367
Views
10
CrossRef citations to date
0
Altmetric
Review

The discovery and development of IP3 receptor modulators: an update

, , , , & ORCID Icon
Pages 709-718 | Received 01 Aug 2020, Accepted 30 Nov 2020, Published online: 06 Jan 2021

References

  • Hamada K, Mikoshiba K. IP3 receptor plasticity underlying diverse functions. Annu Rev Physiol. 2020;82:151–176.
  • Lin CC, Baek K, Lu Z. Apo and InsP(3)-bound crystal structures of the ligand-binding domain of an InsP(3) receptor. Nat Struct Mol Biol. 2011;18(10):1172–1174.
  • Gambardella J, Lombardi A, Morelli MB, et al. Inositol 1,4,5-trisphosphate receptors in human disease: a comprehensive update. J Clin Med. 2020;9(4). DOI:10.3390/jcm9041096
  • Santulli G, Nakashima R, Yuan Q, et al. Intracellular calcium release channels: an update. J Physiol. 2017;595(10):3041–3051.
  • Fan G, Baker ML, Wang Z, et al., Gating machinery of InsP3R channels revealed by electron cryomicroscopy. Nature. 2015;527(7578):336–341.
  • Serysheva II, Baker MR, Fan G. Structural Insights into IP3R Function. Adv Exp Med Biol. 2017;981:121–147.
  • Fan G, Baker MR, Wang Z, et al. Cryo-EM reveals ligand induced allostery underlying InsP3R channel gating. Cell Res. 2018;28(12):1158–1170.
  • Hamada K, Miyatake H, Terauchi A, et al. IP3-mediated gating mechanism of the IP3 receptor revealed by mutagenesis and X-ray crystallography. Proc Natl Acad Sci U S A. 2017;114(18):4661–4666.
  • Chandran A, Chee X, Prole DL, et al. Exploration of inositol 1,4,5-trisphosphate (IP3) regulated dynamics of N-terminal domain of IP3 receptor reveals early phase molecular events during receptor activation. Sci Rep. 2019;9(1):2454.
  • Bartok A, Weaver D, Golenar T, et al. IP3 receptor isoforms differently regulate ER-mitochondrial contacts and local calcium transfer. Nat Commun. 2019;10(1):3726.
  • Lock JT, Parker I. IP3 mediated global Ca(2+) signals arise through two temporally and spatially distinct modes of Ca(2+) release. Elife. 2020;9. DOI:10.7554/eLife.55008
  •  Hunt H, Tilunaite A, Bass G, et al. Ca(2+) release via IP3 receptors shapes the cardiac Ca(2+) transient for hypertrophic signaling. Biophys J. 2020;119(6):1178–1192.
  • Terry LE, Alzayady KJ, Wahl AM, et al. Disease-associated mutations in inositol 1,4,5-trisphosphate receptor subunits impair channel function. J Biol Chem. 2020. DOI:10.1074/jbc.RA120.015683
  • Ronkko J, Molchanova S, Revah-Politi A, et al. Dominant mutations in ITPR3 cause Charcot-Marie-Tooth disease. Ann Clin Transl Neurol. 2020;7(10):1962–1972.
  • Capel RA, Bose SJ, Collins TP, et al. IP3-mediated Ca(2+) release regulates atrial Ca(2+)-transients and pacemaker function by stimulation of adenylyl cyclases. Am J Physiol Heart Circ Physiol. 2020. DOI:10.1152/ajpheart.00380.2020
  • Azumaya CM, Linton EA, Risener CJ, et al. Cryo-EM structure of human type-3 inositol triphosphate receptor reveals the presence of a self-binding peptide that acts as an antagonist. J Biol Chem. 2020;295(6):1743–1753.
  • Yang F, Huang L, Tso A, et al. Inositol 1,4,5-trisphosphate receptors are essential for fetal-maternal connection and embryo viability. PLoS Genet. 2020;16(4):e1008739.
  • Gambardella J, Sorriento D, Bova M, et al. Role of endothelial G protein-coupled receptor kinase 2 in angioedema. Hypertension. 2020;76(5):1625–1636.
  • Bosanac I, Alattia JR, Mal TK, et al., Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand. Nature. 2002;420(6916):696–700.
  • Moritsugu K, Ito T, Kidera A. Allosteric response to ligand binding: molecular dynamics study of the N-terminal domains in IP 3 receptor. Biophys Physicobiol. 2019;16:232–239.
  • Yoshikawa F, Morita M, Monkawa T, et al. Mutational analysis of the ligand binding site of the inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1996;271(30):18277–18284.
  • Takahashi M, Kagasaki T, Hosoya T, et al., Adenophostins A and B: potent agonists of inositol-1,4,5-trisphosphate receptor produced by Penicillium brevicompactum. Taxonomy, fermentation, isolation, physico-chemical and biological properties. J Antibiot. 1993;46(11):1643–1647.
  • Saleem H, Tovey SC, Riley AM, et al. Stimulation of inositol 1,4,5-trisphosphate (IP3) receptor subtypes by adenophostin A and its analogues. PLoS One. 2013;8(2):e58027.
  • Rossi AM, Riley AM, Potter BV, et al. Adenophostins: high-affinity agonists of IP(3) receptors. Curr Top Membr. 2010;66:209–233.
  • Sureshan KM, Riley AM, Thomas MP, et al. Contribution of phosphates and adenine to the potency of adenophostins at the IP(3) receptor: synthesis of all possible bisphosphates of adenophostin A. J Med Chem. 2012;55(4):1706–1720.
  • Mochizuki T, Kondo Y, Abe H, et al. Synthesis of adenophostin A analogues conjugating an aromatic group at the 5ʹ-position as potent IP3 receptor ligands. J Med Chem. 2006;49(19):5750–5758.
  • Vibhute AM, Konieczny V, Taylor CW, et al. Triazolophostins: a library of novel and potent agonists of IP3 receptors. Org Biomol Chem. 2015;13(24):6698–6710.
  • Vibhute AM, Pushpanandan P, Varghese M, et al. Synthesis of dimeric analogs of adenophostin A that potently evoke Ca(2+) release through IP3 receptors. RSC Adv. 2016;6(89):86346–86351.
  • Correa V, Riley AM, Shuto S, et al. Structural determinants of adenophostin A activity at inositol trisphosphate receptors. Mol Pharmacol. 2001;59(5):1206–1215.
  • Dohle W, Su X, Mills SJ, et al. A synthetic cyclitol-nucleoside conjugate polyphosphate is a highly potent second messenger mimic. Chem Sci. 2019;10(20):5382–5390.
  • Mills SJ, Rossi AM, Konieczny V, et al. d-chiro-inositol ribophostin: a highly potent agonist of d-myo-inositol 1,4,5-trisphosphate receptors: synthesis and biological activities. J Med Chem. 2020;63(6):3238–3251.
  • Jenkins DJ, Potter BV. A Ca(2+)-mobilising carbohydrate-based polyphosphate: synthesis of 2-hydroxyethyl alpha-D-glucopyranoside 2ʹ,3,4-trisphosphate. Carbohydr Res. 1996;287(2):169–182.
  • Shipton ML, Riley AM, Rossi AM, et al. Both d- and l-glucose polyphosphates mimic d-myo-inositol 1,4,5-trisphosphate: new synthetic agonists and partial agonists at the Ins(1,4,5)P3 receptor. J Med Chem. 2020;63(10):5442–5457.
  • Lock JT, Smith IF, Parker I. Comparison of Ca(2+) puffs evoked by extracellular agonists and photoreleased IP3. Cell Calcium. 2017;63:43–47.
  • Decrock E, De Bock M, Wang N, et al. Flash photolysis of caged IP3 to trigger intercellular Ca2+ waves. Cold Spring Harb Protoc. 2015;2015(3):289–292.
  • Kantevari S, Gordon GR, MacVicar BA, et al. A practical guide to the synthesis and use of membrane-permeant acetoxymethyl esters of caged inositol polyphosphates. Nat Protoc. 2011;6(3):327–337.
  • Keebler MV, Taylor CW. Endogenous signalling pathways and caged IP3 evoke Ca(2+) puffs at the same abundant immobile intracellular sites. J Cell Sci. 2017;130(21):3728–3739.
  • Maranto AR. Primary structure, ligand binding, and localization of the human type 3 inositol 1,4,5-trisphosphate receptor expressed in intestinal epithelium. J Biol Chem. 1994;269(2):1222–1230.
  • Wojcikiewicz RJ, Luo SG. Differences among type I, II, and III inositol-1,4,5-trisphosphate receptors in ligand-binding affinity influence the sensitivity of calcium stores to inositol-1,4,5-trisphosphate. Mol Pharmacol. 1998;53(4):656–662.
  • Miyakawa T, Maeda A, Yamazawa T, et al. Encoding of Ca2+ signals by differential expression of IP3 receptor subtypes. Embo J. 1999;18(5):1303–1308.
  • Wagner LE 2nd, Yule DI. Differential regulation of the InsP(3) receptor type-1 and −2 single channel properties by InsP(3), Ca(2)(+) and ATP. J Physiol. 2012;590(14):3245–3259.
  • Gregory RB, Hughes R, Riley AM, et al. Inositol trisphosphate analogues selective for types I and II inositol trisphosphate receptors exert differential effects on vasopressin-stimulated Ca2+ inflow and Ca2+ release from intracellular stores in rat hepatocytes. Biochem J. 2004;381(Pt 2):519–526.
  • Dyer JL, Michelangeli F. Inositol 1,4,5-trisphosphate receptor isoforms show similar Ca2+ release kinetics. Cell Calcium. 2001;30(4):245–250.
  • Mak DO, McBride S, Foskett JK. Inositol 1,4,5-trisphosphate [correction of tris-phosphate] activation of inositol trisphosphate [correction of tris-phosphate] receptor Ca2+ channel by ligand tuning of Ca2+ inhibition. Proc Natl Acad Sci U S A. 1998;95(26):15821–15825.
  • Nerou EP, Riley AM, Potter BV, et al. Selective recognition of inositol phosphates by subtypes of the inositol trisphosphate receptor. Biochem J. 2001;355(Pt 1):59–69.
  • Mochizukia T, Tanimura A, Nezub A, et al. Design and synthesis of indole derivatives of adenophostin A. A entry into subtype-selective IP3 receptor ligands. Tetrahedron Lett. 2010;51:977–979.
  • Nakagawa M, E. M. Structures of xestospongin A, B, C and D, novel vasodilative compounds from marine sponge Xestospongia exigua. Tetrahedron Lett. 1984;25(30):3227–3230.
  • Thomas R, Hoye JTN, Letitia J, Yao, A. Total synthesis of (+)-Xestospongin A/(+)-Araguspongine D. J Am Chem Soc. 1994;116:2617–2618.
  • Kobayashi M, Kawazoe K, Kitagawa I, et al. C, D, E, F, G, H, and J, new vasodilative bis-1-oxaquinolizidine alkaloids from an okinawan marine sponge, Xestospongia sp. Chem Pharm Bull (Tokyo). 1989;37(6):1676–1678.
  • Althagbi HI, Alarif WM, Al-Footy KO, et al. Marine-derived macrocyclic alkaloids (MDMAs): chemical and biological diversity. Mar Drugs. 2020;18:7.
  • Gafni J, Munsch JA, Lam TH, et al. Xestospongins: potent membrane permeable blockers of the inositol 1,4,5-trisphosphate receptor. Neuron. 1997;19(3):723–733.
  • Ta TA, Feng W, Molinski TF, et al. Hydroxylated xestospongins block inositol-1,4,5-trisphosphate-induced Ca2+ release and sensitize Ca2+-induced Ca2+ release mediated by ryanodine receptors. Mol Pharmacol. 2006;69(2):532–538.
  • Bootman MD, Collins TJ, Mackenzie L, et al. 2-aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release. Faseb J. 2002;16(10):1145–1150.
  • Oka T, Sato K, Hori M, et al. Xestospongin C, a novel blocker of IP3 receptor, attenuates the increase in cytosolic calcium level and degranulation that is induced by antigen in RBL-2H3 mast cells. Br J Pharmacol. 2002;135(8):1959–1966.
  • Ozaki H, Hori M, Kim YS, et al. Inhibitory mechanism of xestospongin-C on contraction and ion channels in the intestinal smooth muscle. Br J Pharmacol. 2002;137(8):1207–1212.
  • Rosado JA, Sage SO. Coupling between inositol 1,4,5-trisphosphate receptors and human transient receptor potential channel 1 when intracellular Ca2+ stores are depleted. Biochem J. 2000;350(Pt 3):631–635.
  • Schafer M, Bahde D, Bosche B, et al. Modulation of early [Ca2+]i rise in metabolically inhibited endothelial cells by xestospongin C. Am J Physiol Heart Circ Physiol. 2001;280(3):H1002–10.
  • Yuan Z, Cai T, Tian J, et al. Na/K-ATPase tethers phospholipase C and IP3 receptor into a calcium-regulatory complex. Mol Biol Cell. 2005;16(9):4034–4045.
  • De Smet P, Parys JB, Callewaert G, et al. Xestospongin C is an equally potent inhibitor of the inositol 1,4,5-trisphosphate receptor and the endoplasmic-reticulum Ca(2+) pumps. Cell Calcium. 1999;26(1–2):9–13.
  • Castonguay A, Robitaille R. Xestospongin C is a potent inhibitor of SERCA at a vertebrate synapse. Cell Calcium. 2002;32(1):39–47.
  • Solovyova N, Fernyhough P, Glazner G, et al. Xestospongin C empties the ER calcium store but does not inhibit InsP3-induced Ca2+ release in cultured dorsal root ganglia neurones. Cell Calcium. 2002;32(1):49–52.
  • Bishara NB, Murphy TV, Hill MA. Capacitative Ca(2+) entry in vascular endothelial cells is mediated via pathways sensitive to 2 aminoethoxydiphenyl borate and xestospongin C. Br J Pharmacol. 2002;135(1):119–128.
  • Haak LL, Song LS, Molinski TF, et al. Sparks and puffs in oligodendrocyte progenitors: cross talk between ryanodine receptors and inositol trisphosphate receptors. J Neurosci. 2001;21(11):3860–3870.
  • Jaimovich E, Mattei C, Liberona JL, et al. Xestospongin B, a competitive inhibitor of IP3-mediated Ca2+ signalling in cultured rat myotubes, isolated myonuclei, and neuroblastoma (NG108-15) cells. FEBS Lett. 2005;579(10):2051–2057.
  • Duncan RS, Hwang SY, Koulen P. Differential inositol 1,4,5-trisphosphate receptor signaling in a neuronal cell line. Int J Biochem Cell Biol. 2007;39(10):1852–1862.
  • Saleem H, Tovey SC, Molinski TF, et al., Interactions of antagonists with subtypes of inositol 1,4,5-trisphosphate (IP3) receptor. Br J Pharmacol. 2014;171(13):3298–3312.
  • Maruyama T, Kanaji T, Nakade S, et al. 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release. J Biochem. 1997;122(3):498–505.
  • Missiaen L, Callewaert G, De Smedt H, et al. 2-Aminoethoxydiphenyl borate affects the inositol 1,4,5-trisphosphate receptor, the intracellular Ca2+ pump and the non-specific Ca2+ leak from the non-mitochondrial Ca2+ stores in permeabilized A7r5 cells. Cell Calcium. 2001;29(2):111–116.
  • Bilmen JG, Wootton LL, Godfrey RE, et al. Inhibition of SERCA Ca2+ pumps by 2-aminoethoxydiphenyl borate (2-APB). 2-APB reduces both Ca2+ binding and phosphoryl transfer from ATP, by interfering with the pathway leading to the Ca2+-binding sites. Eur J Biochem. 2002;269(15):3678–3687.
  • Goto J, Suzuki AZ, Ozaki S, et al. Two novel 2-aminoethyl diphenylborinate (2-APB) analogues differentially activate and inhibit store-operated Ca(2+) entry via STIM proteins. Cell Calcium. 2010;47(1):1–10.
  • Poitras M, Bernier S, Boulay G, et al. Interaction of benzene 1,2,4-trisphosphate with inositol 1,4,5-trisphosphate receptor and metabolizing enzymes. Eur J Pharmacol. 1993;244(3):203–210.
  • Ward SG, Mills SJ, Liu C, et al. D-myo-inositol 1,4,5-trisphosphate analogues modified at the 3-position inhibit phosphatidylinositol 3-kinase. J Biol Chem. 1995;270(20):12075–12084.
  • Vandeput F, Combettes L, Mills SJ, et al. Biphenyl 2,3ʹ,4,5ʹ,6-pentakisphosphate, a novel inositol polyphosphate surrogate, modulates Ca2+ responses in rat hepatocytes. Faseb J. 2007;21(7):1481–1491.
  • Riley AM, Laude AJ, Taylor CW, et al. Dimers of D-myo-inositol 1,4,5-trisphosphate: design, synthesis, and interaction with Ins(1,4,5)P3 receptors. Bioconjug Chem. 2004;15(2):278–289.
  • Mills SJ, Luyten T, Erneux C, et al. Multivalent benzene polyphosphate derivatives are non-Ca(2+)-mobilizing Ins(1,4,5)P3 receptor antagonists. Messenger (Los Angel). 2012;1(2):167–181.
  • Ghosh TK, Eis PS, Mullaney JM, et al. Competitive, reversible, and potent antagonism of inositol 1,4,5-trisphosphate-activated calcium release by heparin. J Biol Chem. 1988;263(23):11075–11079.
  • Willuweit B, Aktories K. Heparin uncouples alpha 2-adrenoceptors from the Gi-protein in membranes of human platelets. Biochem J. 1988;249(3):857–863.
  • Dasso LL, Taylor CW. Heparin and other polyanions uncouple alpha 1-adrenoceptors from G-proteins. Biochem J. 1991;280(Pt 3):791–795.
  • Bezprozvanny IB, Ondrias K, Kaftan E, et al. Activation of the calcium release channel (ryanodine receptor) by heparin and other polyanions is calcium dependent. Mol Biol Cell. 1993;4(3):347–352.
  • Guillemette G, Lamontagne S, Boulay G, et al. Differential effects of heparin on inositol 1,4,5-trisphosphate binding, metabolism, and calcium release activity in the bovine adrenal cortex. Mol Pharmacol. 1989;35(3):339–344.
  • Rossi AM, Sureshan KM, Riley AM, et al. Selective determinants of inositol 1,4,5-trisphosphate and adenophostin A interactions with type 1 inositol 1,4,5-trisphosphate receptors. Br J Pharmacol. 2010;161(5):1070–1085.
  • Iwai M, Michikawa T, Bosanac I, et al., Molecular basis of the isoform-specific ligand-binding affinity of inositol 1,4,5-trisphosphate receptors. J Biol Chem. 2007;282(17):12755–12764.
  • Hermosura MC, Takeuchi H, Fleig A, et al. InsP4 facilitates store-operated calcium influx by inhibition of InsP3 5-phosphatase. Nature. 2000;408(6813):735–740.
  • Safrany ST, Wilcox RA, Liu C, et al. Identification of partial agonists with low intrinsic activity at the inositol-1,4,5-trisphosphate receptor. Mol Pharmacol. 1993;43(4):499–503.
  • Liu C, al-Hafidh J, Westwick J, et al. Synthesis of 1L-chiro-inositol 2,3,5-trisphosphorothioate, the first partial agonist at the platelet myo-inositol 1,4,5-trisphosphate receptor. Bioorg Med Chem. 1994;2(4):253–257.
  • Murphy CT, Riley AM, Mills SJ, et al. myo-inositol 1,4,6-trisphosphorothioate and myo-inositol 1,3, 6-trisphosphorothioate: partial agonists with very low intrinsic activity at the platelet myo-inositol 1,4,5-trisphosphate receptor. Mol Pharmacol. 2000;57(3):595–601.
  • Keddie NS, Ye Y, Aslam T, et al. Development of inositol-based antagonists for the D-myo-inositol 1,4,5-trisphosphate receptor. Chem Commun (Camb). 2011;47(1):242–244.
  • Seo MD, Velamakanni S, Ishiyama N, et al. Structural and functional conservation of key domains in InsP3 and ryanodine receptors. Nature. 2012;483(7387):108–112.
  • Santulli G, Lewis D, Des Georges A, et al. Ryanodine Receptor Structure and Function in Health and Disease. Subcell Biochem. 2018;87:329–352.
  • Porta M, Zima AV, Nani A, et al. Single ryanodine receptor channel basis of caffeine’s action on Ca2+ sparks. Biophys J. 2011;100(4):931–938.
  • Luo X, Li W, Kunzel K, et al. IP3R-mediated compensatory mechanism for calcium handling in human induced pluripotent stem cell-derived cardiomyocytes with cardiac ryanodine receptor deficiency. Front Cell Dev Biol. 2020;8:772.
  • Ando H, Mizutani A, Matsu-ura T, et al., IRBIT, a novel inositol 1,4,5-trisphosphate (IP3) receptor-binding protein, is released from the IP3 receptor upon IP3 binding to the receptor. J Biol Chem. 2003;278(12):10602–10612.
  • Ando H, Mizutani A, Kiefer H, et al. IRBIT suppresses IP3 receptor activity by competing with IP3 for the common binding site on the IP3 receptor. Mol Cell. 2006;22(6):795–806.
  • Kawaai K, Mizutani A, Shoji H, et al. IRBIT regulates CaMKIIalpha activity and contributes to catecholamine homeostasis through tyrosine hydroxylase phosphorylation. Proc Natl Acad Sci U S A. 2015;112(17):5515–5520.
  • Kawaai K, Ando H, Satoh N, et al. Splicing variation of Long-IRBIT determines the target selectivity of IRBIT family proteins. Proc Natl Acad Sci U S A. 2017;114(15):3921–3926.
  • Shcheynikov N, Son A, Hong JH, et al. Intracellular Cl- as a signaling ion that potently regulates Na+/HCO3- transporters. Proc Natl Acad Sci U S A. 2015;112(3):E329–37.
  • Bonneau B, Ando H, Kawaai K, et al. IRBIT controls apoptosis by interacting with the Bcl-2 homolog, Bcl2l10, and by promoting ER-mitochondria contact. Elife. 2016;5. DOI:10.7554/eLife.19896
  • Yang D, Li Q, So I, et al. IRBIT governs epithelial secretion in mice by antagonizing the WNK/SPAK kinase pathway. J Clin Invest. 2011;121(3):956–965.
  • Inoue T, Kato K, Kohda K, et al. Type 1 inositol 1,4,5-trisphosphate receptor is required for induction of long-term depression in cerebellar Purkinje neurons. J Neurosci. 1998;18(14):5366–5373.
  • Khan AA, Soloski MJ, Sharp AH, et al. Lymphocyte apoptosis: mediation by increased type 3 inositol 1,4,5-trisphosphate receptor. Science. 1996;273(5274):503–507.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.