506
Views
9
CrossRef citations to date
0
Altmetric
Review

Current strategies for the discovery and bioconjugation of smaller, targetable drug conjugates tailored for solid tumor therapy

ORCID Icon & ORCID Icon
Pages 613-624 | Received 20 Sep 2020, Accepted 27 Nov 2020, Published online: 11 Jan 2021

References

  • Bartelink IH, Jones EF, Shahidi-Latham SK, et al. Tumor drug penetration measurements could be the neglected piece of the personalized cancer treatment puzzle. Clin Pharmacol Ther. 2019;106:148–163.
  • Scott AM, Lee F-T, Hopkins W, et al. Specific targeting, biodistribution and lack of immunogenicity of chimeric anti-GD3 monoclonal antibody KM871 in patients with metastatic melanoma: results of a phase I trial. J Clin Oncol. 2001;19:3976–3987.
  • Thurber GM, Schmidt MM, Wittrup KD. Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv Drug Deliv Rev. 2008;60:1421–1434.
  • Christiansen J, Rajasekaran AK. Biological impediments to monoclonal antibody-based cancer immunotherapy. Mol Cancer Ther. 2004;3:1493–1501.
  • Teicher BA, Chari RV. Antibody conjugate therapeutics: challenges and potential. Clin Cancer Res. 2011;17:6389–6397.
  • Lambert JM, Morris CQ. Antibody-Drug Conjugates (ADCs) for personalized treatment of solid tumors: a review. Adv Ther. 2017;34:1015–1035.
  • Li Z, Krippendorff BF, Sharma S, et al. Influence of molecular size on tissue distribution of antibody fragments. MAbs. 2016;8:113–119.
  • Schmidt MM, Wittrup KD. A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol Cancer Ther. 2009;8:2861–2871.
  • Deonarain MP, Yahioglu G, Stamati I, et al. Small-format drug conjugates: a viable alternative to ADCs for solid tumours? Antibodies (Basel). 2018;7:1–19.
  • Gauzy-Lazo L, Sassoon I, Brun MP. Advances in antibody-drug conjugate design: current clinical landscape and future innovations. SLAS Discov. 2020. DOI:10.1177/2472555220912955.
  • [cited 2020 Sep 01]. Available from: https://www.antibodysociety.org/adc/
  • Yu B, Liu D. Antibody-drug conjugates in clinical trials for lymphoid malignancies and multiple myeloma. J Hematol Oncol. 2019;12:94.
  • Goulet DR, Atkins WM. Considerations for the design of antibody-based therapeutics. J Pharm Sci. 2020;109:74–103.
  • Ministro J, Manuel AM, Goncalves J. Therapeutic antibody engineering and selection strategies. Adv Biochem Eng Biotechnol. 2020;171:55–86.
  • Hong LP, Scoble JA, Doughty L, et al. Cancer-targeting antibody-drug conjugates: site-specific conjugation of Doxorubicin to anti-EGFR 528 Fab’ through a polyethylene glycol linker. Aus J Chem. 2011;64:779–789.
  • Badescu G, Bryant P, Bird M, et al. Bridging disulfides for stable and defined antibody drug conjugates. Bioconjug Chem. 2014;25:1124–1136.
  • Bryden F, Maruani A, Savoie H, et al. Regioselective and stoichiometrically controlled conjugation of photodynamic sensitizers to a Her2 targeting antibody fragment. Bioconj Chem. 2014;25:611–617.
  • Maruani A, Smith MEB, Miranda E, et al. A plug-and-play approach to antibody-based therapeutics via chemoselective dual click strategy. Nat Comm. 2015;6:6645.
  • Counsell AJ, Walsh SJ, Robertson NS, et al. Efficient and selective antibody modification with functionalised divinyltriazines. Org Biomol Chem. 2020;18:4224–4230.
  • Bargh JD, Walsh SJ, Isidro-Loubet A, et al. Sulfatase-cleavable linkers for antibody-drug conjugates. Chem Sci. 2020;11:2375–2380.
  • Ruddle BT, Fleming R, Wu H, et al. Characterization of disulfide bond rebridged fab-drug conjugates prepared using a dual maleimide pyrrolobenzodiazepine cytotoxic payload. ChemMedChem. 2019;14:1185–1195.
  • Mullard A. Cancer stem cell candidate Rova-T discontinued. Nat Rev Drug Discov. 2019;18:814.
  • Puthenveetil S, Musto S, Loganzo F, et al. Development of solid-phase site-specific conjugation and its application toward generation of dual labeled antibody and fab drug conjugates. Bioconjug Chem. 2016;27:1030–1039.
  • Liu W, Zhao W, Bai X, et al. High antitumor activity of Sortase A-generated anti-CD20 antibody fragment drug conjugates. Eur J Pharm Sci. 2019;134:81–92.
  • Forte N, Benni I, Karu K, et al. Cysteine-to-lysine transfer antibody fragment conjugation. Chem Sci. 2019;10:10919.
  • Kim CH, Axup JY, Lawson BR, et al. Bispecific small molecule-antibody conjugate targeting prostate cancer. PNAS. 2013;110(44):17796–17801.
  • Lillo AM, Sun C, Gao C, et al. Human single-chain antibody specific for Integrin α3β1 capable of cell internalization and delivery of antitumor agents. Chem Biol. 2004;11(7):897–906.
  • Pye H, Butt MA, Funnell L, et al. Using antibody directed phototherapy to target oesophageal adenocarcinoma with heterogeneous HER2 expression. Oncotarget. 2018;9:22945–22959.
  • Bhatti M, Yahioglu G, Milgrom LR, et al. Targeted photodynamic therapy with multiply-loaded recombinant antibody fragments. Int J Cancer. 2008;122:1155–1163.
  • Pye H, Butt MA, Reinert HW, et al. A HER2 selective theranostic agent for surgical resection guidance and photodynamic therapy. Photochem Photobiol Sci. 2016;15:1227–1238.
  • Deonarain MP, Yahioglu G, Stamati I, et al. Biological materials and uses thereof. PCT Patent 2015. WO 2016046574.
  • Yahioglu G, Stamati I, Diez-Posada S, et al. Manuscript in preparation. 2020.
  • Deonarain  MP, Stamati  I, Edwards  B et al. Gastric cancer antibody fragment drug conjugates (FDCS): from concept to clinical development. Cancer Research, 2020;80. DOI:10.1158/1538-7445.AM2020-2901.
  • Deonarain MP. Tailoring antibody fragment drug conjugates (FDCs) for solid tumours. Protein engineering summit Europe, Lisbon, 2019, Nov 18-22.
  • Xu H, Gan L, Han Y, et al. Site-specific labelling of anti-MUC1 antibody: probing the effects of conjugation and linker chemistry on internalization process. RSC Adv. 2019;9:1909–1917.
  • Aubrey N, Allard-Vannier E, Martin C, et al. Site-specific conjugation of auristatins onto engineered scFv using second generation maleimide to target HER2 -positive breast cancer in vitro. Bioconj Chem. 2018;29(11):3516–3521.
  • Woitok M, Klose D, Di Fiore S, et al. Comparison of a mouse and a novel human scFv-SNAP-auristatin F drug conjugate with potent activity against EGFR-overexpressing human solid tumor cells. Oncol Targets Ther.2017; 10:3313–3327.
  • Voitok M, Klose D, Niesen J, et al. The efficient elimination of solid tumor cells by EGFR-specific and HER2-specific scFv-SNAP fusion proteins conjugated to benzylguanine modified auristatin F. Can Lett. 2016;381(2):323–330.
  • Yap ML, McFadyen JD, Wang X, et al. Activated platelets in the tumor microenvironment for targeting of antibody-drug conjugates to tumors and metastases. Theranostics. 2019;9:1154–1169.
  • Wang X, Sheng W, Wang Y, et al. A macropinocytosis-intensifying albumin domain-based scFv antibody and its conjugate directed against K-Ras mutant pancreatic cancer. Mol Pharm. 2018;15:2403–2412.
  • Zhang H, Wang Y, Wu Y, et al. Therapeutic potential of an anti-HER2 single chain antibody DM1 conjugates for treatment of HER2-positive cancers. Signal Trans Targeted Therap. 2017;2:e170150.
  • [cited 2020 Sep 10]. Available from: https://www.crescendobiologics.com/humabody/humabody-therapeutics
  • Nessler I, Khera E, Vance S, et al. Increased tumor penetration of single-domain antibody-drug conjugates improves In Vivo Efficacy in prostate cancer models. Cancer Res. 2020;80:1268–1278.
  • Ubah OC, Buschhaus MJ, Ferguson L, et al. Next-generation flexible formats of VNAR domains expand the drug platform’s utility and developability. Biochem Soc Trans. 2018;46:1559–1565.
  • Huang H, Wu T, Shi H, et al. Modular design of nanobody-drug conjugates for targeted-delivery of platinum anticancer drugs with an MRI contrast agent. Chem Commun. 2019;55:5175–5178.
  • Bernardes GJ, Casi G, Trüssel S, et al. A traceless vascular-targeting antibody-drug conjugate for cancer therapy. Angew Chem Int Ed Engl. 2012;51:941–944.
  • Perrino E, Steiner M, Krall N, et al. Curative properties of noninternalizing antibody-drug conjugates based on maytansinoids. Cancer Res. 2014;74:2569–2578.
  • Gébleux R, Stringhini M, Casanova R, et al. Non-internalizing antibody-drug conjugates display potent anti-cancer activity upon proteolytic release of monomethyl auristatin E in the subendothelial extracellular matrix. Int J Cancer. 2017;140:1670–1679.
  • Kim KM, McDonagh CF, Westendorf L, et al. Anti-CD30 diabody-drug conjugates with potent antitumor activity. Mol Cancer Ther. 2008;7:2486–2497.
  • Borek A, Sokolowska-Wedzina A, Chodaczek G, et al. Generation of high-affinity, internalizing anti-FGFR2 single-chain variable antibody fragment fused with Fc for targeting gastrointestinal cancers. PLoS One. 2018;13. DOI:10.1371/journal.pone.0192194.
  • Dempsey O, Hudson P, Robillard M. World ADC Summit conference. San Diego. 2019 Oct.
  • Li Q, Barett A, Vijayakrishnan B, et al. Improved inhibition of tumour growth by diabody-drug conjugates via half-life extension. Bioconj Chem. 2019;30(4):1232–1243.
  • Debie P, Lafont C, Defrise M, et al. Size and affinity kinetics of nanobodies influence targeting and penetration of solid tumours. J Control Release. 2020;317:34–42.
  • Vazquez-Lombardi R, Phan TG, Zimmermann C, et al. Challenges and opportunities for non-antibody scaffold drugs. Drug Discov Today. 2015;20:1271–1283.
  • Krzyscik MA, Zakrzewska M, Sorensen V, et al. Cytotoxic conjugates of fibroblast growth factor 2 (FGF2) with monomethyl auristatin E for effective killing of cells expressing FGF receptors. ACS Omega. 2017;2(7):3792–3805.
  • Krzyscik MA, Zakrzewska M, Otlewski J. Site-specific, stoichiometric-controlled, PEGylated conjugates of fibroblast growth factor 2 (FGF 2) with hydrophilic aurostatin Y for highly selective killing of cancer cells overproducing fibroblast growth factor receptor 1 (FGFR1). Mol Pharm. 2020;17(2):2734–2748.
  • Chandler PG, Buckle AM. Development and differentiation in monobodies based on the fibronectin type 3 domain. Cells. 2020;9:610.
  • Goldberg SD, Cardoso RM, Lin T, et al. Engineering a targeted delivery platform using Centyrins. Protein Eng Des Sel. 2016;29:563–572.
  • Shi C, Goldberg S, Lin T, et al. Bioanalytical workflow for novel scaffold protein-drug conjugates: quantitation of total Centyrin protein, conjugated Centyrin and free payload for Centyrin-drug conjugate in plasma and tissue samples using liquid chromatography-tandem mass spectrometry. Bioanalysis. 2018;10:1651–1665.
  • Lipovšek D, Carvajal I, Allentoff AJ, et al. Adnectin-drug conjugates for Glypican-3-specific delivery of a cytotoxic payload to tumors. Protein Eng Des Sel. 2018;31:159–171.
  • Huang RY, O’Neil SR, Lipovšek D, et al. Conformational assessment of adnectin and adnectin-drug conjugate by hydrogen/deuterium exchange mass spectrometry. J Am Soc Mass Spectrom. 2018;29:1524–1531.
  • Kunimoto D, Yoon YH, Wykoff CC, et al., CEDAR and SEQUOIA Study Groups. Efficacy and safety of abicipar in neovascular age-related macular degeneration: 52-week results of phase 3 randomized controlled study. Ophthalmology. 2020. S0161-6420(20)30320-1. DOI:10.1016/j.ophtha.2020.03.035.
  • Simon M, Frey R, Zangemeister-Wittke U, et al. Orthogonal assembly of a designed ankyrin repeat protein-cytotoxin conjugate with a clickable serum albumin module for half-life extension. Bioconjug Chem. 2013;24:1955–1966.
  • Brandi F, Busslinger S, Zangemeister-Wittke U, et al. Optimising the anti-tumor efficacy of protein-drug conjugates by engineering the molecular size and half-life. J Cont Rel. 2020;327:186–197.
  • Mullard A. FDA rejects first DARPin. Nat Rev Drug Discov. 2020;19:501.
  • [cited 2020 Dec 10]. Available from: https://www.affibody.se
  • Sochaj-Gregorczyk AM, Serwotka-Suszczak AM, Otlewski J. A novel affibody-auristatin E conjugate with a potent and selective activity against HER2+ cell lines. J Immunother. 2016;39:223–232.
  • Sochaj-Gregorczyk AM, Ludzia P, Kozdrowska E, et al. Design and in vitro evaluation of a cytotoxic conjugate based on the anti-HER2 affibody fused to the Fc fragment of IgG1. Int J Mol Sci. 2017;18:1688.
  • Altai M, Liu H, Ding H, et al. Affibody-derived drug conjugates: potent cytotoxic molecules for treatment of HER2 over-expressing tumors. J Control Release. 2018;288:84–95.
  • Li S, Jin Y, Su Y, et al. Anti-HER2 affibody-conjugated photosensitizer for tumor targeting photodynamic therapy. Mol Pharm. 2020;17:1546–1557.
  • Ullman C, Mathonet P, Oleksy A, et al. High affinity binders to EphA2 isolated from abdurin scaffold libraries; Characterization, binding and tumor targeting. PLoS One. 2015;10:e0135278.
  • Peretti S. Abdurin-drug conjugates: a new generation of targeted therapeutics. Protein Engineering Summit (PEGS) Conference, Lisbon, 2017.
  • He R, Finan B, Mayer JP, et al. Peptide conjugates with small molecules designed to enhance efficacy and safety. Molecules. 2019;24:1855.
  • Ziaei E, Saghaeidehkordi A, Dill C, et al. Targeting triple negative breast cancer cells with novel cytotoxic peptide-doxorubicin conjugates. Bioconjug Chem. 2019;30:3098–3106.
  • Kintzing JR, Cochran JR. Engineered knottin peptides as diagnostics, therapeutics, and drug delivery vehicles. Curr Opin Chem Biol. 2016;34:143–150.
  • Cox N, Kintzing JR, Smith M, et al. Integrin-targeting knottin peptide-drug conjugates are potent inhibitors of tumor cell proliferation. Angew Chem Int Ed Engl. 2016;55:9894–9897.
  • Currier NV, Ackerman SE, Kintzing JR, et al. Targeted drug delivery with an integrin-binding knottin-Fc-MMAF conjugate produced by cell-free protein synthesis. Mol Cancer Ther. 2016;15:1291–1300.
  • Whalen KA, White BH, Quinn JM, et al. Targeting the somatostatin receptor 2 with the miniaturized drug conjugate, PEN-221: a potent and novel therapeutic for the treatment of small cell lung cancer. Mol Cancer Ther. 2019;18:1926–1936.
  • Johnson ML, Meyer T, Halperin DM, et al. First in human phase 1/2a study of PEN-221 somatostatin analog (SSA)-DM1 conjugate for patients (PTS) with advanced neuroendocrine tumor (NET) or small cell lung cancer (SCLC): phase 1 results. J clin oncol. 2018;36(15_suppl):4097.
  • Tarveda Therapeutics, European Society for Medical Oncology (ESMO) Congress. 2019.
  • Thomas A, Kriksciukaite K, Falchook G, et al. Characterization of PEN-866, a Heat Shock Protein 90 (HSP90) binding conjugate of SN-38, in patient plasma and tumors from the first in human study. American Association for Cancer Research Annual Meeting, April 24–29, 2020.
  • Heinis C, Rutherford T, Freund S, et al. Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nat Chem Biol. 2009;5:502–507.
  • Harrison H, Bennett G, Blakeley D. BT1718, a novel bicyclic peptide-maytansinoid conjugate targeting MT1-MMP for the treatment of solid tumours: design of bicyclic peptide and linker selection. American Association for Cancer Research Annual Conference, Washington, 2017.
  • Cook N, Banerji U, Evans TRJ, et al. Pharmacokinetic (PK) assessment of BT1718: A phase 1/2a study of BT1718, a first in class Bicycle Toxin Conjugate (BTC), in patients (pts) with advanced solid tumors. Eur Soc Med Oncol. 2019.
  • Bennett G, Brown A, Mudd G, et al. MMAE delivery using the Bicycle toxin conjugate BT5528. Mol Cancer Ther. 2020;19:1385–1394.
  • Bendell J, Wang J, Bashir B, et al. BT5528-100 phase I/II study of the safety, pharmacokinetics, and preliminary clinical activity of BT5528 in patients with advanced malignancies associated with EphA2 expression. Am Soc Clin Oncol Conf. 2020.
  • Rigby M, Bennett G, Chen L, et al. BT8009, a Bicycle® Toxin Conjugate targeting Nectin-4, shows target selectivity, and efficacy in preclinical large and small tumor models. American Society for Clinical Oncology Conference, 2020.
  • Schulz S, Becker M, Groseclose MR, et al. Advanced MALDI mass spectrometry imaging in pharmaceutical research and drug development. Curr Opin Biotechnol. 2019;55:51–59.
  • Saber H, Leighton JK. An FDA oncology analysis of antibody-drug conjugates. Regul Toxicol Pharmacol. 2015;71:444–452.
  • Saber H, Simpson N, Ricks TK, et al. An FDA oncology analysis of toxicities associated with PBD-containing antibody-drug conjugates. Regul Toxicol Pharmacol. 2019;107:104429.
  • Uppal H, Doudement E, Mahapatra K, et al. Potential mechanisms for thrombocytopenia development with trastuzumab emtansine (T-DM1). Clin Cancer Res. 2015;21:123–133.
  • Li Z, Li Y, Chang HP, et al. Effect of size on solid tumor disposition of protein therapeutics. Drug Metab Dispos. 2019;47:1136–1145.
  • Schmidt MM, Wittrup KD. A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol Cancer Ther. 2009;8:2861–2871.
  • Singh AP, Shah DK. Measurement and mathematical characterization of cell-level pharmacokinetics of antibody-drug conjugates: a case study with trastuzumab-vc-MMAE. Drug Metab Dispos. 2017;45:1120–1132.
  • Shah DK, Loganzo F, Haddish-Berhane N, et al. Establishing in vitro-in vivo correlation for antibody drug conjugate efficacy: a PK/PD modeling approach. J Pharmacokinet Pharmacodyn. 2018;45:339–349.
  • Cazzamalli S, Dal Corso A, Widmayer F, et al. Chemically defined antibody and small molecule-drug conjugates for in vivo tumor targeting applications: a comparative analysis. J Am Chem Soc. 2018;140:1617–1621.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.