631
Views
4
CrossRef citations to date
0
Altmetric
Review

An update on the emerging approaches for histone deacetylase (HDAC) inhibitor drug discovery and future perspectives

, &
Pages 745-761 | Received 26 Nov 2020, Accepted 14 Jan 2021, Published online: 02 Feb 2021

References

  • Paris M, Porcelloni M, Binaschi M, et al. Histone Deacetylase Inhibitors: from bench to clinic. J Med Chem. 2008;51(6):1505–1529.
  • Glozak MA, Sengupta N, Zhang X, et al. Acetylation and deacetylation of non-histone proteins. Gene. 2005;363:15–23.
  • Xu WS, Parmigiani RB, Marks PA. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene. 2007;26(37):5541–5552.
  • de Ruijter AJ, van Gennip AH, Caron HN, et al. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003;370(Pt 3):737–749.
  • Voelter-Mahlknecht S, Ho AD, Mahlknecht U. Chromosomal organization and localization of the novel class IV human histone deacetylase 11 gene. Int J Mol Med. 2005;16(4):589–598.
  • Bernstein BE, Tong JK, Schreiber SL, Genomewide studies of histone deacetylase function in yeast. PNAS. 2000;97( 25):13708–13713.
  • Kelly RD, Cowley SM. The physiological roles of histone deacetylase (HDAC) 1 and 2: complex co-stars with multiple leading parts. Biochem Soc Trans. 2013;41(3):741–749.
  • Higashitsuji H, Higashitsuji H, Masuda T, et al. Enhanced deacetylation of p53 by the anti-apoptotic protein HSCO in association with histone deacetylase 1. J Biol Chem. 2007;282(18):13716–13725.
  • Martínez-Balbás MA, Bauer UM, Nielsen SJ, et al. Regulation of E2F1 activity by acetylation. Embo J. 2000;19(4):662–671.
  • Trivedi CM, Zhu W, Wang Q, et al. Hopx and Hdac2 interact to modulate Gata4 acetylation and embryonic cardiac myocyte proliferation. Dev Cell. 2010;19(3):450–459.
  • Emmett MJ, Lazar MA. Integrative regulation of physiology by histone deacetylase 3. Nat Rev Mol Cell Biol. 2019;20(2):102–115.
  • Waltregny D, Glénisson W, Tran SL, et al. Histone deacetylase HDAC8 associates with smooth muscle alpha-actin and is essential for smooth muscle cell contractility. Faseb J. 2005;19(8):966–968.
  • Waltregny D, de Leval L, Glénisson W, et al. Expression of Histone Deacetylase 8, a Class I Histone Deacetylase, is restricted to cells showing smooth muscle differentiation in normal human tissues. Am J Pathol. 2004;165(2):553–564.
  • Bolger TA, Yao T-P. Intracellular trafficking of Histone Deacetylase 4 regulates neuronal cell death. J Neurosci. 2005;25(41):9544.
  • Dequiedt F, Kasler H, Fischle W, et al. HDAC7, a thymus-specific class II histone deacetylase, regulates Nur77 transcription and TCR-mediated apoptosis. Immunity. 2003;18(5):687–698.
  • Chang S, McKinsey TA, Zhang CL, et al. Histone Deacetylases 5 and 9 Govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol. 2004;24(19):8467.
  • Kovacs JJ, Murphy PJ, Gaillard S, et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell. 2005;18(5):601–607.
  • Zhang Y, Li N, Caron C, et al. HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. Embo J. 2003;22(5):1168–1179.
  • Li T, Zhang C, Hassan S, et al. Histone deacetylase 6 in cancer. J Hematol Oncol. 2018;11(1):111.
  • Koeneke E, Witt O, Oehme I. HDAC family members intertwined in the regulation of autophagy: A druggable vulnerability in aggressive tumor entities. Cells. 2015;4(2):135–168.
  • Kao HY, Lee CH, Komarov A, et al. Isolation and characterization of mammalian HDAC10, a novel histone deacetylase. J Biol Chem. 2002;277(1):187–193.
  • Guardiola AR, Yao TP. Molecular cloning and characterization of a novel histone deacetylase HDAC10. J Biol Chem. 2002;277(5):3350–3356.
  • Yanginlar C, Logie C. HDAC11 is a regulator of diverse immune functions. Biochim Biophys Acta, Gene Regul Mech. 2018;1861(1):54–59.
  • Ho TCS, Chan AHY, Ganesan A. Thirty years of HDAC Inhibitors: 2020 Insight and Hindsight. J Med Chem. 2020;63(21):12460–12484. .
  • Marks PA, Breslow R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol. 2007;25(1):84–90.
  • Finn PW, Loza E, Carstensen E, The discovery and development of Belinostat. Successful Drug Discovery. 2016: pp.31–57.
  • Atadja P a. P., L., Discovery and development of Farydak (NVP-LBH589, Panobinostat) as an Anticancer Drug. Successful Drug Discovery, 2016; pp 59–88.
  • Jung M, Hoffmann K, Brosch G, et al. Analogues of trichosтatin a and trapoxin B as histone deacetylase inhibitors. Bioorg Med Chem Lett. 1997;7(13):1655–1658.
  • Lee J-H, Yao Y, Mahendran A, et al., Creation of a histone deacetylase 6 inhibitor and its biological effects [corrected]. PNAS. 2015;112( 39):12005–12010.
  • Chen K, Xu L, Wiest O. Computational exploration of Zinc Binding Groups for HDAC Inhibition. J Org Chem. 2013;78(10):5051–5055.
  • Chen Y, Wang X, Xiang W, et al. Development of Purine-based hydroxamic acid derivatives: potent Histone Deacetylase Inhibitors with marked in vitro and in Vivo antitumor activities. J Med Chem. 2016;59(11):5488–5504.
  • Bouchet S, Linot C, Ruzic D, et al. Extending cross metathesis to identify selective HDAC inhibitors: synthesis, biological activities, and modeling. ACS Med Chem Lett. 2019;10(6):863–868.
  • Negmeldin AT, Padige G, Bieliauskas AV, et al. Structural requirements of HDAC inhibitors: SAHA analogues modified at the C2 position display HDAC6/8 selectivity. ACS Med Chem Lett. 2017;8(3):281–286.
  • Soares Romeiro LA, da Costa Nunes JL, de Oliveira Miranda C, et al. Novel sustainable-by-design HDAC inhibitors for the treatment of alzheimer’s disease. ACS Med Chem Lett. 2019;10(4):671–676.
  • Reddy RG, Surineni G, Bhattacharya D, et al. Crafting carbazole-based Vorinostat and Tubastatin-A-like Histone Deacetylase (HDAC) inhibitors with potent in vitro and in Vivo neuroactive functions. ACS Omega. 2019;4(17):17279–17294.
  • Shouksmith AE, Shah F, Grimard ML, et al. Identification and characterization of AES-135, a Hydroxamic Acid-based HDAC inhibitor that prolongs survival in an orthotopic mouse model of pancreatic cancer. J Med Chem. 2019;62(5):2651–2665.
  • Ahmad M, Aga MA, Bhat JA, et al. Exploring Derivatives of quinazoline Alkaloid l-Vasicine as cap groups in the design and biological mechanistic evaluation of novel Antitumor Histone Deacetylase Inhibitors. J Med Chem. 2017;60(8):3484–3497.
  • Richardson PG, Laubach JP, Lonial S, et al. Panobinostat: a novel pan-deacetylase inhibitor for the treatment of relapsed or relapsed and refractory multiple myeloma. Expert Rev Anticancer Ther. 2015;15(7):737–748.
  • Zhou N, Moradei O, Raeppel S, et al. Discovery of N-(2-aminophenyl)-4-[(4-pyridin-3-ylpyrimidin-2-ylamino)methyl]benzamide (MGCD0103), an orally active histone deacetylase inhibitor. J Med Chem. 2008;51(14):4072–4075.
  • Saito A, Yamashita T, Mariko Y, et al. A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. PNAS. 1999; 96( 8):4592–4597.
  • Knipstein J, Gore L. Entinostat for treatment of solid tumors and hematologic malignancies. Expert Opin Investig Drugs. 2011;20(10):1455–1467.
  • Moradei OM, Mallais TC, Frechette S, et al. Novel Aminophenyl Benzamide-type Histone Deacetylase Inhibitors with enhanced potency and selectivity. J Med Chem. 2007;50(23):5543–5546.
  • Bretz AC, Parnitzke U, Kronthaler K, et al. Domatinostat favors the immunotherapy response by modulating the tumor immune microenvironment (TIME). J Immunother Cancer. 2019;7(1):294.
  • Eyre TA, Collins GP, Gupta A, et al. A phase 1 study to assess the safety, tolerability, and pharmacokinetics of CXD101 in patients with advanced cancer. Cancer. 2019;125(1):99–108.
  • Hiranaka S, Tega Y, Higuchi K, et al. Design, synthesis, and blood–brain barrier transport study of pyrilamine derivatives as Histone Deacetylase Inhibitors. ACS Med Chem Lett. 2018;9(9):884–888.
  • Cole KE, Dowling DP, Boone MA, et al. Structural basis of the antiproliferative activity of largazole, a depsipeptide inhibitor of the histone deacetylases. J Am Chem Soc. 2011;133(32):12474–12477.
  • Chen F, Chai H, Su M-B, et al. Potent and orally efficacious Bisthiazole-based Histone Deacetylase Inhibitors. ACS Med Chem Lett. 2014;5(6):628–633.
  • Gong C-J, Gao A-H, Zhang Y-M, et al. Design, synthesis and biological evaluation of bisthiazole-based trifluoromethyl ketone derivatives as potent HDAC inhibitors with improved cellular efficacy. Eur J Med Chem. 2016;112:81–90.
  • Auzzas L, Larsson A, Matera R, et al. Non-natural macrocyclic inhibitors of Histone Deacetylases: design, Synthesis, and Activity. J Med Chem. 2010;53(23):8387–8399.
  • Maolanon AR, Kristensen HM, Leman LJ, et al. Natural and synthetic macrocyclic inhibitors of the Histone Deacetylase Enzymes. Chembiochem. 2017;18(1):5–49.
  • West AC, Johnstone RW. New and emerging HDAC inhibitors for cancer treatment. J Clin Invest. 2014;124(1):30–39.
  • Bowers AA, Greshock TJ, West N, et al. Synthesis and conformation−activity relationships of the peptide isosteres of FK228 and Largazole. J Am Chem Soc. 2009;131(8):2900–2905.
  • Bhansali P, Hanigan CL, Casero RA, et al. Largazole and analogues with modified metal-binding motifs targeting histone deacetylases: synthesis and biological evaluation. J Med Chem. 2011;54(21):7453–7463.
  • Souto JA, Vaz E, Lepore I, et al. Synthesis and biological characterization of the histone deacetylase inhibitor largazole and C7- modified analogues. J Med Chem. 2010;53(12):4654–4667.
  • Li X, Tu Z, Li H, et al. Biological evaluation of new largazole analogues: alteration of macrocyclic scaffold with click chemistry. ACS Med Chem Lett. 2013;4(1):132–136.
  • Itazaki H, Nagashima K, Sugita K, et al. Isolation and structural elucidation of new cyclotetrapeptides, trapoxins A and B, having detransformation activities as antitumor agents. J Antibiot (Tokyo). 1990;43(12):1524–1532. .
  • Porter NJ, Christianson DW. Binding of the Microbial Cyclic Tetrapeptide Trapoxin A to the Class I Histone Deacetylase HDAC8. ACS Chem Biol. 2017;12(9):2281–2286.
  • Wen S, Carey KL, Nakao Y, et al. Total synthesis of Azumamide A and Azumamide E, evaluation as Histone Deacetylase Inhibitors, and design of a more potent analogue. Org Lett. 2007;9(6):1105–1108.
  • Kitir B, Maolanon AR, Ohm RG, et al. Chemical editing of Macrocyclic natural products and kinetic profiling reveal slow, tight-binding Histone Deacetylase Inhibitors with Picomolar Affinities. Biochemistry. 2017;56(38):5134–5146.
  • Vickers CJ, Olsen CA, Leman LJ, et al. Discovery of HDAC inhibitors that lack an active site Zn2+-binding functional group. ACS Med Chem Lett. 2012;3(6):505–508.
  • Villadsen JS, Kitir B, Wich K, et al. An azumamide C analogue without the zinc-binding functionality. MedChemComm. 2014;5(12):1849–1855.
  • Roche J, Bertrand P. Inside HDACs with more selective HDAC inhibitors. Eur J Med Chem. 2016;121:451–483.
  • Balasubramanian S, Verner E, Buggy JJ. Isoform-specific histone deacetylase inhibitors: the next step? Cancer Lett. 2009;280(2):211–221.
  • Witt O, Deubzer HE, Milde T, et al. HDAC family: what are the cancer relevant targets? Cancer Lett. 2009;277(1):8–21.
  • Bradner JE, West N, Grachan ML, et al. Chemical phylogenetics of histone deacetylases. Nat Chem Biol. 2010;6(3):238–243.
  • Zhao C, Dong H, Xu Q, et al. Histone deacetylase (HDAC) inhibitors in cancer: a patent review (2017-present). Expert Opin Ther Pat. 2020;30(4):263–274.
  • Zwinderman M, de Weerd S, Dekker F. Targeting HDAC complexes in Asthma and COPD. Epigenomes. 2019;3(3):19.
  • Nijhawan P, Behl T, Khullar G, et al. HDAC in obesity: A critical insight. Obesity Medicine. 2020;18:100212.
  • Ellmeier W, Seiser C. Histone deacetylase function in CD4(+) T cells. Nat Rev Immunol. 2018;18(10):617–634.
  • Lyu X, Hu M, Peng J, et al. HDAC inhibitors as antifibrotic drugs in cardiac and pulmonary fibrosis. Ther Adv Chronic Dis. 2019;10:204062231986269.
  • Liu J, Kelly J, Yu W, et al. Selective Class I HDAC inhibitors based on Aryl Ketone Zinc binding induce HIV-1 protein for clearance. ACS Med Chem Lett. 2020;11(7):1476–1483.
  • Li X, Zhang Y, Jiang Y, et al. Selective HDAC inhibitors with potent oral activity against leukemia and colorectal cancer: design, structure-activity relationship and anti-tumor activity study. Eur J Med Chem. 2017;134:185–206.
  • Li X, Peterson YK, Inks ES, et al. Class I HDAC inhibitors display different Antitumor Mechanism in Leukemia and Prostatic cancer cells depending on their p53 status. J Med Chem. 2018;61(6):2589–2603.
  • Tandon N, Ramakrishnan V, Kumar SK. Clinical use and applications of histone deacetylase inhibitors in multiple myeloma. Clin Pharmacol. 2016;8:35–44.
  • Bresciani A, Ontoria JM, Biancofiore I, et al. Improved selective class I HDAC and novel selective HDAC3 inhibitors: beyond Hydroxamic Acids and Benzamides. ACS Med Chem Lett. 2019;10(4):481–486.
  • Chou CJ, Herman D, Gottesfeld JM. Pimelic diphenylamide 106 is a slow, tight-binding inhibitor of class I histone deacetylases. J Biol Chem. 2008;283(51):35402–35409.
  • Cao F, Zwinderman MRH, Dekker FJ. The process and strategy for developing selective Histone Deacetylase 3 Inhibitors. Molecules. 2018;23(3):551.
  • McClure JJ, Zhang C, Inks ES, et al. Development of Allosteric Hydrazide-Containing Class I Histone Deacetylase Inhibitors for use in Acute Myeloid Leukemia. J Med Chem. 2016;59(21):9942–9959.
  • Luckhurst CA, Breccia P, Stott AJ, et al. Potent, selective, and CNS-Penetrant Tetrasubstituted Cyclopropane class Iia Histone Deacetylase (HDAC) Inhibitors. ACS Med Chem Lett. 2016;7(1):34–39.
  • Géraldy M, Morgen M, Sehr P, et al. Selective inhibition of Histone Deacetylase 10: hydrogen Bonding to the Gatekeeper Residue is Implicated. J Med Chem. 2019;62(9):4426–4443.
  • Herbst-Gervasoni CJ, Steimbach RR, Morgen M, et al. Structural basis for the selective inhibition of HDAC10, the Cytosolic Polyamine Deacetylase. ACS Chem Biol. 2020;15(8):2154–2163.
  • Sellmer A, Stangl H, Beyer M, et al. Marbostat-100 defines a new class of potent and selective Antiinflammatory and Antirheumatic Histone Deacetylase 6 inhibitors. J Med Chem. 2018;61(8):3454–3477.
  • Leonhardt M, Sellmer A, Krämer OH, et al. Design and biological evaluation of tetrahydro-β-carboline derivatives as highly potent histone deacetylase 6 (HDAC6) inhibitors. Eur J Med Chem. 2018;152:329–357.
  • Thole TM, Lodrini M, Fabian J, et al. Neuroblastoma cells depend on HDAC11 for mitotic cell cycle progression and survival. Cell Death Dis. 2017;8(3):e2635–e2635.
  • Deubzer HE, Schier MC, Oehme I, et al. HDAC11 is a novel drug target in carcinomas. Int J Cancer. 2013;132(9):2200–2208.
  • Bagchi RA, Ferguson BS, Stratton MS, et al. HDAC11 suppresses the thermogenic program of adipose tissue via BRD2. JCI Insight. 2018;3(15):15.
  • Sun L, Marin de Evsikova C, Bian K, et al. Programming and regulation of metabolic homeostasis by HDAC11. EBioMedicine. 2018;33:157–168.
  • Cao J, Sun L, Aramsangtienchai P, et al., HDAC11 regulates type I interferon signaling through defatty-acylation of SHMT2. PNAS. 2019;116( 12):5487–5492.
  • Sun L, Telles E, Karl M. Loss of HDAC11 ameliorates clinical symptoms in a multiple sclerosis mouse model. Life Sci Alliance. 2018;1(5):e201800039.
  • Moreno-Yruela C, Galleano I, Madsen AS, et al. Histone deacetylase 11 Is an ε-N-Myristoyllysine Hydrolase. Cell Chem Biol. 2018;25(7):849–856.e8.
  • Kutil Z, Novakova Z, Meleshin M, et al. Histone deacetylase 11 Is a fatty-acid deacylase. ACS Chem Biol. 2018;13(3):685–693.
  • Son SI, Cao J, Zhu C-L, et al. Activity-Guided Design of HDAC11-Specific Inhibitors. ACS Chem Biol. 2019;14(7):1393–1397.
  • Anighoro A, Bajorath J, Rastelli G. Polypharmacology: challenges and opportunities in drug discovery. J Med Chem. 2014;57(19):7874–7887.
  • Haber DA, Gray NS, Baselga J. The evolving war on cancer. Cell. 2011;145(1):19–24.
  • Trusolino L, Bertotti A. Compensatory pathways in oncogenic kinase signaling and resistance to targeted therapies: six degrees of separation. Cancer Discov. 2012;2(10):876–880.
  • Bayat Mokhtari R, Homayouni TS, Baluch N, et al. Combination therapy in combating cancer. Oncotarget. 2017;8(23):38022–38043.
  • Blagosklonny MV. Overcoming limitations of natural anticancer drugs by combining with artificial agents. Trends Pharmacol Sci. 2005;26(2):77–81.
  • Choudhary GS, Al-Harbi S, Mazumder S, et al. MCL-1 and BCL-xL-dependent resistance to the BCL-2 inhibitor ABT-199 can be overcome by preventing PI3K/AKT/mTOR activation in lymphoid malignancies. Cell Death Dis. 2015;6(1):e1593.
  • Singh H, Kinarivala N, Sharma S. Multi-targeting Anticancer Agents: rational approaches, synthetic routes and structure activity relationship. Anticancer Agents Med Chem. 2019;19(7):842–874.
  • Rotella DP. Phosphodiesterase 5 inhibitors: current status and potential applications. Nat Rev Drug Discov. 2002;1(9):674–682.
  • Lucas KA, Pitari GM, Kazerounian S, et al. Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev. 2000;52(3):375–414.
  • Ugarte A, Gil-Bea F, García-Barroso C, et al. Decreased levels of guanosine 3ʹ, 5ʹ-monophosphate (cGMP) in cerebrospinal fluid (CSF) are associated with cognitive decline and amyloid pathology in Alzheimer’s disease. Neuropathol Appl Neurobiol. 2015;41(4):471–482.
  • García-Barroso C, Ricobaraza A, Pascual-Lucas M, et al. Tadalafil crosses the blood-brain barrier and reverses cognitive dysfunction in a mouse model of AD. Neuropharmacology. 2013;64:114–123.
  • García-Osta A, Cuadrado-Tejedor M, García-Barroso C, et al. Phosphodiesterases as therapeutic targets for Alzheimer’s disease. ACS Chem Neurosci. 2012;3(11):832–844.
  • Puzzo D, Vitolo O, Trinchese F, et al. Amyloid-beta peptide inhibits activation of the nitric oxide/cGMP/cAMP-responsive element-binding protein pathway during hippocampal synaptic plasticity. J Neurosci. 2005;25(29):6887–6897.
  • Singh N, Patra S. Phosphodiesterase 9: insights from protein structure and role in therapeutics. Life Sci. 2014;106(1–2):1–11.
  • van Staveren WC, Glick J, Markerink-van Ittersum M, et al. Cloning and localization of the cGMP-specific phosphodiesterase type 9 in the rat brain. J Neurocytol. 2002;31(8–9):729–741.
  • Hutson PH, Finger EN, Magliaro BC, et al. The selective phosphodiesterase 9 (PDE9) inhibitor PF-04447943 (6-[(3S,4S)-4-methyl-1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-1-(tetrahydro-2H-pyran-4-yl)-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one) enhances synaptic plasticity and cognitive function in rodents. Neuropharmacology. 2011;61(4):665–676.
  • Benito E, Urbanke H, Ramachandran B, et al. HDAC inhibitor-dependent transcriptome and memory reinstatement in cognitive decline models. J Clin Invest. 2015;125(9):3572–3584.
  • Ding H, Dolan PJ, Johnson GV. Histone deacetylase 6 interacts with the microtubule-associated protein tau. J Neurochem. 2008;106(5):2119–2130.
  • Guan JS, Haggarty SJ, Giacometti E, et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature. 2009;459(7243):55–60.
  • Rabal O, Sánchez-Arias JA, Cuadrado-Tejedor M, et al. Synthesis, and biological evaluation of first-in-class dual acting histone deacetylases (HDACs) and Phosphodiesterase 5 (PDE5) inhibitors for the treatment of Alzheimer’s disease. J Med Chem. 2016;59(19):8967–9004.
  • Rabal O, Sánchez-Arias JA, Cuadrado-Tejedor M, et al. Discovery of in Vivo chemical probes for treating alzheimer’s disease: dual Phosphodiesterase 5 (PDE5) and class I Histone Deacetylase selective inhibitors. ACS Chem Neurosci. 2019;10(3):1765–1782.
  • Rabal O, Sánchez-Arias JA, Cuadrado-Tejedor M, et al. Design, synthesis, biological evaluation and in vivo testing of dual phosphodiesterase 5 (PDE5) and histone deacetylase 6 (HDAC6)-selective inhibitors for the treatment of Alzheimer’s disease. Eur J Med Chem. 2018;150:506–524.
  • Rabal O, Sánchez-Arias JA, Cuadrado-Tejedor M, et al. Multitarget approach for the treatment of Alzheimer’s disease: inhibition of Phosphodiesterase 9 (PDE9) and Histone Deacetylases (HDACs) covering diverse selectivity profiles. ACS Chem Neurosci. 2019;10(9):4076–4101.
  • Garces AE, Stocks MJ. Class 1 PI3K clinical candidates and recent inhibitor design strategies: a medicinal chemistry perspective. J Med Chem. 2019;62(10):4815–4850.
  • Zhao HF, Wang J, Shao W, et al. Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: current preclinical and clinical development. Mol Cancer. 2017;16(1):100.
  • Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov. 2014;13(2):140–156.
  • Stark AK, Sriskantharajah S, Hessel EM, et al. PI3K inhibitors in inflammation, autoimmunity and cancer. Curr Opin Pharmacol. 2015;23:82–91.
  • Knight ZA, Gonzalez B, Feldman ME, et al. A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell. 2006;125(4):733–747.
  • Huang X, Liu G, Guo J, et al. The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci. 2018;14(11):1483–1496.
  • Jackson SP, Schoenwaelder SM. Antithrombotic phosphoinositide 3-kinase β inhibitors in humans: a ‘shear’ delight! J Thromb Haemost. 2012;10(10):2123–2126.
  • Rowan WC, Smith JL, Affleck K, et al. Targeting phosphoinositide 3-kinase δ for allergic asthma. Biochem Soc Trans. 2012;40(1):240–245.
  • Cushing TD, Metz DP, Whittington DA, et al. PI3Kδ and PI3Kγ as targets for autoimmune and inflammatory diseases. J Med Chem. 2012;55(20):8559–8581.
  • Elkaim E, Neven B, Bruneau J, et al. Clinical and immunologic phenotype associated with activated phosphoinositide 3-kinase δ syndrome 2: A cohort study. J Allergy Clin Immunol. 2016;138(1):210–218.e9.
  • Conte E, Gili E, Fruciano M, et al. PI3K p110γ overexpression in idiopathic pulmonary fibrosis lung tissue and fibroblast cells: in vitro effects of its inhibition. Lab Invest. 2013;93(5):566–576.
  • Zhang K, Lai F, Lin S, et al. Design, synthesis, biological evaluation of 4-methyl quinazoline derivatives as anticancer agents simultaneously targeting Phosphoinositide 3-Kinases and Histone Deacetylases. J Med Chem. 2019;62(15):6992–7014.
  • Thakur A, Tawa GJ, Henderson MJ, et al. Design, synthesis, and biological evaluation of quinazolin-4-one-based hydroxamic acids as dual PI3K/HDAC inhibitors. J Med Chem. 2020;63(8):4256–4292.
  • Younes A, Berdeja JG, Patel MR, et al. Safety, tolerability, and preliminary activity of CUDC-907, a first-in-class, oral, dual inhibitor of HDAC and PI3K, in patients with relapsed or refractory lymphoma or multiple myeloma: an open-label, dose-escalation, phase 1 trial. Lancet Oncol. 2016;17(5):622–631.
  • Li X, Su Y, Madlambayan G, et al. Antileukemic activity and mechanism of action of the novel PI3K and histone deacetylase dual inhibitor CUDC-907 in acute myeloid leukemia. Haematologica. 2019;104(11):2225–2240.
  • Kotian S, Zhang L, Boufraqech M, et al. Dual Inhibition of HDAC and Tyrosine Kinase signaling pathways with CUDC-907 inhibits thyroid cancer growth and metastases. Clin Cancer Res off J Am Assoc Cancer Res. 2017;23(17):5044–5054.
  • Okabe S, Tanaka Y, Moriyama M, et al. Effect of dual inhibition of histone deacetylase and phosphatidylinositol-3 kinase in Philadelphia chromosome-positive leukemia cells. Cancer Chemother Pharmacol. 2020;85(2):401–412.
  • O’Shea JJ, Plenge R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity. 2012;36(4):542–550.
  • Laurence A, Pesu M, Silvennoinen O, et al. JAK Kinases in health and Disease: an Update. Open Rheumatol J. 2012;6(1):232–244.
  • Shuai K, Liu B. Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol. 2003;3(11):900–911.
  • Gao SM, Chen CQ, Wang LY, et al. Histone deacetylases inhibitor sodium butyrate inhibits JAK2/STAT signaling through upregulation of SOCS1 and SOCS3 mediated by HDAC8 inhibition in myeloproliferative neoplasms. Exp Hematol. 2013;41(3):261–70.e4.
  • Quintás-Cardama A, Kantarjian H, Estrov Z, et al. Therapy with the histone deacetylase inhibitor pracinostat for patients with myelofibrosis. Leuk Res. 2012;36(9):1124–1127.
  • Liu J, Jin L, Chen X, et al. USP12 translocation maintains interferon antiviral efficacy by inhibiting CBP acetyltransferase activity. PLoS Pathog. 2020;16(1):e1008215–e1008215.
  • Hansen BK, Gupta R, Baldus L, et al. Analysis of human acetylation stoichiometry defines mechanistic constraints on protein regulation. Nat Commun. 2019;10(1): 1055–1055.
  • Krämer OH, Knauer SK, Greiner G, et al. A phosphorylation-acetylation switch regulates STAT1 signaling. Genes Dev. 2009;23(2):223–235.
  • Yang EG, Mustafa N, Tan EC, et al. Design and synthesis of Janus Kinase 2 (JAK2) and Histone Deacetlyase (HDAC) bispecific inhibitors based on Pacritinib and evidence of dual pathway inhibition in hematological cell lines. J Med Chem. 2016;59(18):8233–8262.
  • Yao L, Mustafa N, Tan EC, et al. Design and synthesis of ligand efficient dual inhibitors of Janus Kinase (JAK) and Histone Deacetylase (HDAC) based on Ruxolitinib and Vorinostat. J Med Chem. 2017;60(20):8336–8357.
  • Huang Y, Dong G, Li H, et al. Discovery of Janus Kinase 2 (JAK2) and Histone Deacetylase (HDAC) dual inhibitors as a novel strategy for the combinational treatment of leukemia and invasive fungal infections. J Med Chem. 2018;61(14):6056–6074.
  • Chu-Farseeva Y, Mustafa N, Poulsen A, et al. Design and synthesis of potent dual inhibitors of JAK2 and HDAC based on fusing the pharmacophores of XL019 and vorinostat. Eur J Med Chem. 2018;158:593–619.
  • Shi J, Vakoc CR. The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol Cell. 2014;54(5):728–736.
  • Sanchez R, Meslamani J, Zhou -M-M. The bromodomain: from epigenome reader to druggable target. Biochim Biophys Acta Gene Regul Mech. 2014;1839(8):676–685.
  • Vidler LR, Brown N, Knapp S, et al. Druggability analysis and structural classification of bromodomain Acetyl-lysine binding sites. J Med Chem. 2012;55(17):7346–7359.
  • Donati B, Lorenzini E, Ciarrocchi A. BRD4 and Cancer: going beyond transcriptional regulation. Mol Cancer. 2018;17(1):164.
  • Chesi M, Matthews GM, Garbitt VM, et al. Drug response in a genetically engineered mouse model of multiple myeloma is predictive of clinical efficacy. Blood. 2012;120(2):376–385.
  • Atkinson SJ, Soden PE, Angell DC, et al. The structure based design of dual HDAC/BET inhibitors as novel epigenetic probes. MedChemComm. 2014;5(3):342–351.
  • Zhang Z, Hou S, Chen H, et al. Targeting epigenetic reader and eraser: rational design, synthesis and in vitro evaluation of dimethylisoxazoles derivatives as BRD4/HDAC dual inhibitors. Bioorg Med Chem Lett. 2016;26(12):2931–2935.
  • Shao M, He L, Zheng L, et al. Structure-based design, synthesis and in vitro antiproliferative effects studies of novel dual BRD4/HDAC inhibitors. Bioorg Med Chem Lett. 2017;27(17):4051–4055.
  • Amemiya S, Yamaguchi T, Hashimoto Y, et al. Synthesis and evaluation of novel dual BRD4/HDAC inhibitors. Bioorg Med Chem. 2017;25(14):3677–3684.
  • Cheng G, Wang Z, Yang J, et al. Design, synthesis and biological evaluation of novel indole derivatives as potential HDAC/BRD4 dual inhibitors and anti-leukemia agents. Bioorg Chem. 2019;84:410–417.
  • He S, Dong G, Li Y, et al. Potent dual BET/HDAC inhibitors for efficient treatment of pancreatic cancer. Angew Chem. 2020;59(8):3028–3032.
  • Pan Z, Li X, Wang Y, et al. Discovery of Thieno[2,3-d]pyrimidine-based hydroxamic acid derivatives as bromodomain-containing protein 4/Histone Deacetylase dual inhibitors induce autophagic cell death in colorectal carcinoma cells. J Med Chem. 2020;63(7):3678–3700.
  • Liu T, Wan Y, Xiao Y, et al. Dual-target inhibitors based on HDACs: novel antitumor agents for cancer therapy. J Med Chem. 2020;63(17):8977–9002.
  • Chen W, Dong G, Wu Y, et al. Dual NAMPT/HDAC inhibitors as a new strategy for multitargeting antitumor drug discovery. ACS Med Chem Lett. 2018;9(1):34–38.
  • Lu D, Yan J, Wang L, et al. Design, synthesis, and biological evaluation of the first c-Met/HDAC inhibitors based on pyridazinone derivatives. ACS Med Chem Lett. 2017;8(8):830–834.
  • Fang K, Dong G, Li Y, et al. Discovery of novel Indoleamine 2,3-Dioxygenase 1 (IDO1) and Histone Deacetylase (HDAC) Dual Inhibitors. ACS Med Chem Lett. 2018;9(4):312–317.
  • He S, Dong G, Wu S, et al. Small molecules simultaneously inhibiting p53-murine double minute 2 (MDM2) interaction and histone Deacetylases (HDACs): discovery of novel multitargeting antitumor agents. J Med Chem. 2018;61(16):7245–7260.
  • Romanelli A, Stazi G, Fioravanti R, et al. Design of first-in-class dual EZH2/HDAC Inhibitor: biochemical activity and biological evaluation in cancer cells. ACS Med Chem Lett. 2020;11(5):977–983.
  • Zhou R, Fang S, Zhang M, et al. Design, synthesis, and bioactivity evaluation of novel Bcl-2/HDAC dual-target inhibitors for the treatment of multiple myeloma. Bioorg Med Chem Lett. 2019;29(3):349–352.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.