdo NC, Aronsen JM, et al. Cardiac hypertrophy is inhibited by a local pool of cAMP regulated by phosphodiesterase 2. Circ Res. 2015 Sep 25;117(8):707–719.
  • Ding B, Abe JI, Wei H, et al. Functional role of phosphodiesterase 3 in cardiomyocyte apoptosis: implication in heart failure. Circulation. 2005 May 17;111(19):2469–2476.
  • Lehnart SE, Wehrens XH, Reiken S, et al. Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell. 2005 Oct 7;123(1):25–35.
  • Nagendran J, Archer SL, Soliman D, et al. Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation. 2007 Jul 17;116(3):238–248.
  • Patrucco E, Albergine MS, Santana LF, et al. Phosphodiesterase 8A (PDE8A) regulates excitation-contraction coupling in ventricular myocytes. J Mol Cell Cardiol. 2010 Aug;49(2):330–333.
  • Lee DI, Zhu G, Sasaki T, et al. Phosphodiesterase 9A controls nitric-oxide-independent cGMP and hypertrophic heart disease. Nature. 2015 Mar 26;519(7544):472–476.
  • Chen S, Zhang Y, Lighthouse JK, et al. A novel role of cyclic nucleotide phosphodiesterase 10A in pathological cardiac remodeling and dysfunction. Circulation. 2020 Jan 21;141(3):217–233.
  • Shakur Y, Holst LS, Landstrom TR, et al. Regulation and function of the cyclic nucleotide phosphodiesterase (PDE3) gene family. Prog Nucleic Acid Res Mol Biol. 2001;66:241–277.
  • Movsesian M. Novel approaches to targeting PDE3 in cardiovascular disease. Pharmacol Ther. 2016 Jul;163:74–81.
  • Maurice DH, Palmer D, Tilley DG, et al. Cyclic nucleotide phosphodiesterase activity, expression, and targeting in cells of the cardiovascular system. Mol Pharmacol. 2003;64(3):533–546.
  • Fujishige K, Kotera J, Michibata H, et al. Cloning and characterization of a novel human phosphodiesterase that hydrolyzes both cAMP and cGMP (PDE10A). J Biol Chem. 1999 Jun 25;274(26):18438–18445.
  • Loughney K, Snyder PB, Uher L, et al. Isolation and characterization of PDE10A, a novel human 3ʹ, 5ʹ-cyclic nucleotide phosphodiesterase. Gene. 1999 Jun 24;234(1):109–117.
  • Soderling SH, Bayuga SJ, Beavo JA. Isolation and characterization of a dual-substrate phosphodiesterase gene family: PDE10A. Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):7071–7076.
  • Charych EI, Jiang LX, Lo F, et al. Interplay of palmitoylation and phosphorylation in the trafficking and localization of phosphodiesterase 10A: implications for the treatment of schizophrenia. J Neurosci. 2010 Jul 7;30(27):9027–9037.
  • Russwurm C, Koesling D, Russwurm M. Phosphodiesterase 10A is tethered to a synaptic signaling complex in striatum. J Biol Chem. 2015 May 8;290(19):11936–11947.
  • Gross-Langenhoff M, Hofbauer K, Weber J, et al. cAMP is a ligand for the tandem GAF domain of human phosphodiesterase 10 and cGMP for the tandem GAF domain of phosphodiesterase 11. J Biol Chem. 2006 Feb 3;281(5):2841–2846.
  • Houslay MD, Baillie GS, Maurice DH. cAMP-Specific phosphodiesterase-4 enzymes in the cardiovascular system: a molecular toolbox for generating compartmentalized cAMP signaling. Circ Res. 2007 Apr 13;100(7):950–966.
  • Xie M, Blackman B, Scheitrum C, et al. The upstream conserved regions (UCRs) mediate homo- and hetero-oligomerization of type 4 cyclic nucleotide phosphodiesterases (PDE4s). Biochem J. 2014 May 1;459(3):539–550.
  • Wang P, Wu P, Egan RW, et al. Human phosphodiesterase 8A splice variants: cloning, gene organization, and tissue distribution. Gene. 2001 Dec 12;280(1–2):183–194.
  • Soderling SH, Bayuga SJ, Beavo JA. Cloning and characterization of a cAMP-specific cyclic nucleotide phosphodiesterase. Proc Natl Acad Sci U S A. 1998;95(15):8991–8996.
  • Hayashi M, Shimada Y, Nishimura Y, et al. Genomic organization, chromosomal localization, and alternative splicing of the human phosphodiesterase 8B gene. Biochem Biophys Res Commun. 2002 Oct 11;297(5):1253–1258.
  • Kass DA, Champion HC, Beavo JA. Phosphodiesterase type 5: expanding roles in cardiovascular regulation. Circ Res. 2007Nov26;101(11):1084–1095.
  • Francis S, Zoraghi R, Kotera J, et al. Phosphodiesterase-5: molecular characteristics relating to structure, function, and regulation. In: Cyclic nucleotide phosphodiesterases in health and disease. Boca Raton: CRC; 2006. p. 131.
  • Fisher DA, Smith JF, Pillar JS, et al. Isolation and characterization of PDE9A, a novel human cGMP-specific phosphodiesterase. J Biol Chem. 1998;273(25):15559–15564.
  • Rentero C, Monfort A, Puigdomenech P. Identification and distribution of different mRNA variants produced by differential splicing in the human phosphodiesterase 9A gene. Biochem Biophys Res Commun. 2003 Feb 14;301(3):686–692.
  • Vandeput F, Wolda SL, Krall J, et al. Cyclic nucleotide phosphodiesterase PDE1C1 in human cardiac myocytes. J Biol Chem. 2007 Nov 9;282(45):32749–32757.
  • Chen S, Knight WE, Yan C. Roles of PDE1 in pathological cardiac remodeling and dysfunction. J Cardiovasc Dev Dis. 2018Apr23;5(2):22.
  • Miller CL, Cai Y, Oikawa M, et al. Cyclic nucleotide phosphodiesterase 1A: a key regulator of cardiac fibroblast activation and extracellular matrix remodeling in the heart. Basic Res Cardiol. 2011 Nov;106(6):1023–1039.
  • Wu MP, Zhang YS, Xu X, et al. Vinpocetine attenuates pathological cardiac remodeling by inhibiting cardiac hypertrophy and fibrosis. Cardiovasc Drugs Ther. 2017 Apr;31(2):157–166.
  • Hashimoto T, Kim GE, Tunin RS, et al. Acute enhancement of cardiac function by phosphodiesterase type 1 inhibition. Circulation. 2018 Oct 30;138(18):1974–1987.
  • Stephenson DT, Coskran TM, Wilhelms MB, et al. Immunohistochemical localization of phosphodiesterase 2A in multiple mammalian species. J Histochem Cytochem. 2009 Oct;57(10):933–949.
  • Mehel H, Emons J, Vettel C, et al. Phosphodiesterase-2 is up-regulated in human failing hearts and blunts beta-adrenergic responses in cardiomyocytes. J Am Coll Cardiol. 2013 Oct 22;62(17):1596–1606.
  • Baliga RS, Preedy MEJ, Dukinfield MS, et al. Phosphodiesterase 2 inhibition preferentially promotes NO/guanylyl cyclase/cGMP signaling to reverse the development of heart failure. Proc Natl Acad Sci U S A. 2018 Jul 31;115(31):E7428–E7437.
  • Vettel C, Lammle S, Ewens S, et al. PDE2-mediated cAMP hydrolysis accelerates cardiac fibroblast to myofibroblast conversion and is antagonized by exogenous activation of cGMP signaling pathways. Am J Physiol Heart Circ Physiol. 2014 Apr 15;306(8):H1246–52.
  • Hartzell HC, Fischmeister R. Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells. Nature. 1986 Sep 18-24;323(6085):273–275.
  • Vandecasteele G, Verde I, Rucker-Martin C, et al. Cyclic GMP regulation of the L-type Ca(2+) channel current in human atrial myocytes. J Physiol. 2001;533(Pt 2):329–340.
  • Soler F, Fernandez-Belda F, Perez-Schindler J, et al. PDE2 activity differs in right and left rat ventricular myocardium and differentially regulates beta2 adrenoceptor-mediated effects. Exp Biol Med (Maywood). 2015 Sep;240(9):1205–1213.
  • Mongillo M, Tocchetti CG, Terrin A, et al. Compartmentalized phosphodiesterase-2 activity blunts beta-adrenergic cardiac inotropy via an NO/cGMP-dependent pathway. Circ Res. 2006 Feb 3;98(2):226–234.
  • Monterisi S, Lobo MJ, Livie C, et al. PDE2A2 regulates mitochondria morphology and apoptotic cell death via local modulation of cAMP/PKA signalling. Elife. 2017 May 2;6:e21374.
  • Vettel C, Lindner M, Dewenter M, et al. Phosphodiesterase 2 protects against catecholamine-induced arrhythmia and preserves contractile function after myocardial infarction. Circ Res. 2017 Jan 6;120(1):120–132.
  • Surapisitchat J, Jeon KI, Yan C, et al. Differential regulation of endothelial cell permeability by cGMP via phosphodiesterases 2 and 3. Circ Res. 2007 Oct 12;101(8):811–818.
  • Chung YW, Lagranha C, Chen Y, et al. Targeted disruption of PDE3B, but not PDE3A, protects murine heart from ischemia/reperfusion injury. Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):E2253–62.
  • Ding B, Abe J, Wei H, et al. A positive feedback loop of phosphodiesterase 3 (PDE3) and inducible cAMP early repressor (ICER) leads to cardiomyocyte apoptosis. Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14771–14776.
  • Yan C, Ding B, Shishido T, et al. Activation of extracellular signal-regulated kinase 5 reduces cardiac apoptosis and dysfunction via inhibition of a phosphodiesterase 3A/inducible cAMP early repressor feedback loop. Circ Res. 2007 Mar 2;100(4):510–519.
  • Smith CJ, Huang R, Sun D, et al. Development of decompensated dilated cardiomyopathy is associated with decreased gene expression and activity of the milrinone-sensitive cAMP phosphodiesterase PDE3A. Circulation. 1997;96(9):3116–3123.
  • Sato N, Asai K, Okumura S, et al. Mechanisms of desensitization to a PDE inhibitor (milrinone) in conscious dogs with heart failure. Am J Physiol. 1999;276(5 Pt 2):H1699–705.
  • Abi-Gerges A, Richter W, Lefebvre F, et al. Decreased expression and activity of cAMP phosphodiesterases in cardiac hypertrophy and its impact on beta-adrenergic cAMP signals. Circ Res. 2009 Oct 9;105(8):784–792.
  • Takahashi K, Osanai T, Nakano T, et al. Enhanced activities and gene expression of phosphodiesterase types 3 and 4 in pressure-induced congestive heart failure. Heart Vessels. 2002 Sep;16(6):249–256.
  • Knollmann BC, Knollmann-Ritschel BE, Weissman NJ, et al. Remodelling of ionic currents in hypertrophied and failing hearts of transgenic mice overexpressing calsequestrin. J Physiol. 2000 Jun 1;525(Pt 2):483–498.
  • Tse J, Brackett NL, Kuo JF. Alterations in activities of cyclic nucleotide systems and in beta-adrenergic receptor-mediated activation of cyclic AMP-dependent protein kinase during progression and regression of isoproterenol-induced cardiac hypertrophy. Biochim Biophys Acta. 1978 Sep 6;542(3):399–411.
  • Packer M, Carver JR, Rodeheffer RJ, et al. Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group. N Engl J Med. 1991;325(21):1468–1475.
  • Sun B, Li H, Shakur Y, et al. Role of phosphodiesterase type 3A and 3B in regulating platelet and cardiac function using subtype-selective knockout mice. Cell Signal. 2007 Aug;19(8):1765–1771.
  • Beca S, Ahmad F, Shen W, et al. Phosphodiesterase type 3A regulates basal myocardial contractility through interacting with sarcoplasmic reticulum calcium ATPase type 2a signaling complexes in mouse heart. Circ Res. 2013 Jan 18;112(2):289–297.
  • Ahmad F, Shen W, Vandeput F, et al. Regulation of sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2) activity by phosphodiesterase 3A (PDE3A) in human myocardium: phosphorylation-dependent interaction of PDE3A1 with SERCA2. J Biol Chem. 2015 Mar 13;290(11):6763–6776.
  • Oikawa M, Wu M, Lim S, et al. Cyclic nucleotide phosphodiesterase 3A1 protects the heart against ischemia-reperfusion injury. J Mol Cell Cardiol. 2013 Nov;64:11–19.
  • Woo CH, Le NT, Shishido T, et al. Novel role of C terminus of Hsc70-interacting protein (CHIP) ubiquitin ligase on inhibiting cardiac apoptosis and dysfunction via regulating ERK5-mediated degradation of inducible cAMP early repressor. Faseb J. 2010 Dec;24(12):4917–4928.
  • Iwaya S, Oikawa M, Chen Y, et al. Phosphodiesterase 3A1 protects the heart against angiotensin II-induced cardiac remodeling through regulation of transforming growth factor-beta expression. Int Heart J. 2014;55(2):165–168.
  • Polidovitch N, Yang S, Sun H, et al. Phosphodiesterase type 3A (PDE3A), but not type 3B (PDE3B), contributes to the adverse cardiac remodeling induced by pressure overload. J Mol Cell Cardiol. 2019 Jul;132:60–70.
  • Richter W, Xie M, Scheitrum C, et al. Conserved expression and functions of PDE4 in rodent and human heart. Basic Res Cardiol. 2011 Mar;106(2):249–262.
  • Kostic MM, Erdogan S, Rena G, et al. Altered expression of PDE1 and PDE4 cyclic nucleotide phosphodiesterase isoforms in 7-oxo-prostacyclin-preconditioned rat heart. J Mol Cell Cardiol. 1997;29(11):3135–3146.
  • Karam S, Margaria JP, Bourcier A, et al. Cardiac overexpression of PDE4B blunts beta-adrenergic response and maladaptive remodeling in heart failure. Circulation. 2020 Apr 8;142(2):161–174.
  • Bobin P, Varin A, Lefebvre F, et al. Calmodulin kinase II inhibition limits the pro-arrhythmic Ca2+ waves induced by cAMP-phosphodiesterase inhibitors. Cardiovasc Res. 2016 May 1;110(1):151–161.
  • Fertig BA, Baillie GS. PDE4-Mediated cAMP Signalling. J Cardiovasc Dev Dis. 2018 Jan 31;5(1):8.
  • Leroy J, Richter W, Mika D, et al. Phosphodiesterase 4B in the cardiac L-type Ca(2)(+) channel complex regulates Ca(2)(+) current and protects against ventricular arrhythmias in mice. J Clin Invest. 2011 Jul;121(7):2651–2661.
  • Beca S, Helli PB, Simpson JA, et al. Phosphodiesterase 4D regulates baseline sarcoplasmic reticulum Ca2+ release and cardiac contractility, independently of L-type Ca2+ current. Circ Res. 2011 Oct 14;109(9):1024–1030.
  • Sin YY, Edwards HV, Li X, et al. Disruption of the cyclic AMP phosphodiesterase-4 (PDE4)-HSP20 complex attenuates the beta-agonist induced hypertrophic response in cardiac myocytes. J Mol Cell Cardiol. 2011 May;50(5):872–883.
  • Edwards HV, Scott JD, Baillie GS. PKA phosphorylation of the small heat-shock protein Hsp20 enhances its cardioprotective effects. Biochem Soc Trans. 2012 Feb;40(1):210–214.
  • Martin TP, Hortigon-Vinagre MP, Findlay JE, et al. Targeted disruption of the heat shock protein 20-phosphodiesterase 4D (PDE4D) interaction protects against pathological cardiac remodelling in a mouse model of hypertrophy. FEBS Open Bio. 2014;4:923–927.
  • Dodge KL, Khouangsathiene S, Kapiloff MS, et al. mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module. Embo J. 2001 Apr 17;20(8):1921–1930.
  • Dodge-Kafka KL, Soughayer J, Pare GC, et al. The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature. 2005 Sep 22;437(7058):574–578.
  • Wang L, Burmeister BT, Johnson KR, et al. UCR1C is a novel activator of phosphodiesterase 4 (PDE4) long isoforms and attenuates cardiomyocyte hypertrophy. Cell Signal. 2015 May;27(5):908–922.
  • Corbin J, Rannels S, Neal D, et al. Sildenafil citrate does not affect cardiac contractility in human or dog heart. Curr Med Res Opin. 2003;19(8):747–752.
  • Vandeput F, Krall J, Ockaili R, et al. cGMP-hydrolytic activity and its inhibition by sildenafil in normal and failing human and mouse myocardium. J Pharmacol Exp Ther. 2009 Sep;330(3):884–891.
  • Pokreisz P, Vandenwijngaert S, Bito V, et al. Ventricular phosphodiesterase-5 expression is increased in patients with advanced heart failure and contributes to adverse ventricular remodeling after myocardial infarction in mice. Circulation. 2009 Jan 27;119(3):408–416.
  • Zhang M, Koitabashi N, Nagayama T, et al. Expression, activity, and pro-hypertrophic effects of PDE5A in cardiac myocytes. Cell Signal. 2008 Aug 26;20(12):2231–2236.
  • Lu Z, Xu X, Hu X, et al. Oxidative stress regulates left ventricular PDE5 expression in the failing heart. Circulation. 2010 Apr 6;121(13):1474–1483.
  • Takimoto E, Champion HC, Belardi D, et al. cGMP catabolism by phosphodiesterase 5A regulates cardiac adrenergic stimulation by NOS3-dependent mechanism. Circ Res. 2005 Jan 7;96(1):100–109.
  • Lukowski R, Rybalkin SD, Loga F, et al. Cardiac hypertrophy is not amplified by deletion of cGMP-dependent protein kinase I in cardiomyocytes. Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5646–5651.
  • Borlaug BA, Melenovsky V, Marhin T, et al. Sildenafil inhibits beta-adrenergic-stimulated cardiac contractility in humans. Circulation. 2005 Oct 25;112(17):2642–2649.
  • Takimoto E, Belardi D, Tocchetti CG, et al. Compartmentalization of cardiac beta-adrenergic inotropy modulation by phosphodiesterase type 5. Circulation. 2007 Apr 24;115(16):2159–2167.
  • Senzaki H, Smith CJ, Juang GJ, et al. Cardiac phosphodiesterase 5 (cGMP-specific) modulates beta-adrenergic signaling in vivo and is down-regulated in heart failure. Faseb J. 2001 Aug;15(10):1718–1726.
  • Nagayama T, Hsu S, Zhang M, et al. Sildenafil stops progressive chamber, cellular, and molecular remodeling and improves calcium handling and function in hearts with pre-existing advanced hypertrophy caused by pressure overload. J Am Coll Cardiol. 2009 Jan 13;53(2):207–215.
  • Ockaili R, Salloum F, Hawkins J, et al. Sildenafil (Viagra) induces powerful cardioprotective effect via opening of mitochondrial K(ATP) channels in rabbits. Am J Physiol Heart Circ Physiol. 2002 Sep;283(3):H1263–9.
  • Salloum FN, Takenoshita Y, Ockaili RA, et al. Sildenafil and vardenafil but not nitroglycerin limit myocardial infarction through opening of mitochondrial K(ATP) channels when administered at reperfusion following ischemia in rabbits. J Mol Cell Cardiol. 2007 Feb;42(2):453–458.
  • Chau VQ, Salloum FN, Hoke NN, et al. Mitigation of the progression of heart failure with sildenafil involves inhibition of RhoA/Rho-kinase pathway. Am J Physiol Heart Circ Physiol. 2011 Jun;300(6):H2272–9.
  • Fisher PW, Salloum F, Das A, et al. Phosphodiesterase-5 inhibition with sildenafil attenuates cardiomyocyte apoptosis and left ventricular dysfunction in a chronic model of doxorubicin cardiotoxicity. Circulation. 2005 Apr 5;111(13):1601–1610.
  • Das A, Xi L, Kukreja RC. Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. Essential role of nitric oxide signaling. J Biol Chem. 2005 Apr 1;280(13):12944–12955.
  • Takimoto E, Champion HC, Li M, et al. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med. 2005;11(2):214–222.
  • Hassan MA, Ketat AF. Sildenafil citrate increases myocardial cGMP content in rat heart, decreases its hypertrophic response to isoproterenol and decreases myocardial leak of creatine kinase and troponin T. BMC Pharmacol. 2005 Apr;6(5):10.
  • Zhang M, Takimoto E, Hsu S, et al. Myocardial remodeling is controlled by myocyte-targeted gene regulation of phosphodiesterase type 5. J Am Coll Cardiol. 2010 Dec 7;56(24):2021–2030.
  • Lukowski R, Rybalkin SD, Loga F, et al. Cardiac hypertrophy is not amplified by deletion of cGMP-dependent protein kinase I in cardiomyocytes. Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5646–5651.
  • Patrucco E, Domes K, Sbroggio M, et al. Roles of cGMP-dependent protein kinase I (cGKI) and PDE5 in the regulation of Ang II-induced cardiac hypertrophy and fibrosis. Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12925–12929.
  • Straubinger J, Schottle V, Bork N, et al. Sildenafil does not prevent heart hypertrophy and fibrosis induced by cardiomyocyte angiotensin ii type 1 receptor signaling. J Pharmacol Exp Ther. 2015 Sep;354(3):406–416.
  • Horvath A, Giatzakis C, Tsang K, et al. A cAMP-specific phosphodiesterase (PDE8B) that is mutated in adrenal hyperplasia is expressed widely in human and mouse tissues: a novel PDE8B isoform in human adrenal cortex. Eur J Hum Genet. 2008 Oct;16(10):1245–1253.
  • Kokkonen-Simon KM, Saberi A, Nakamura T, et al. Marked disparity of microRNA modulation by cGMP-selective PDE5 versus PDE9 inhibitors in heart disease. JCI Insight. 2018 Aug 9;3(15). DOI:https://doi.org/10.1172/jci.insight.121739
  • Catalanotto C, Cogoni C, Zardo G. MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci. 2016 Oct 13;17(10):1712.
  • Chen S, Yan C. Response by Chen and Yan to Letter Regarding Article, “A Novel Role of Cyclic Nucleotide Phosphodiesterase 10A in Pathological Cardiac Remodeling and Dysfunction”. Circulation. 2020 Jul 21;142(3):e36-e37
  • Porcu E, Medici M, Pistis G, et al. A meta-analysis of thyroid-related traits reveals novel loci and gender-specific differences in the regulation of thyroid function. PLoS Genet. 2013;9(2):e1003266.
  • Hankir MK, Kranz M, Gnad T, et al. A novel thermoregulatory role for PDE10A in mouse and human adipocytes. EMBO Mol Med. 2016 Jul;8(7):796–812.
  • Nawrocki AR, Rodriguez CG, Toolan DM, et al. Genetic deletion and pharmacological inhibition of phosphodiesterase 10A protects mice from diet-induced obesity and insulin resistance. Diabetes. 2014 Jan;63(1):300–311.
  • Ashrafian H, Frenneaux MP, Opie LH. Metabolic mechanisms in heart failure. Circulation. 2007 Jul 24;116(4):434–448.
  • Ayres JK, Maani CV Milrinone. Treasure Island (FL): StatPearls; 2020.
  • Young RA, Milrinone WA. A preliminary review of its pharmacological properties and therapeutic use. Drugs. 1988 Aug;36(2):158–192.
  • Chong LYZ, Satya K, Kim B, et al. Milrinone dosing and a culture of caution in clinical practice. Cardiol Rev. 2018 Jan–Feb;26(1):35–42.
  • Dhaliwal A, Gupta M PDE5 inhibitor. Treasure Island (FL): StatPearls; 2020.
  • Corbin JD, Beasley A, Blount MA, et al. High lung PDE5: a strong basis for treating pulmonary hypertension with PDE5 inhibitors. Biochem Biophys Res Commun. 2005 Sep 2;334(3):930–938.
  • De Vecchis R, Cesaro A, Ariano C, et al. Phosphodiesterase-5 inhibitors improve clinical outcomes, exercise capacity and pulmonary hemodynamics in patients with heart failure with reduced left ventricular ejection fraction: a meta-analysis. J Clin Med Res. 2017 Jun;9(6):488–498.
  • Guazzi M, Vicenzi M, Arena R, et al. PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure: results of a 1-year, prospective, randomized, placebo-controlled study. Circ Heart Fail. 2011 Jan;4(1):8–17.
  • Giannetta E, Isidori AM, Galea N, et al. Chronic Inhibition of cGMP phosphodiesterase 5A improves diabetic cardiomyopathy: a randomized, controlled clinical trial using magnetic resonance imaging with myocardial tagging. Circulation. 2012 May 15;125(19):2323–2333.
  • Liu LC, Hummel YM, van der Meer P, et al. Effects of sildenafil on cardiac structure and function, cardiopulmonary exercise testing and health-related quality of life measures in heart failure patients with preserved ejection fraction and pulmonary hypertension. Eur J Heart Fail. 2017 Jan;19(1):116–125.
  • Redfield MM, Chen HH, Borlaug BA, et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2013 Mar 27;309(12):1268–1277.
  • Zhang YS, Li JD, Yan C. An update on vinpocetine: new discoveries and clinical implications. Eur J Pharmacol. 2018 Jan;15(819):30–34.
  • Snyder PB, Esselstyn JM, Loughney K, et al. The role of cyclic nucleotide phosphodiesterases in the regulation of adipocyte lipolysis. J Lipid Res. 2005 Mar;46(3):494–503.
  • Palmer D, Tsoi K, Maurice DH. Synergistic inhibition of vascular smooth muscle cell migration by phosphodiesterase 3 and phosphodiesterase 4 inhibitors. Circ Res. 1998;82(8):852–861.
  • Kraynik SM, Miyaoka RS, Beavo JA. PDE3 and PDE4 isozyme-selective inhibitors are both required for synergistic activation of brown adipose tissue. Mol Pharmacol. 2013 Jun;83(6):1155–1165.
  • Vinogradova TM, Sirenko S, Lukyanenko YO, et al. Basal spontaneous firing of rabbit sinoatrial node cells is regulated by dual activation of PDEs (phosphodiesterases) 3 and 4. Circ Arrhythm Electrophysiol. 2018 Jun;11(6):e005896.
  • Abbott-Banner KH, Page CP. Dual PDE3/4 and PDE4 inhibitors: novel treatments for COPD and other inflammatory airway diseases. Basic Clin Pharmacol Toxicol. 2014 May;114(5):365–376.
  • Singh D, Martinez FJ, Watz H, et al. A dose-ranging study of the inhaled dual phosphodiesterase 3 and 4 inhibitor ensifentrine in COPD. Respir Res. 2020 Feb 10;21(1):47.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.