439
Views
3
CrossRef citations to date
0
Altmetric
Review

Targeting the BAF complex in advanced prostate cancer

, &
Pages 173-181 | Received 18 Jul 2020, Accepted 07 Sep 2020, Published online: 16 Sep 2020

References

  • Tang L, Nogales E, Ciferri C. Structure and function of SWI/SNF chromatin remodeling complexes and mechanistic implications for transcription. Prog Biophys Mol Biol. 2010;102(2–3):122–128.
  • Flowers S, Nagl NG Jr., Beck GR Jr., et al. Antagonistic roles for BRM and BRG1 SWI/SNF complexes in differentiation. J Biol Chem. 2009;284(15):10067–10075.
  • Raab JR, Runge JS, Spear CC, et al. Co-regulation of transcription by BRG1 and BRM, two mutually exclusive SWI/SNF ATPase subunits. Epigenetics Chromatin. 2017;10(1):62.
  • Helming KC, Wang X, Wilson BG, et al. ARID1B is a specific vulnerability in ARID1A-mutant cancers. Nat Med. 2014;20(3):251–254.
  • Kelso TWR, Porter DK, Amaral ML, et al. Chromatin accessibility underlies synthetic lethality of SWI/SNF subunits in ARID1A-mutant cancers. eLife. 2017;6:e30506.
  • Sasaki M, Ogiwara H. Synthetic lethal therapy based on targeting the vulnerability of SWI/SNF chromatin remodeling complex-deficient cancers. Cancer Sci. 2020;111(3):774–82.
  • Strobeck MW, Reisman DN, Gunawardena RW, et al. Compensation of BRG-1 function by Brm: insight into the role of the core SWI-SNF subunits in retinoblastoma tumor suppressor signaling. J Biol Chem. 2002;277(7):4782–4789.
  • Karnezis AN, Wang Y, Ramos P, et al. Dual loss of the SWI/SNF complex ATPases SMARCA4/BRG1 and SMARCA2/BRM is highly sensitive and specific for small cell carcinoma of the ovary, hypercalcaemic type. J Pathol. 2016;238(3):389–400. .
  • Alfert A, Moreno N, Kerl K. The BAF complex in development and disease. Epigenetics Chromatin. 2019;12(1):19.
  • Roberts CWM, Biegel JA. The role of SMARCB1/INI1 in development of rhabdoid tumor. Cancer Biol Ther. 2009;8(5):412–416.
  • Jones S, Wang T-L, Shih I-M, et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science. 2010;330(6001):228. .
  • Holik AZ, Young M, Krzystyniak J, et al. Brg1 loss attenuates aberrant wnt-signalling and prevents wnt-dependent tumourigenesis in the murine small intestine. PLoS Genet. 2014;10(7):e1004453–e. .
  • Fujita K, Nonomura N. Role of androgen receptor in prostate cancer: a review. World J Mens Health. 2019;37(3):288–295.
  • Abida W, Cyrta J, Heller G, et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci U S A. 2019;116(23):11428–11436.
  • Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1.
  • Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–404.
  • Robinson D, Van Allen EM, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161(5):1215–1228.
  • Marshall TW, Link KA, Petre-Draviam CE, et al. Differential requirement of SWI/SNF for androgen receptor activity. J Biol Chem. 2003;278(33):30605–30613.
  • Dai Y, Ngo D, Jacob J, et al. Prohibitin and the SWI/SNF ATPase subunit BRG1 are required for effective androgen antagonist-mediated transcriptional repression of androgen receptor-regulated genes. Carcinogenesis. 2008;29(9):1725–1733.
  • Muthuswami R, Bailey L, Rakesh R, et al. BRG1 is a prognostic indicator and a potential therapeutic target for prostate cancer. J Cell Physiol. 2019;234(9):15194–15205.
  • Sun A, Tawfik O, Gayed B, et al. Aberrant expression of SWI/SNF catalytic subunits BRG1/BRM is associated with tumor development and increased invasiveness in prostate cancers. Prostate. 2007;67(2):203–213.
  • Shen H, Powers N, Saini N, et al. The SWI/SNF ATPase Brm is a gatekeeper of proliferative control in prostate cancer. Cancer Res. 2008;68(24):10154.
  • Yang Y, Liu L, Li M, et al. The chromatin remodeling protein BRG1 links ELOVL3 trans-activation to prostate cancer metastasis. BBA Gene Regul Mech. 2019;1862(8):834–845.
  • Lv DJ, Song XL, Huang B, et al. HMGB1 promotes prostate cancer development and metastasis by interacting with Brahma-related gene 1 and activating the Akt signaling pathway. Theranostics. 2019;9(18):5166–5182.
  • Deng X, Shao G, Zhang HT, et al. Protein arginine methyltransferase 5 functions as an epigenetic activator of the androgen receptor to promote prostate cancer cell growth. Oncogene. 2017;36(9):1223–1231.
  • Ding Y, Li N, Dong B, et al., Chromatin remodeling ATPase BRG1 and PTEN are synthetic lethal in prostate cancer. J Clin Invest. 129(2): 759–773. 2019. .
  • Decristofaro MF, Betz BL, Rorie CJ, et al. Characterization of SWI/SNF protein expression in human breast cancer cell lines and other malignancies. J Cell Physiol. 2001;186(1):136–145.
  • Jamaspishvili T, Berman DM, Ross AE, et al. Clinical implications of PTEN loss in prostate cancer. Nat Rev Urol. 2018;15(4):222–234.
  • Lempiäinen JK, Niskanen EA, Vuoti K-M, et al. Agonist-specific protein interactomes of Glucocorticoid and Androgen receptor as revealed by proximity mapping. Mol Cell Proteomics. 2017;16(8):1462–1474.
  • Jin ML, Kim YW, Jeong KW. BAF53A regulates androgen receptor-mediated gene expression and proliferation in LNCaP cells. Biochem Biophys Res Commun. 2018;505(2):618–623.
  • van de Wijngaart DJ, Dubbink HJ, Molier M, et al. Functional Screening of FxxLF-like Peptide Motifs identifies SMARCD1/BAF60a as an Androgen receptor cofactor that modulates TMPRSS2 expression. Mol Endocrinol. 2009;23(11):1776–1786.
  • Balasubramaniam S, Comstock CES, Ertel A, et al. Aberrant BAF57 signaling facilitates prometastatic phenotypes. Clin Cancer Res. 2013;19(10):2657.
  • Link KA, Balasubramaniam S, Sharma A, et al. Targeting the BAF57 SWI/SNF subunit in prostate cancer: a novel platform to control androgen receptor activity. Cancer Res. 2008;68(12):4551–4558.
  • Wang Z, Wang Y, Zhang J, et al. Significance of the TMPRSS2: eRGgene fusion in prostate cancer. Mol Med Rep. 2017;16(4):5450–5458.
  • Armenia J, Wankowicz SAM, Liu D, et al. The long tail of oncogenic drivers in prostate cancer. Nat Genet. 2018;50(5):645–651.
  • Sandoval GJ, Pulice JL, Pakula H, et al. Binding of TMPRSS2-ERG to BAF Chromatin remodeling complexes mediates prostate oncogenesis. Mol Cell. 2018;71(4):554–66.e7.
  • Yu J, Yu J, Mani R-S, et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell. 2010;17(5):443–454.
  • Xu G, Chhangawala S, Cocco E, et al. ARID1A determines luminal identity and therapeutic response in estrogen-receptor-positive breast cancer. Nat Genet. 2020;52(2):198–207.
  • Hong CY, Suh JH, Kim K, et al. Modulation of androgen receptor transactivation by the SWI3-related gene product (SRG3) in multiple ways. Mol Cell Biol. 2005;25(12):4841–4852.
  • Heebøll S, Borre M, Ottosen PD, et al. SMARCC1 expression is upregulated in prostate cancer and positively correlated with tumour recurrence and dedifferentiation. Histol Histopathol. 2008;23(9):1069–1076.
  • Hansen RL, Heeboll S, Ottosen PD, et al. expression: a significant predictor of disease-specific survival in patients with clinically localized prostate cancer treated with no intention to cure. Scand J Urol. 2011;45(2):91–96.
  • Prensner JR, Iyer MK, Sahu A, et al. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat Genet. 2013;45(11):1392–1398.
  • Dong S, Liu Q, Xu Z, et al. An unusual case of metastatic basal cell carcinoma of the prostate: a case report and literature review. Front Oncol. 2020;10:859.
  • Raab JR, Smith KN, Spear CC, et al. SWI/SNF remains localized to chromatin in the presence of SCHLAP1. Nat Genet. 2019;51(1):26–29.
  • Lans H, Marteijn JA, Vermeulen W. ATP-dependent chromatin remodeling in the DNA-damage response. Epigenetics Chromatin. 2012;5:4.
  • Shen J, Peng Y, Wei L, et al. ARID1A deficiency impairs the DNA damage checkpoint and sensitizes cells to PARP inhibitors. Cancer Discov. 2015;5(7):752–767.
  • Williamson CT, Miller R, Pemberton HN, et al., ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A. Nat Commun. 7(1): 13837. 2016.
  • Ogiwara H, Takahashi K, Sasaki M, et al. Targeting the vulnerability of Glutathione metabolism in ARID1A-deficient cancers. Cancer Cell. 2019;35(2):177–90.e8.
  • Vicent GP, Zaurin R, Nacht AS, et al. Two Chromatin remodeling activities cooperate during activation of hormone responsive promoters. PLoS Genet. 2009;5(7):e1000567.
  • Oike T, Ogiwara H, Tominaga Y, et al. A synthetic lethality-based strategy to treat cancers harboring a genetic deficiency in the chromatin remodeling factor BRG1. Cancer Res. 2013;73(17):5508–5518.
  • Ehrenhöfer-Wölfer K, Puchner T, Schwarz C, et al. SMARCA2-deficiency confers sensitivity to targeted inhibition of SMARCA4 in esophageal squamous cell carcinoma cell lines. Sci Rep. 2019;9(1):11661.
  • Vangamudi B, Paul TA, Shah PK, et al., The SMARCA2/4 ATPase domain surpasses the Bromodomain as a drug target in SWI/SNF-mutant cancers: insights from cDNA rescue and PFI-3 inhibitor studies. Cancer Res. 75(18): 3865–3878. 2015.
  • Muthuswami R, Mesner LD, Wang D, et al. Phosphoaminoglycosides inhibit SWI2/SNF2 family DNA-dependent molecular motor domains. Biochemistry. 2000;39(15):4358–4365.
  • Wu Q, Sharma S, Cui H, et al. Targeting the chromatin remodeling enzyme BRG1 increases the efficacy of chemotherapy drugs in breast cancer cells. Oncotarget. 2016;7(19):27158–27175. .
  • Endo M, Yasui K, Zen Y, et al. Alterations of the SWI/SNF chromatin remodelling subunit-BRG1 and BRM in hepatocellular carcinoma. Liver Int. 2013;33(1):105–117.
  • Jancewicz I, Siedlecki JA, Sarnowski TJ, et al. BRM: the core ATPase subunit of SWI/SNF chromatin-remodelling complex-a tumour suppressor or tumour-promoting factor? Epigenetics Chromatin. 2019;12(1):68.
  • Wu C, Lyu J, Yang EJ, et al. Targeting AURKA-CDC25C axis to induce synthetic lethality in ARID1A-deficient colorectal cancer cells. Nat Commun. 2018;9(1):3212.
  • Alldredge JK, Eskander RN. EZH2 inhibition in ARID1A mutated clear cell and endometrioid ovarian and endometrioid endometrial cancers. Gynecol Oncol Res Pract. 2017;4:17.
  • Yap TA, O’Carrigan B, Penney MS, et al. Phase I trial of first-in-class ATR inhibitor M6620 (VX-970) as monotherapy or in combination with Carboplatin in patients with advanced solid tumors. J Clin Oncol. 2020. doi:https://doi.org/10.1200/JCO.19.02404. JCO.19.02404.
  • FDA. FDA approves olaparib for HRR gene-mutated metastatic castration-resistant prostate cancer. Originally accessed 06/2020. https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-olaparib-hrr-gene-mutated-metastatic-castration-resistant-prostatecancer#:~:text=On%20May%2019%2C%202020%2C%20the,(mCRPC)%2C%20who%20have%20progressed: FDA; 2020 [

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.