348
Views
7
CrossRef citations to date
0
Altmetric
Review

Addressing the challenges to increase the efficiency of translating nanomedicine formulations to patients

&
Pages 235-254 | Received 29 Jul 2020, Accepted 17 Sep 2020, Published online: 27 Oct 2020

References

  • Youn YS, Bae YH. Perspectives on the past, present, and future of cancer nanomedicine. Adv Drug Deliv Rev. 2018;130:3–11.
  • Soares S, Sousa J, Pais A, et al. Nanomedicine: principles, properties, and regulatory issues. Front Chem. 2018;6:360.
  • Barenholz Y. Doxil® — the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–134.
  • Hare JI, Lammers T, Ashford MB, et al. Challenges and strategies in anticancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev. 2017;108:25–38.
  • Castelli MS, McGonigle P, Hornby PJ. The pharmacology and therapeutic applications of monoclonal antibodies. Pharmacol Res Perspect. 2019;7(6):e00535.
  • Bhattacharjee S, Brayden DJ. Development of nanotoxicology: implications for drug delivery and medical devices. Nanomedicine. 2015;10(14):2289–2305.
  • Shen SH, Wu YS, Liu YC, et al. High drug-loading nanomedicines: progress, current status, and prospects. Int J Nanomedicine. 2017;12:4085–4109.
  • Severino P, da Silva CF, Andrade LN, et al. Alginate nanoparticles for drug delivery and targeting. Curr Pharm Design. 2019;25(11):1312–1334.
  • Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16(1):71.
  • Velino C, Carella F, Adamiano A, et al. Nanomedicine approaches for the pulmonary treatment of cystic fibrosis. Front Bioeng Biotechnol. 2019;7:406.
  • Mansour HM, Rhee Y-S, Wu X. Nanomedicine in pulmonary delivery. Int J Nanomedicine. 2009;4:299–319.
  • Irby D, Du C, Li F. Lipid-drug conjugate for enhancing drug delivery. Mol Pharm. 2017;14(5):1325–1338.
  • Gupta S, Kesarla R, Chotai N, et al. Systematic approach for the formulation and optimization of solid lipid nanoparticles of efavirenz by high pressure homogenization using design of experiments for brain targeting and enhanced bioavailability. Biomed Res Int. 2017;2017:5984014.
  • Van Haute D, Jiang W, Mudalige T. Evaluation of size-based distribution of drug and excipient in amphotericin B liposomal formulation. Int J Pharm. 2019;569:118603.
  • Brough C, Miller DA, Keen JM, et al. Use of polyvinyl alcohol as a solubility-enhancing polymer for poorly water soluble drug delivery (Part 1). AAPS PharmSciTech. 2016;17(1):167–179.
  • Kadajji VG, Betageri GV. Water soluble polymers for pharmaceutical applications. Polymers. 2011 Dec;3(4):1972–2009.
  • Franco P, De Marco I. The use of poly(N-vinyl pyrrolidone) in the delivery of drugs: a review. Polymers. 2020;12(5):5.
  • Mašková E, Kubová K, Raimi-Abraham BT, et al. Hypromellose – A traditional pharmaceutical excipient with modern applications in oral and oromucosal drug delivery. J Control Release. 2020;324:695–727.
  • Pottel J, Armstrong D, Zou L, et al. The activities of drug inactive ingredients on biological targets. Science. 2020;369(6502):403–413.
  • Dormont F, Rouquette M, Mahatsekake C, et al. Translation of nanomedicines from lab to industrial scale synthesis: the case of squalene-adenosine nanoparticles. J Control Release. 2019;307:302–314.
  • Dagtepe P, Chikan V. Quantized Ostwald ripening of colloidal nanoparticles. J Phys Chem C. 2010;114(39):16263–16269.
  • Ball RL, Bajaj P, Whitehead KA. Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization. Int J Nanomedicine. 2016;12:305–315.
  • Colino CI, Lanao JM, Gutierrez-Millan C. Targeting of hepatic macrophages by therapeutic nanoparticles. Front Immunol. 2020;11:218.
  • Im H-J, England CG, Feng L, et al. Accelerated blood clearance phenomenon reduces the passive targeting of PEGylated nanoparticles in peripheral arterial disease. ACS Appl Mater Interfaces. 2016;8(28):17955–17963.
  • Storm G, Ten Kate MT, Working PK, et al. doxorubicin entrapped in sterically stabilized liposomes: effects on bacterial blood clearance capacity of the mononuclear phagocyte system. Clin Cancer Res. 1998;4(1):111–115.
  • Őrfi E, Mészáros T, Hennies M, et al. Acute physiological changes caused by complement activators and amphotericin B-containing liposomes in mice. Int J Nanomedicine. 2019;14:1563–1573.
  • Szebeni J. Complement activation-related pseudoallergy: A stress reaction in blood triggered by nanomedicines and biologicals. Mol Immunol. 2014;61(2):163–173.
  • Bhattacharjee S, de Haan LHJ, Evers NM, et al. Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Part Fibre Toxicol. 2010;7(1):25.
  • Gustafson HH, Holt-Casper D, Grainger DW, et al. Nanoparticle uptake: the phagocyte problem. Nano Today. 2015;10(4):487–510.
  • Lara S, Perez-Potti A, Herda LM, et al. Differential recognition of nanoparticle protein corona and modified low-density lipoprotein by macrophage receptor with collagenous structure. ACS Nano. 2018;12(5):4930–4937.
  • Moyano DF, Saha K, Prakash G, et al. Fabrication of corona-free nanoparticles with tunable hydrophobicity. ACS Nano. 2014;8(7):6748–6755.
  • Nguyen VH, Lee B-J. Protein corona: a new approach for nanomedicine design. Int J Nanomedicine. 2017;12:3137–3151.
  • Li B, Lane LA. Probing the biological obstacles of nanomedicine with gold nanoparticles. WIREs Nanomed Nanobiotechnol. 2019;11(3):e1542.
  • Fröhlich E. Comparison of conventional and advanced in vitro models in the toxicity testing of nanoparticles. Artif Cells Nanomed Biotechnol. 2018;46(sup2):1091–1107.
  • Auría-Soro C, Nesma T, Juanes-Velasco P, et al. Interactions of nanoparticles and biosystems: microenvironment of nanoparticles and biomolecules in nanomedicine. Nanomaterials. 2019;9(10):1365.
  • Singh AV, Laux P, Luch A, et al. Review of emerging concepts in nanotoxicology: opportunities and challenges for safer nanomaterial design. Toxicol Mech Methods. 2019;29(5):378–387.
  • De Simone U, Roccio M, Gribaldo L, et al. Human 3D cultures as models for evaluating magnetic nanoparticle CNS cytotoxicity after short- and repeated long-term exposure. Int J Mol Sci. 2018;19(7):1993.
  • Jain P, Pawar RS, Pandey RS, et al. In-vitro in-vivo correlation (IVIVC) in nanomedicine: is protein corona the missing link? Biotechnol Adv. 2017;35(7): 889–904.
  • Maeda H, Tsukigawa K, Fang J. A retrospective 30 years after discovery of the enhanced permeability and retention effect of solid tumors: next-generation chemotherapeutics and photodynamic therapy—problems, solutions, and prospects. Microcirculation. 2016;23(3):173–182.
  • Hobson B, Denekamp J. Endothelial proliferation in tumours and normal tissues: continuous labelling studies. Br J Cancer. 1984;49(4):405–413.
  • Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. 2010;7(11):653–664.
  • Greller LD, Tobin FL, Poste G. Tumor heterogeneity and progression: conceptual foundations for modeling. Invasion Metastasis. 1996;16(4–5):177–208.
  • LeBleu VS. Imaging the tumor microenvironment. Cancer J. 2015;21(3):174–178.
  • Northfelt DW, Dezube BJ, Thommes JA, et al. Pegylated-liposomal Doxorubicin versus Doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: results of a randomized phase III clinical trial. J Clin Oncol. 1998;16(7):2445–2451.
  • Kidd J, Jadia R, Velpurisiva P, et al. Targeting strategies for the combination treatment of cancer using drug delivery systems. Pharmaceutics. 2017;9(4):46.
  • Rafiei P, Haddadi A. Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous application: pharmacokinetics and biodistribution profile. Int J Nanomedicine. 2017;12:935–947.
  • Baker DE, Levien TL. Irinotecan liposome injection. Hosp Pharm. 2017;52(2):144–150.
  • Muhamad N, Plengsuriyakarn T, Na-Bangchang K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. Int J Nanomedicine. 2018;13:3921–3935.
  • Quintero-Fabián S, Arreola R, Becerril-Villanueva E, et al. Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol. 2019;9:1370.
  • Park JW, Hong K, Kirpotin DB, et al. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin Cancer Res. 2002;8(4):1172–1181.
  • Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J Control Release. 2011;153(3):198–205.
  • Bae S, Ma K, Kim TH, et al. Doxorubicin-loaded human serum albumin nanoparticles surface-modified with TNF-related apoptosis-inducing ligand and transferrin for targeting multiple tumor types. Biomaterials. 2012;33(5):1536–1546.
  • Srivastava SK, Clergeaud G, Andresen TL, et al. Micromotors for drug delivery in vivo: the road ahead. Adv Drug Deliv Rev. 2019;138:41–55.
  • Jones RT. Blood flow. Annu Rev Fluid Mech. 1969;1(1):223–244.
  • Shurbaji S, Anlar G, Hussein E, et al. Effect of flow-induced shear stress in nanomaterial uptake by cells: focus on targeted anti-cancer therapy. Cancers (Basel). 2020;12:7.
  • Hermann J, DiStasio RA, Tkatchenko A. First-principles models for van der Waals interactions in molecules and materials: concepts, theory, and applications. Chem Rev. 2017;117(6):4714–4758.
  • Chauhan VP, Popović Z, Chen O, et al. Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew Chem Int Ed. 2011;50(48):11417–11420.
  • Park JH, von Maltzahn G, Zhang L, et al. Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv Mater. 2008;20(9):1630–1635.
  • Cuddapah VA, Zhang SL, Sehgal A. Regulation of the blood–brain barrier by circadian rhythms and sleep. Trends Neurosci. 2019;42(7):500–510.
  • Etame AB, Smith CA, Chan WC, et al. Design and potential application of PEGylated gold nanoparticles with size-dependent permeation through brain microvasculature. Nanomedicine. 2011;7(6): 992–1000.
  • Aldea M, Florian IA, Kacso G, et al. Nanoparticles for targeting intratumoral hypoxia: exploiting a potential weakness of glioblastoma. Pharm Res. 2016;33(9):2059–2077.
  • Lee C, Hwang HS, Lee S, et al. Rabies virus-inspired silica-coated gold nanorods as a photothermal therapeutic platform for treating brain tumors. Adv Mater. 2017;29(13):1605563.
  • Song B, Liu J, Feng X, et al. A review on potential neurotoxicity of titanium dioxide nanoparticles. Nanoscale Res Lett. 2015;10(1):1042.
  • Liao C, Li Y, Tjong SC. Bactericidal and cytotoxic properties of silver nanoparticles. Int J Mol Sci. 2019;20(2):449.
  • Hopkins LE, Patchin ES, Chiu P-L, et al. Nose-to-brain transport of aerosolised quantum dots following acute exposure. Nanotoxicology. 2014;8(8):885–893.
  • Simkó M, Mattsson M-O. Interactions between nanosized materials and the brain. Curr Med Chem. 2014;21(37):4200–4214.
  • Teleanu DM, Chircov C, Grumezescu AM, et al. Impact of nanoparticles on brain health: an up to date overview. J Clin Med. 2018;7(12):490.
  • Ou H, Cheng T, Zhang Y, et al. Surface-adaptive zwitterionic nanoparticles for prolonged blood circulation time and enhanced cellular uptake in tumor cells. Acta Biomater. 2018;65:339–348.
  • Wang J-Y, Chen J, Yang J, et al. Effects of surface charges of gold nanoclusters on long-term in vivo biodistribution, toxicity, and cancer radiation therapy. Int J Nanomedicine. 2016;11:3475–3485.
  • Deng Y, Saucier-Sawyer JK, Hoimes CJ, et al. The effect of hyperbranched polyglycerol coatings on drug delivery using degradable polymer nanoparticles. Biomaterials. 2014;35(24):6595–6602.
  • Mizuhara T, Saha K, Moyano DF, et al. Acylsulfonamide-functionalized zwitterionic gold nanoparticles for enhanced cellular uptake at tumor pH. Angew Chem Int Ed. 2015;54(22):6567–6570.
  • Teleanu DM, Chircov C, Grumezescu AM, et al. Blood-brain delivery methods using nanotechnology. Pharmaceutics. 2018;10(4): 269.
  • Kou L, Bhutia YD, Yao Q, et al. Transporter-guided delivery of nanoparticles to improve drug permeation across cellular barriers and drug exposure to selective cell types. Front Pharmacol. 2018;9:27.
  • Alexander A, Agrawal M, Uddin A, et al. Recent expansions of novel strategies towards the drug targeting into the brain. Int J Nanomedicine. 2019;14:5895–5909.
  • Hoyos-Ceballos GP, Ruozi B, Ottonelli I, et al. PLGA-PEG-ANG-2 nanoparticles for blood-brain barrier crossing: proof-of-concept study. Pharmaceutics. 2020;12(1):72.
  • Ahlawat J, Guillama Barroso G, Masoudi Asil S, et al. Nanocarriers as potential drug delivery candidates for overcoming the blood–brain barrier: challenges and possibilities. ACS Omega. 2020;5(22):12583–12595.
  • Zhang Z, Guan J, Jiang Z, et al. Brain-targeted drug delivery by manipulating protein corona functions. Nat Commun. 2019;10(1):3561.
  • Khongkow M, Yata T, Boonrungsiman S, et al. Surface modification of gold nanoparticles with neuron-targeted exosome for enhanced blood–brain barrier penetration. Sci Rep. 2019;9(1):8278.
  • Wu M, Chen W, Chen Y, et al. Focused ultrasound-augmented delivery of biodegradable multifunctional nanoplatforms for imaging-guided brain tumor treatment. Adv Sci. 2018;5(4):1700474.
  • Choi M, Ku T, Chong K, et al. Minimally invasive molecular delivery into the brain using optical modulation of vascular permeability. Proc Natl Acad Sci. USA. 2011;108(22):9256.
  • Gong W, Wang Z, Liu N, et al. Improving efficiency of adriamycin crossing blood brain barrier by combination of thermosensitive liposomes and hyperthermia. Biol Pharm Bull. 2011;34(7):1058–1064.
  • Han L, Kong DK, Zheng M-Q, et al. Increased nanoparticle delivery to brain tumors by autocatalytic priming for improved treatment and imaging. ACS Nano. 2016;10(4):4209–4218.
  • Kim D-G, Bynoe MS. A2A adenosine receptor modulates drug efflux transporter P-glycoprotein at the blood-brain barrier. J Clin Invest. 2016;126(5):1717–1733.
  • Bhattacharjee S, Gaspar MM, Scholz D, et al. Track analysis of the passage of rhodamine-labeled liposomes across porcine jejunal mucus in a microchannel device. Ther Deliv. 2018;9(6):419–433.
  • Duncan GA, Jung J, Hanes J, et al. The mucus barrier to inhaled gene therapy. Mol Ther. 2016;24(12):2043–2053.
  • Bernkop-Schnürch A, Steininger S. Synthesis and characterisation of mucoadhesive thiolated polymers. Int J Pharm. 2000;194(2):239–247.
  • Imperiale JC, Nejamkin P, Del Sole MJ, et al. Novel protease inhibitor-loaded nanoparticle-in-microparticle delivery system leads to a dramatic improvement of the oral pharmacokinetics in dogs. Biomaterials. 2015;37:383–394.
  • Lai SK, Wang -Y-Y, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009;61(2):158–171.
  • Pereira de Sousa I, Steiner C, Schmutzler M, et al. Mucus permeating carriers: formulation and characterization of highly densely charged nanoparticles. Eur J Pharm Biopharm. 2015;97:273–279.
  • Sosnik A, Das Neves J, Sarmento B. Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: A review. Prog Polym Sci. 2014;39(12):2030–2075.
  • Wang -Y-Y, Lai SK, Suk JS, et al. Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that “slip” through the human mucus barrier. Angew Chem Int Ed. 2008;47(50):9726–9729.
  • Groo A-C, Mircheva K, Bejaud J, et al. Development of 2D and 3D mucus models and their interactions with mucus-penetrating paclitaxel-loaded lipid nanocapsules. Pharm Res. 2014;31(7):1753–1765.
  • Takatsuka S, Morita T, Koguchi A, et al. Synergistic absorption enhancement of salmon calcitonin and reversible mucosal injury by applying a mucolytic agent and a non-ionic surfactant. Int J Pharm. 2006;316(1):124–130.
  • Müller C, Perera G, König V, et al. Development and in vivo evaluation of papain-functionalized nanoparticles. Eur J Pharm Biopharm. 2014;87(1):125–131.
  • Pereira de Sousa I, Cattoz B, Wilcox MD, et al. Nanoparticles decorated with proteolytic enzymes, a promising strategy to overcome the mucus barrier. Eur J Pharm Biopharm. 2015;97:257–264.
  • Henke MO, Ratjen F. Mucolytics in cystic fibrosis. Paediatr Respir Rev. 2007;8(1):24–29.
  • Siddhanta S, Bhattacharjee S, Harrison SM, et al. Shedding light on the trehalose-enabled mucopermeation of nanoparticles with label-free Raman spectroscopy. Small. 2019;15(33): 1901679.
  • Zanin M, Baviskar P, Webster R, et al. The Interaction between respiratory pathogens and mucus. Cell Host Microbe. 2016;19(2):159–168.
  • Lee M-K. Liposomes for enhanced bioavailability of water-insoluble drugs: in vivo evidence and recent approaches. Pharmaceutics. 2020;12:3.
  • Olusanya TOB, Haj Ahmad RR, Ibegbu DM, et al. Liposomal drug delivery systems and anticancer drugs. Molecules. 2018;23(4):907.
  • Stratilo CW, Jager S, Crichton M, et al. Evaluation of liposomal ciprofloxacin formulations in a murine model of anthrax. PLoS One. 2020;15(1):e0228162.
  • Bolla PK, Meraz CA, Rodriguez VA, et al. Clotrimazole loaded Ufosomes for topical delivery: formulation development and in-vitro studies. Molecules. 2019;24(17):17.
  • Nosova AS, Koloskova OO, Nikonova AA, et al. Diversity of PEGylation methods of liposomes and their influence on RNA delivery. MedChemComm. 2019;10(3):369–377.
  • Kacar G. Molecular understanding of interactions, structure, and drug encapsulation efficiency of pluronic micelles from dissipative particle dynamics simulations. Colloid Polymer Sci. 2019;297(7):1037–1051.
  • Harada A, Kataoka K. Polyion complex micelle formation from double-hydrophilic block copolymers composed of charged and non-charged segments in aqueous media. Polym J. 2018;50(1):95–100.
  • Wang J, Li S, Han Y, et al. Poly(ethylene glycol)–polylactide micelles for cancer therapy. Front Pharmacol. 2018;9:202.
  • Hassankhani Rad A, Asiaee F, Jafari S, et al. Poly(ethylene glycol)-poly(ε-caprolactone)-based micelles for solubilization and tumor-targeted delivery of silibinin. BioImpacts. 2020;10(2):87–95.
  • Yang T, Li W, Duan X, et al. Preparation of two types of polymeric micelles based on poly(β-L-malic acid) for antitumor drug delivery. PLoS One. 2016;11(9):e0162607.
  • Ugarenko M, Chan CK, Nudelman A, et al. Development of pluronic micelle-encapsulated Doxorubicin and formaldehyde-releasing prodrugs for localized anticancer chemotherapy. Oncol Res. 2009;17(7):283–299.
  • He X, Li L, Su H, et al. Poly(ethylene glycol)-block-poly(ε-caprolactone)-and phospholipid-based stealth nanoparticles with enhanced therapeutic efficacy on murine breast cancer by improved intracellular drug delivery. Int J Nanomedicine. 2015;10:1791–1804.
  • Watanabe M, Kawano K, Yokoyama M, et al. Preparation of camptothecin-loaded polymeric micelles and evaluation of their incorporation and circulation stability. Int J Pharm. 2006;308(1–2):183–189.
  • Jhaveri AM, Torchilin VP. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol. 2014;5:77.
  • Deng S, Wu Q, Zhao Y, et al. Biodegradable polymeric micelle-encapsulated Doxorubicin suppresses tumor metastasis by killing circulating tumor cells. Nanoscale. 2015;7(12):5270–5280.
  • Diezi TA, Takemoto JK, Davies NM, et al. Pharmacokinetics and nephrotoxicity of amphotericin B-incorporated poly(ethylene glycol)-block-poly(N-hexyl stearate L-aspartamide) micelles. J Pharm Sci. 2011;100(6):2064–2070.
  • Forrest ML, Won C-Y, Malick AW, et al. In vitro release of the mTOR inhibitor rapamycin from poly(ethylene glycol)-b-poly(ε-caprolactone) micelles. J Control Release. 2006;110(2):370–377.
  • Aliabadi HM, Mahmud A, Sharifabadi AD, et al. Micelles of methoxy poly(ethylene oxide)-b-poly(ɛ-caprolactone) as vehicles for the solubilization and controlled delivery of cyclosporine A. J Control Release. 2005;104(2):301–311.
  • Lim DW, Yeom YI, Park TG. Poly(DMAEMA-NVP)-b-PEG-galactose as gene delivery vector for hepatocytes. Bioconjug Chem. 2000;11(5):688–695.
  • Chauhan AS. Dendrimers for drug delivery. Molecules. 2018;23(4):938.
  • Arseneault M, Wafer C, Morin J-F. Recent advances in click chemistry applied to dendrimer synthesis. Molecules. 2015;20(5):9263–9294.
  • Zhao L, Zhu M, Li Y, et al. Radiolabeled dendrimers for nuclear medicine applications. Molecules. 2017;22(9):1350.
  • Otis JB, Zong H, Kotylar A, et al. Dendrimer antibody conjugate to target and image HER-2 overexpressing cancer cells. Oncotarget. 2016;7(24):36002–36013.
  • Gürbüz MU, Öztürk K, Ertürk AS, et al. Cytotoxicity and biodistribution studies on PEGylated EDA and PEG cored PAMAM dendrimers. J Biomater Sci Polym Ed. 2016;27(16):1645–1658.
  • Han S, Ganbold T, Bao Q, et al. Sugar functionalized synergistic dendrimers for biocompatible delivery of nucleic acid therapeutics. Polymers. 2018;10(9):9.
  • Chanphai P, Thomas TJ, Tajmir-Riahi HA. Application and biomolecular study of functionalized folic acid-dendrimer nanoparticles in drug delivery. J Biomol Struct Dyn. 2020;1–8. DOI:10.1080/07391102.2020.1717994
  • Rostami I, Zhao Z, Wang Z, et al. Peptide-conjugated PEGylated PAMAM as a highly affinitive nanocarrier towards HER2-overexpressing cancer cells. RSC Adv. 2016;6(109):107337–107343.
  • Zhang M, Zhu J, Zheng Y, et al. Doxorubicin-conjugated PAMAM dendrimers for pH-responsive drug release and folic acid-targeted cancer therapy. Pharmaceutics. 2018;10(3):162.
  • Rengaraj A, Subbiah B, Haldorai Y, et al. PAMAM/5-fluorouracil drug conjugate for targeting E6 and E7 oncoproteins in cervical cancer: a combined experimental/in silico approach. RSC Adv. 2017;7(9):5046–5054.
  • Singh J, Jain K, Mehra NK, et al. Dendrimers in anticancer drug delivery: mechanism of interaction of drug and dendrimers. Artif Cells Nanomed Biotechnol. 2016;44(7):1626–1634.
  • Pedro-Hernández LD, Martínez-Klimova E, Cortez-Maya S, et al. Synthesis, characterization, and nanomedical applications of conjugates between resorcinarene-dendrimers and ibuprofen. Nanomaterials. 2017;7(7):163.
  • da Silva Santos S, Igne Ferreira E, Giarolla J. Dendrimer prodrugs. Molecules. 2016;21(6):686.
  • Kretzmann JA, Ho D, Evans CW, et al. Synthetically controlling dendrimer flexibility improves delivery of large plasmid DNA. Chem Sci. 2017;8(4):2923–2930.
  • Sunoqrot S, Bugno J, Lantvit D, et al. Prolonged blood circulation and enhanced tumor accumulation of folate-targeted dendrimer-polymer hybrid nanoparticles. J Control Release. 2014;191:115–122.
  • Mandal AK. Dendrimers in targeted drug delivery applications: a review of diseases and cancer. Int J Polym Mater. 2020;1–11. DOI:10.1080/00914037.2020.1713780
  • D’Emanuele A, Jevprasesphant R, Penny J, et al. The use of a dendrimer-propranolol prodrug to bypass efflux transporters and enhance oral bioavailability. J Control Release. 2004;95(3):447–453.
  • Lancina MG 3rd, Yang H. Dendrimers for ocular drug delivery. Can J Chem. 2017;95(9):897–902.
  • Yavuz B, Pehlivan SB, Unlü N. Dendrimeric systems and their applications in ocular drug delivery. Sci World J. 2013;2013:732340.
  • Koç FE, Senel M. Solubility enhancement of non-steroidal anti-inflammatory drugs (NSAIDs) using polypolypropylene oxide core PAMAM dendrimers. Int J Pharm. 2013;451(1–2):18–22.
  • Zakrewsky M, Kumar S, Mitragotri S. Nucleic acid delivery into skin for the treatment of skin disease: proofs-of-concept, potential impact, and remaining challenges. J Control Release. 2015;219:445–456.
  • Rupp R, Rosenthal SL, Stanberry LR. VivaGelTM (SPL7013 gel): a candidate dendrimer - microbicide for the prevention of HIV and HSV infection. Int J Nanomedicine. 2007;2(4):561–566.
  • Lesniak WG, Mishra MK, Jyoti A, et al. Biodistribution of fluorescently labeled PAMAM dendrimers in neonatal rabbits: effect of neuroinflammation. Mol Pharm. 2013;10(12):4560–4571.
  • Peng Z, Liu X, Zhang W, et al. Advances in the application, toxicity and degradation of carbon nanomaterials in environment: a review. Environ Int. 2020;134:105298.
  • Manzetti S, Gabriel J-CP. Methods for dispersing carbon nanotubes for nanotechnology applications: liquid nanocrystals, suspensions, polyelectrolytes, colloids and organization control. Int Nano Lett. 2019;9(1):31–49.
  • Yan Y, Wang R, Hu Y, et al. Stacking of Doxorubicin on folic acid-targeted multi-walled carbon nanotubes for in vivo chemotherapy of tumors. Drug Deliv. 2018;25(1):1607–1616.
  • Wolski P, Nieszporek K, Panczyk T. Pegylated and folic acid functionalized carbon nanotubes as pH controlled carriers of doxorubicin. Molecular dynamics analysis of the stability and drug release mechanism. Phys Chem Chem Phys. 2017;19(13):9300–9312.
  • Roy S, Petrova RS, Mitra S. Effect of carbon nanotube (CNT) functionalization in epoxy-CNT composites. Nanotechnol Rev. 2018;7(6):475–485.
  • Santos AC, Pereira I, Reis S, et al. Biomedical potential of clay nanotube formulations and their toxicity assessment. Exp Opin Drug Deliv. 2019;16(11):1169–1182.
  • Menezes B, Rodrigues KF, Fonseca B, et al. Recent advances in the use of carbon nanotubes as smart biomaterials. J Mater Chem B. 2019;7(9):1343–1360.
  • Niu L, Meng L, Lu Q. Folate-conjugated PEG on single walled carbon nanotubes for targeting delivery of doxorubicin to cancer cells. Macromol Biosci. 2013;13(6):735–744.
  • Liu Z, Chen K, Davis C, et al. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 2008;68(16):6652.
  • Hampel S, Kunze D, Haase D, et al. Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth. Nanomedicine. 2008;3(2):175–182.
  • Wu W, Li R, Bian X, et al. Covalently combining carbon nanotubes with anticancer agent: preparation and antitumor activity. ACS Nano. 2009;3(9):2740–2750.
  • Gu Y-J, Cheng J, Jin J, et al. Development and evaluation of pH-responsive single-walled carbon nanotube-doxorubicin complexes in cancer cells. Int J Nanomedicine. 2011;6:2889–2898.
  • Ding X, Su Y, Wang C, et al. Synergistic suppression of tumor angiogenesis by the co-delivering of vascular endothelial growth factor targeted siRNA and candesartan mediated by functionalized carbon nanovectors. ACS Appl Mater Interfaces. 2017;9(28):23353–23369.
  • Hussey SL, Peterson BR. Efficient delivery of streptavidin to mammalian cells: clathrin-mediated endocytosis regulated by a synthetic ligand. J Am Chem Soc. 2002;124(22):6265–6273.
  • Ruggiero A, Villa CH, Holland JP, et al. Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes. Int J Nanomedicine. 2010;5:783–802.
  • Singh R, Torti SV. Carbon nanotubes in hyperthermia therapy. Adv Drug Deliv Rev. 2013;65(15):2045–2060.
  • Sireesha M, Jagadeesh Babu V, Kranthi Kiran AS, et al. A review on carbon nanotubes in biosensor devices and their applications in medicine. Nanocomposites. 2018;4(2):36–57.
  • Palanisamy S, Wang Y-M. Superparamagnetic iron oxide nanoparticulate system: synthesis, targeting, drug delivery and therapy in cancer. Dalton Trans. 2019;48(26):9490–9515.
  • Dulińska-Litewka J, Łazarczyk A, Hałubiec P, et al. Superparamagnetic iron oxide nanoparticles-current and prospective medical applications. Materials. 2019;12(4):617.
  • Feng Q, Liu Y, Huang J, et al. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci Rep. 2018;8(1):2082.
  • Patsula V, Horák D, Kučka J, et al. Synthesis and modification of uniform PEG-neridronate-modified magnetic nanoparticles determines prolonged blood circulation and biodistribution in a mouse preclinical model. Sci Rep. 2019;9(1):10765.
  • Villa S, Riani P, Locardi F, et al. Functionalization of Fe3O4 NPs by silanization: use of amine (APTES) and thiol (MPTMS) silanes and their physical characterization. Materials. 2016;9(10):826.
  • Bemowsky S, Rother A, Willmann W, et al. Quantification and biodegradability assessment of meso-2,3-dimercaptosuccinic acid adsorbed on iron oxide nanoparticles. Nanoscale Adv. 2019;1(9):3670–3679.
  • Janßen HC, Angrisani N, Kalies S, et al. Biodistribution, biocompatibility and targeted accumulation of magnetic nanoporous silica nanoparticles as drug carrier in orthopedics. J Nanobiotechnol. 2020;18(1):14.
  • Moraes Silva S, Tavallaie R, Sandiford L, et al. Gold coated magnetic nanoparticles: from preparation to surface modification for analytical and biomedical applications. Chem Commun. 2016;52(48):7528–7540.
  • Bao Y, Wen T, Samia ACS, et al. Magnetic nanoparticles: material engineering and emerging applications in lithography and biomedicine. J Mater Sci. 2016;51(1):513–553.
  • Mimun LC, Ajithkumar G, Rightsell C, et al. Synthesis and characterization of Na(Gd0.5Lu0.5)F4: nd3+,a core-shell free multifunctional contrast agent. J Alloys Compd. 2017;695:280–285.
  • Rouhollah K, Pelin M, Serap Y, et al. Doxorubicin loading, release, and stability of polyamidoamine dendrimer-coated magnetic nanoparticles. J Pharm Sci. 2013;102(6):1825–1835.
  • Lübbe AS, Bergemann C, Riess H, et al. Clinical experiences with magnetic drug targeting: a phase I study with 4ʹ-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. 1996;56(20):4686–4693.
  • Reczyńska K, Marchwica P, Khanal D, et al. Stimuli-sensitive fatty acid-based microparticles for the treatment of lung cancer. Mater Sci Eng C. 2020;111:110801.
  • Pirmardvand Chegini S, Varshosaz J, Taymouri S. Recent approaches for targeted drug delivery in rheumatoid arthritis diagnosis and treatment. Artif Cells Nanomed Biotechnol. 2018;46(sup2):502–514.
  • Ashjari M, Khoee S, Mahdavian AR. A multiple emulsion method for loading 5-fluorouracil into a magnetite-loaded nanocapsule: a physicochemical investigation. Polym Int. 2012;61(5):850–859.
  • Truffi M, Colombo M, Sorrentino L, et al. Multivalent exposure of trastuzumab on iron oxide nanoparticles improves antitumor potential and reduces resistance in HER2-positive breast cancer cells. Sci Rep. 2018;8(1):6563.
  • Keck CM, Müller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm. 2006;62(1):3–16.
  • Tuomela A, Hirvonen J, Peltonen L. Stabilizing agents for drug nanocrystals: effect on bioavailability. Pharmaceutics. 2016;8(2):16.
  • Liu T, Yu X, Yin H, et al. Advanced modification of drug nanocrystals by using novel fabrication and downstream approaches for tailor-made drug delivery. Drug Deliv. 2019;26(1):1092–1103.
  • Jarvis M, Krishnan V, Mitragotri S. Nanocrystals: A perspective on translational research and clinical studies. Bioeng Transl Med. 2018;4(1):5–16.
  • Huang Y-W, Cambre M, Lee H-J. The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. Int J Mol Sci. 2017;18(12):2702.
  • Krishnan V, Sarode A, Bhatt R, et al. Surface-functionalized carrier-free drug nanorods for leukemia. Adv Ther. 2018;1(2):1800010.
  • Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proc Natl Acad Sci. 2006;103(13):4930–4934.
  • Zhang H, Hu H, Zhang H, et al. Effects of PEGylated paclitaxel nanocrystals on breast cancer and its lung metastasis. Nanoscale. 2015;7(24):10790–10800.
  • Zhan H, Jagtiani T, Liang JF. A new targeted delivery approach by functionalizing drug nanocrystals through polydopamine coating. Eur J Pharm Biopharm. 2017;114:221–229.
  • Date AA, Halpert G, Babu T, et al. Mucus-penetrating budesonide nanosuspension enema for local treatment of inflammatory bowel disease. Biomaterials. 2018;185:97–105.
  • Kahan BD. Sirolimus: a comprehensive review. Expert Opin Pharmacother. 2001;2(11):1903–1917.
  • Tang H, Zhao W, Yu J, et al. Recent development of pH-responsive polymers for cancer nanomedicine. Molecules. 2018;24(1):4.
  • V NSKV, H GS, Fathima SJ, et al. pH and thermosensitive 5-fluorouracil loaded poly(NIPAM-co-AAc) nanogels for cancer therapy. RSC Adv. 2016;6(107):105495–105507.
  • de Oliveira Silva J, Fernandes RS, Ramos Oda CM, et al. Folate-coated, long-circulating and pH-sensitive liposomes enhance doxorubicin antitumor effect in a breast cancer animal model. Biomed Pharmacother. 2019;118:109323.
  • Paliwal SR, Paliwal R, Vyas SP. A review of mechanistic insight and application of pH-sensitive liposomes in drug delivery. Drug Deliv. 2015;22(3):231–242.
  • Quach ND, Arnold RD, Cummings BS. Secretory phospholipase A2 enzymes as pharmacological targets for treatment of disease. Biochem Pharmacol. 2014;90(4):338–348.
  • Foged C, Nielsen HM, Frokjaer S. Liposomes for phospholipase A2 triggered siRNA release: preparation and in vitro test. Int J Pharm. 2007;331(2):160–166.
  • Zhu G, Mock JN, Aljuffali I, et al. Secretory phospholipase A2 responsive liposomes. J Pharm Sci. 2011;100(8):3146–3159.
  • Hu X, Li D, Zhang W, et al. Matrix metalloproteinase-9 expression correlates with prognosis and involved in ovarian cancer cell invasion. Arch Gynecol Obstet. 2012;286(6):1537–1543.
  • Sarkar NR, Rosendahl T, Krueger AB, et al. “Uncorking” of liposomes by matrix metalloproteinase-9. Chem Commun. 2005; (8):999–1001. DOI:10.1039/B416827E.
  • Elegbede AI, Banerjee J, Hanson AJ, et al. Mechanistic studies of the triggered release of liposomal contents by matrix metalloproteinase-9. J Am Chem Soc. 2008;130(32):10633–10642.
  • Goodman AM, Neumann O, Nørregaard K, et al. Near-infrared remotely triggered drug-release strategies for cancer treatment. Proc Natl Acad Sci USA. 2017;114(47):12419.
  • Mena-Giraldo P, Pérez-Buitrago S, Londoño-Berrío M, et al. Photosensitive nanocarriers for specific delivery of cargo into cells. Sci Rep. 2020;10(1):2110.
  • Yavlovich A, Singh A, Blumenthal R, et al. A novel class of photo-triggerable liposomes containing DPPC:DC8,9PC as vehicles for delivery of doxorubicin to cells. Biochim Biophys Acta Biomembr. 2011;1808(1):117–126.
  • Ta T, Porter TM. Thermosensitive liposomes for localized delivery and triggered release of chemotherapy. J Control Release. 2013;169(1–2):112–125.
  • Chen W, Duša F, Witos J, et al. Determination of the main phase transition temperature of phospholipids by nanoplasmonic sensing. Sci Rep. 2018;8(1):14815.
  • Smith B, Lyakhov I, Loomis K, et al. Hyperthermia-triggered intracellular delivery of anticancer agent to HER2+ cells by HER2-specific affibody (ZHER2-GS-Cys)-conjugated thermosensitive liposomes (HER2+ affisomes). J Control Release. 2011;153(2):187–194.
  • Kneidl B, Peller M, Winter G, et al. Thermosensitive liposomal drug delivery systems: state of the art review. Int J Nanomedicine. 2014;9:4387–4398.
  • Mazzotta E, Tavano L, Muzzalupo R. Thermo-sensitive vesicles in controlled drug delivery for chemotherapy. Pharmaceutics. 2018;10(3):150.
  • Kono K. Thermosensitive polymer-modified liposomes. Adv Drug Deliv Rev. 2001;53(3):307–319.
  • Chandaroy P, Sen A, Hui SW. Temperature-controlled content release from liposomes encapsulating Pluronic F127. J Control Release. 2001;76(1–2):27–37.
  • Tharkar P, Varanasi R, Wong WSF, et al. Nano-enhanced drug delivery and therapeutic ultrasound for cancer treatment and beyond. Front Bioeng Biotechnol. 2019;7:324.
  • Huang SL. Liposomes in ultrasonic drug and gene delivery. Adv Drug Deliv Rev. 2008;60(10):1167–1176.
  • Evjen TJ, Nilssen EA, Fowler RA, et al. Lipid membrane composition influences drug release from dioleoylphosphatidylethanolamine-based liposomes on exposure to ultrasound. Int J Pharm. 2011;406(1):114–116.
  • Klibanov AL, Shevchenko TI, Raju BI, et al. Ultrasound-triggered release of materials entrapped in microbubble-liposome constructs: a tool for targeted drug delivery. J Control Release. 2010;148(1):13–17.
  • Abbasi E, Kafshdooz T, Bakhtiary M, et al. Biomedical and biological applications of quantum dots. Artif Cells Nanomed Biotechnol. 2016;44(3):885–891.
  • Gimenez Y, Busser B, Trichard F, et al. 3D Imaging of nanoparticle distribution in biological tissue by laser-induced breakdown spectroscopy. Sci Rep. 2016;6(1):29936.
  • Feng J, Xu Z, Luo D, et al. Multiplexed imaging with coordination nanoparticles for cancer diagnosis and therapy. ACS Appl Biomater. 2020;3(1):713–720.
  • Li X, Zhang X-N, Li X-D, et al. Multimodality imaging in nanomedicine and nanotheranostics. Cancer Biol Med. 2016;13(3):339–348.
  • Michenfelder MM, Bartlett LJ, Mahoney DW, et al. Particle-size and radiochemical purity evaluations of filtered 99mTc-Sulfur colloid prepared with different heating times. J Nucl Med Technol. 2014;42(4):283–288.
  • Thakor AS, Jokerst JV, Ghanouni P, et al. Clinically approved nanoparticle imaging agents. J Nucl Med. 2016;57(12):1833–1837.
  • Whitman GJ, AlHalawani RH, Karbasian N, et al. Sentinel lymph node evaluation: what the radiologist needs to know. Diagnostics. 2019;9(1):12.
  • Tsopelas C. The radiopharmaceutical chemistry of 99mTc-tin fluoride colloid-labeled-leukocytes. Q J Nucl Med Mol Imaging. 2005 Dec;49(4):319–324.
  • Chakraborty D, Sunil HV, Mittal BR, et al. Role of Tc99m sulfur colloid scintigraphy in differentiating non-cirrhotic portal fibrosis from cirrhosis liver. Indian J Nucl Med. 2010;25(4):139–142.
  • Hood MN, Blankholm AD, Stolpen A. The rise of off-label iron-based agents in magnetic resonance imaging. J Radiol Nurs. 2019;38(1):38–41.
  • Rampton D, Folkersen J, Fishbane S, et al. Hypersensitivity reactions to intravenous iron: guidance for risk minimization and management. Haematologica. 2014;99(11):1671–1676.
  • Kaittanis C, Shaffer TM, Ogirala A, et al. Environment-responsive nanophores for therapy and treatment monitoring via molecular MRI quenching. Nat Commun. 2014;5(1):3384.
  • Burke BP, Cawthorne C, Archibald SJ. Multimodal nanoparticle imaging agents: design and applications. Philos T R Soc A. 2017;375:2107.
  • Benezra M, Penate-Medina O, Zanzonico PB, et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest. 2011;121(7):2768–2780.
  • Brouwer OR, Buckle T, Vermeeren L, et al. Comparing the hybrid fluorescent-radioactive tracer indocyanine green-99mTc-nanocolloid with 99mTc-nanocolloid for sentinel node identification: a validation study using lymphoscintigraphy and SPECT/CT. J Nucl Med. 2012;53(7):1034–1040.
  • Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1(5): 16014.
  • McNeil SE. Evaluation of nanomedicines: stick to the basics. Nat Rev Mater. 2016;1(10):16073.
  • Price LSL, Stern ST, Deal AM, et al. A reanalysis of nanoparticle tumor delivery using classical pharmacokinetic metrics. Sci Adv. 2020;6(29):eaay9249.
  • Kim D, Kim J, Park YI, et al. Recent development of inorganic nanoparticles for biomedical imaging. ACS Cent Sci. 2018;4(3):324–336.
  • Gabizon AA, de Rosales RTM, La-Beck NM. Translational considerations in nanomedicine: the oncology perspective. Adv Drug Deliv Rev. 2020:1–18 Available Online. 10.1016/j.addr.2020.05.012
  • Park K. Drug delivery of the future: chasing the invisible gorilla. J Control Release. 2016;240:2–8.
  • Singer AC, Shaw H, Rhodes V, et al. Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Front Microbiol. 2016;7:1728.
  • Ogunsona EO, Muthuraj R, Ojogbo E, et al. Engineered nanomaterials for antimicrobial applications: A review. Appl Mater Today. 2020;18:100473.
  • Lee N-Y, Ko W-C, Hsueh P-R. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front Pharmacol. 2019;10:1153.
  • Wang D-Y, van der Mei HC, Ren Y, et al. Lipid-based antimicrobial delivery-systems for the treatment of bacterial infections. Front Chem. 2020;7:872.
  • González-Paredes A, Sitia L, Ruyra A, et al. Solid lipid nanoparticles for the delivery of anti-microbial oligonucleotides. Eur J Pharm Biopharm. 2019;134:166–177.
  • Kalomiraki M, Thermos K, Chaniotakis NA. Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications. Int J Nanomedicine. 2015;11:1–12.
  • Dakal TC, Kumar A, Majumdar RS, et al. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol. 2016;7:1831.
  • Meghana S, Kabra P, Chakraborty S, et al. Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv. 2015;5(16):12293–12299.
  • Tiwari V, Mishra N, Gadani K, et al. Mechanism of anti-bacterial activity of zinc oxide nanoparticle against carbapenem-resistant Acinetobacter baumannii. Front Microbiol. 2018;9:1218.
  • Ziental D, Czarczynska-Goslinska B, Mlynarczyk DT, et al. Titanium dioxide nanoparticles: prospects and applications in medicine. Nanomaterials. 2020;10(2):2.
  • Al-Jumaili A, Alancherry S, Bazaka K, et al. Review on the antimicrobial properties of carbon nanostructures. Materials. 2017;10(9):1066.
  • Brunet L, Lyon DY, Hotze EM, et al. Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles. Environ Sci Technol. 2009;43(12):4355–4360.
  • Chen M, Daddy JCKA, Xiao Y, et al. Advanced nanomedicine for rheumatoid arthritis treatment: focus on active targeting. Exp Opin Drug Deliv. 2017;14(10):1141–1144.
  • Bottini M, Bhattacharya K, Fadeel B, et al. Nanodrugs to target articular cartilage: an emerging platform for osteoarthritis therapy. Nanomedicine. 2016;12(2):255–268.
  • Nunes R, Neves J, Sarmento B. Nanoparticles for the regulation of intestinal inflammation: opportunities and challenges. Nanomedicine. 2019;14(19):2631–2644.
  • Pati R, Shevtsov M, Sonawane A. Nanoparticle vaccines against infectious diseases. Front Immunol. 2018;9:2224.
  • Kumar A, Pandey AN, Jain SK. Nasal-nanotechnology: revolution for efficient therapeutics delivery. Drug Deliv. 2016;23(3):671–683.
  • Dhayani A, Kalita S, Mahato M, et al. Biomaterials for topical and transdermal drug delivery in reconstructive transplantation. Nanomedicine. 2019;14(20):2713–2733.
  • Ahadian S, Finbloom JA, Mofidfar M, et al. Micro and nanoscale technologies in oral drug delivery. Adv Drug Deliv Rev. 2020. Available Online. DOI:10.1016/j.addr.2020.07.012.
  • Giudice V, Mensitieri F, Izzo V, et al. Aptamers and antisense oligonucleotides for diagnosis and treatment of hematological diseases. Int J Mol Sci. 2020;21(9):9.
  • Soldevilla MM, Meraviglia-crivelli de Caso D, Menon AP, et al. Aptamer-iRNAs as therapeutics for cancer treatment. Pharmaceuticals. 2018;11(4):108.
  • Weng Y, Huang Q, Li C, et al. Improved nucleic acid therapy with advanced nanoscale biotechnology. Mol Ther Nucleic Acids. 2020;19:581–601.
  • Grodzinski P, Kircher M, Goldberg M, et al. Integrating nanotechnology into cancer care. ACS Nano. 2019;13(7):7370–7376.
  • Chen J, Tang Y, Liu Y, et al. Nucleic acid-based therapeutics for pulmonarydiseases. AAPS PharmSciTech. 2018;19(8):3670–3680.
  • Xiao Y, Shi K, Qu Y, et al. Engineering nanoparticles for targeted delivery of nucleic acid therapeutics in tumor. Mol Ther Methods Clin Dev. 2018;12:1–18.
  • Mokhtarzadeh A, Vahidnezhad H, Youssefian L, et al. Applications of spherical nucleic acid nanoparticles as delivery systems. Trends Mol Med. 2019;25(12):1066–1079.
  • A triumph of perseverance over interference. Nat Biotechnol. 2018;36(9):775.
  • Wei T, Cheng Q, Min Y-L, et al. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat Commun. 2020;11(1):3232.
  • Afonin KA, Dobrovolskaia MA, Church G, et al. Opportunities, barriers, and a strategy for overcoming translational challenges to therapeutic nucleic acid nanotechnology. ACS Nano. 2020;14(8):9221–9227.
  • Garg S, Heuck G, Ip S, et al. Microfluidics: a transformational tool for nanomedicine development and production. J Drug Target. 2016;24(9):821–835.
  • Yamankurt G, Berns EJ, Xue A, et al. Exploration of the nanomedicine-design space with high-throughput screening and machine learning. Nat Biomed Eng. 2019;3(4):318–327.
  • Pujals S, Albertazzi L. Super-resolution microscopy for nanomedicine research. ACS Nano. 2019;13(9):9707–9712.
  • Hua S, de Matos MBC, Metselaar JM, et al. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol. 2018;9:790.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.