1,718
Views
14
CrossRef citations to date
0
Altmetric
Perspective

Critical assessment of AI in drug discovery

&
Pages 937-947 | Received 11 Jan 2021, Accepted 08 Apr 2021, Published online: 19 Apr 2021

References

  • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–444.
  • Walters WP. Virtual chemical libraries. J Med Chem. 2019;62:1116–1124.
  • Elton DC, Boukouvalas Z, Fuge MD, et al. Deep learning for molecular design—a review of the state of the art, Mol. Syst Des Eng. 2019;4:828–849.
  • Bender A, Cortés-Ciriano I. Artificial intelligence in drug discovery: what is realistic, what are illusions? part 1: ways to make an impact, and why we are not there yet. Drug Discov Today. 2021;2(26):511–524.
  • Bender A, Cortes-Ciriano I. Artificial intelligence in drug discovery: what is realistic, what are illusions? part 2: a discussion of chemical and biological data. Drug Discov Today. 2021; In press
  • Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18(6):463–477.
  • Cova TFGG, Pais AACC. Deep learning for deep chemistry: optimizing the prediction of chemical patterns. Front Chem. 2019;7:809.
  • Cavasotto CN, Di Filippo JI. Artificial intelligence in the early stages of drug discovery, Arch. Biochem Biophys. 2021;698:108730.
  • Zhavoronkov A, Vanhaelen Q, Oprea TI. Will artificial intelligence for drug discovery impact clinical pharmacology? Clin Pharmacol Ther. 2020;107:780–785.
  • Hu Y, Zhao T, Zhang N, et al. A review of recent advances and research on drug target identification methods. Curr Drug Metab. 2019;20:209–216.
  • Dral PO. Quantum chemistry in the age of machine learning. J Phys Chem Lett. 2020;11:2336–2347.
  • Zubatiuk T, Isayev O. Development of multimodal machine learning potentials: toward a physics-aware artificial intelligence. Acc Chem Res. 2021;54(7):1575–1585.
  • Shen C, Ding J, Wang Z, et al. From machine learning to deep learning: advances in scoring functions for protein–ligand docking, Wiley Interdiscip. Rev Comput Mol Sci. 2020;10:e1429.
  • Pérez-Sianes J, Pérez-Sánchez H, Díaz F. Virtual screening meets deep learning. Curr Comput Aided Drug Des. 2019;15:6–28.
  • Chuang KV, Gunsalus LM, Keiser MJ. Learning molecular representations for medicinal chemistry. J Med Chem. 2020;63:8705–8722.
  • David L, Thakkar A, Mercado R, et al. Molecular representations in AI-driven drug discovery: a review and practical guide. J Cheminform. 2020;12:56.
  • Reker D, Schneider G. Active-learning strategies in computer-assisted drug discovery. Drug Discov Today. 2015;20:458–465.
  • Cherkasov A, Muratov EN, Fourches D, et al. QSAR modeling: where have you been? Where are you going to? J Med Chem. 2014;57:4977–5010.
  • Dahl GE, Jaitly N, Salakhutdinov R. Multi-task neural networks for QSAR predictions. arXiv. 2014; [stat.ML]. Available from: https://arxiv.org/abs/1406.1231
  • Lusci A, Pollastri G, Baldi P. Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J Chem Inf Model. 2013;53:1563–1575.
  • Unterthiner T, Mayr A, Klambauer G et al., Deep learning as an opportunity in virtual screening, in Proceedings of the deep learning workshop at NIPS, 27, Montreal (2014), pp. 1–9.
  • Bjerrum EJ. SMILES enumeration as data augmentation for neural network modeling of molecules. arXiv. 2017; [cs.LG] Availabel from: https://arxiv.org/abs/1703.07076
  • Goh GB, Hodas NO, Siegel C, et al. SMILES2Vec: an interpretable general-purpose deep neural network for predicting chemical properties. arXiv. 2017; [stat.ML]. Available from: https://arxiv.org/abs/1712.02034
  • Jastrzębski S, Leśniak D, Czarnecki WM. Learning to SMILE(S). arXiv. 2016; [cs.CL]. Available from: https://arxiv.org/abs/1602.06289
  • Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci. 1988;28:31–36.
  • Merkwirth C, Lengauer T. Automatic generation of complementary descriptors with molecular graph networks. J Chem Inf Model. 2005;45:1159–1168.
  • Kearnes S, McCloskey K, Berndl M, et al. Molecular graph convolutions: moving beyond fingerprints. J Comput Aided Mol Des. 2016;30:595–608.
  • Duvenaud DK, Maclaurin D, Iparraguirre J, et al. Convolutional networks on graphs for learning molecular fingerprints. In: Cortes C, Lawrence ND, Lee DD, et al., editors. Advances in Neural Information Processing Systems 28. Curran Associates, Inc. Red Hook, NY; 2015. p. 2224–2232.
  • Feinberg E, Joshi EM, Pande VS, et al. Improvement in ADMET prediction with multitask deep featurization. J Med Chem. 2020;63(16):8835–8848.
  • Yang K, Swanson K, Jin W, et al. Analyzing learned molecular representations for property prediction. J Chem Inf Model. 2019;59:3370–3388.
  • Lo Y-C, Rensi SE, Torng W, et al. Machine learning in chemoinformatics and drug discovery. Drug Discov Today. 2018;23:1538–1546.
  • Axelrod S, Gomez-Bombarelli R. Molecular machine learning with conformer ensembles. arXiv. 2020; [cs.LG] Available from: https://arxiv.org/abs/2012.08452
  • Zankov DV, Matveieva M, Nikonenko A, et al. QSAR modeling based on conformation ensembles using a multi-instance learning approach. ChemRxiv. 2020; Available from: http://dx.doi.org/10.26434/chemrxiv.13456277
  • Van Westen GJP, Wegner JK, IJzerman AP, et al. Proteochemometric modeling as a tool to design selective compounds and for extrapolating to novel targets. Medchemcomm. 2011;2:16–30.
  • Lenselink EB, Ten Dijke N, Bongers B, et al. Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set. J Cheminform. 2017;9:45.
  • Torng W, Altman RB. Graph convolutional neural networks for predicting drug-target interactions. J Chem Inf Model. 2019;59:4131–4149.
  • Sánchez-Rodríguez A, Pérez-Castillo Y, Schürer SC, et al. From flamingo dance to (desirable) drug discovery: a nature-inspired approach. Drug Discov Today. 2017;22:1489–1502.
  • Zanni R, Gálvez-Llompart M, Gálvez J, et al. QSAR multi-target in drug discovery: a review. Curr Comput Aided Drug Des. 2014;10:129–136.
  • Speck-Planche A, Kleandrova VV, Cordeiro MNDS. Chemoinformatics for rational discovery of safe antibacterial drugs: simultaneous predictions of biological activity against streptococci and toxicological profiles in laboratory animals. Bioorg Med Chem. 2013;21:2727–2732.
  • Speck-Planche A, Kleandrova VV, Luan F, et al. Rational drug design for anti-cancer chemotherapy: multi-target QSAR models for the in silico discovery of anti-colorectal cancer agents. Bioorg Med Chem. 2012;20:4848–4855.
  • Concu R, Kleandrova VV, Speck-Planche A, et al. Probing the toxicity of nanoparticles: a unified in silico machine learning model based on perturbation theory. Nanotoxicology. 2017;11:891–906.
  • Ramsundar B, Kearnes S, Riley P, et al. Massively Multitask Networks for Drug Discovery. arXiv. 2015; [stat.ML]. Available from: https://arxiv.org/abs/1502.02072
  • Ramsundar B, Liu B, Wu Z, et al. Is multitask deep learning practical for pharma? J Chem Inf Model. 2017;57:2068–2076.
  • Ma J, Sheridan RP, Liaw A, et al. Deep neural nets as a method for quantitative structure-activity relationships. J Chem Inf Model. 2015;55:263–274.
  • Mayr A, Klambauer G, Unterthiner T, et al. DeepTox: toxicity prediction using deep learning. Front Environ Sci Eng China. 2016;3:80.
  • Wenzel J, Matter H, Schmidt F. Predictive multitask deep neural network models for ADME-tox properties: learning from large data sets. J Chem Inf Model. 2019;59:1253–1268.
  • Xu Y, Ma J, Liaw A, et al. Demystifying multitask deep neural networks for quantitative structure–activity relationships. J Chem Inf Model. 2017;57:2490–2504.
  • Mervin LH, Johansson S, Semenova E, et al. Uncertainty quantification in drug design. Drug Discov Today. 2020;26,474–489.
  • Cortés-Ciriano I, Bender A. Deep confidence: a computationally efficient framework for calculating reliable prediction errors for deep neural networks. J Chem Inf Model. 2019;59:1269–1281.
  • Sheridan RP. Three useful dimensions for domain applicability in QSAR models using random forest. J Chem Inf Model. 2012;52:814–823.
  • Baumann D, Baumann K. Reliable estimation of prediction errors for QSAR models under model uncertainty using double cross-validation. J Cheminform. 2014;6:47.
  • Hirschfeld L, Swanson K, Yang K, et al. Uncertainty quantification using neural networks for molecular property prediction. J Chem Inf Model. 2020;60:3770–3780.
  • Reker D, Schneider P, Schneider G, et al. Active learning for computational chemogenomics. Future Med Chem. 2017;9:381–402.
  • Reker D. Practical considerations for active machine learning in drug discovery. Drug Discov Today Technol. 2020:73–79.
  • Shoichet BK. Virtual screening of chemical libraries. Nature. 2004;432:862–865.
  • Lyu J, Wang S, Balius TE, et al. Ultra-large library docking for discovering new chemotypes. Nature. 2019;566:224–229.
  • Sulimov VB, Kutov DC, Sulimov AV. Advances in Docking. Curr Med Chem. 2019;26:7555–7580.
  • Pagadala NS, Syed K, Tuszynski J. Software for molecular docking: a review. Biophys Rev. 2017;9:91–102.
  • Wang L, Wu Y, Deng Y, et al. Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J Am Chem Soc. 2015;137:2695–2703.
  • Gentile F, Agrawal V, Hsing M, et al. Deep docking: a deep learning platform for augmentation of structure based drug discovery. ACS Cent Sci. 2020;6:939–949.
  • Konze KD, Bos PH, Dahlgren MK, et al. Reaction-based enumeration, active learning, and free energy calculations to rapidly explore synthetically tractable chemical space and optimize potency of cyclin-dependent kinase 2 inhibitors. J Chem Inf Model. 2019;59:3782–3793.
  • Xue D, Gong Y, Yang Z, et al. Advances and challenges in deep generative models for de novo molecule generation. Wiley Interdiscip Rev Comput Mol Sci. 2019;9:e1395.
  • Vanhaelen Q, Lin Y-C, Zhavoronkov A. The advent of generative chemistry. ACS Med Chem Lett. 2020;11:1496–1505.
  • Gómez-Bombarelli R, Wei JN, Duvenaud D, et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci. 2018;4:268–276.
  • Segler MHS, Kogej T, Tyrchan C, et al. Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent Sci. 2017;4:120–131.
  • Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de novo drug design. Sci Adv. 2018;4: eaap7885.
  • Olivecrona M, Blaschke T, Engkvist O, et al. Molecular de-novo design through deep reinforcement learning. J Cheminform. 2017;9:48.
  • Jin W, Barzilay R, Jaakkola T, Junction tree variational autoencoder for molecular graph generation, in Proceedings of the 35th International Conference on Machine Learning, Stockhom, Sweeden. 80 (2018), pp. 2323–2332.
  • Jin W, Barzilay R, Jaakkola T. Hierarchical generation of molecular graphs using structural Motifs. arXiv. 2020; [cs.LG] Available from:https://arxiv.org/abs/2002.03230
  • Ståhl N, Falkman G, Karlsson A, et al. Deep reinforcement learning for multiparameter optimization in de novo drug design. J Chem Inf Model. 2019;59:3166–3176.
  • Jin W, Barzilay R, Jaakkola T. Multi-objective molecule generation using interpretable substructures. arXiv. 2020; [cs.LG. Available from: https://arxiv.org/abs/2002.03244
  • RDKit: open-source cheminformatics software. [cited 2021 Jan 12]. Available from:https://github.com/rdkit/rdkit.
  • Ertl P, Schuffenhauer A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J Cheminform. 2009;1:8.
  • Gao W, Coley CW. The synthesizability of molecules proposed by generative models. J Chem Inf Model. 2020;60(12):5714–5723.
  • Brown N, Fiscato M, Segler MHS, et al. GuacaMol: benchmarking models for de novo molecular design. J Chem Inf Model. 2019;59:1096–1108.
  • Polykovskiy D, Zhebrak A, Sanchez-Lengeling B, et al. Molecular Sets (MOSES): a benchmarking platform for molecular generation models. arXiv. 2018; [cs.LG]. Available from: https://arxiv.org/abs/1811.12823
  • Zhang J, Mercado R, Engkvist O, et al. Comparative study of deep generative models on chemical space coverage. ChemRxiv. 2020. Availabel from: http://dx.doi.org/10.26434/chemrxiv.13234289.v1
  • Renz P, Van Rompaey D, Wegner JK, et al. On failure modes in molecule generation and optimization. Drug Discov Today Technol. 2019;32–33:55–63.
  • Merk D, Friedrich L, Grisoni F, et al. De NovoDesign of bioactive small molecules by artificial intelligence. Mol Inform. 2018;37:1700153–1700154.
  • Zhavoronkov A, Ivanenkov YA, Aliper A, et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol. 2019;37:1038–1040.
  • Walters WP, Murcko M. Assessing the impact of generative AI on medicinal chemistry. Nat Biotechnol. 2020;38:143–145.
  • Singh R, Pittas M, Heskia I, et al., Automated image-based phenotypic screening for high-throughput drug discovery, in 2009 22nd IEEE International Symposium on Computer-Based Medical Systems, Albuquerque, NM, 2009, pp. 1–8.
  • Wawer MJ, Li K, Gustafsdottir SM, et al. Toward performance-diverse small-molecule libraries for cell-based phenotypic screening using multiplexed high-dimensional profiling. Proc Natl Acad Sci U S A. 2014;111:10911–10916.
  • Jones TR, Carpenter AE, Lamprecht MR, et al. Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning. Proc Natl Acad Sci U S A. 2009;106:1826–1831.
  • Doan M, Carpenter AE. Leveraging machine vision in cell-based diagnostics to do more with less, Nat. Mater. 2019;18:414–418.
  • Moen E, Bannon D, Kudo T, et al. Deep learning for cellular image analysis. Nat Methods. 2019;16:1233–1246.
  • McQuin C, Goodman A, Chernyshev V, et al. CellProfiler 3.0: next-generation image processing for biology. PLoS Biol. 2018;16:e2005970.
  • Lamprecht MR, Sabatini DM, Carpenter AE. CellProfilerTM: free, versatile software for automated biological image analysis. Biotechniques. 2007;42:71–75.
  • Chandrasekaran SN, Ceulemans H, Boyd JD, et al. Image-based profiling for drug discovery: due for a machine-learning upgrade? Nat Rev Drug Discov. 2020;20:145–159.
  • Cuccarese MF, Earnshaw BA, Heiser K, et al. Functional immune mapping with deep-learning enabled phenomics applied to immunomodulatory and COVID-19 drug discovery. bioRxiv. Available form: https://doi.org/10.1101/2020.08.02.233064
  • Becker T, Yang K, Caicedo JC, et al. Predicting compound activity from phenotypic profiles and chemical structures. bioRxiv. Available from: https://doi.org/10.1101/2020.12.15.422887
  • Choe YJ, Ham J, Park K. An empirical study of invariant risk minimization. arXiv. 2020; [stat.ML]. Available from: https://arxiv.org/abs/2004.05007
  • Ahuja K, Shanmugam K, Varshney K, et al., Invariant risk minimization games, in Proceedings of the 37th International Conference on Machine Learning, Vienna, Austria, 119 (2020), pp. 145–155.
  • Arjovsky M, Bottou L, Gulrajani I, et al. Invariant risk minimization. arXiv. 2019; [stat.ML]. Available from: https://arxiv.org/abs/1907.02893
  • Raza K, Singh NK. A tour of unsupervised deep learning for medical image analysis. arXiv. 2018; [eess.IV]. Available from: https://arxiv.org/abs/1812.07715
  • Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: a review. Med Image Anal. 2019;58:101552.
  • Park K. A review of computational drug repurposing. Transl Clin Pharmacol. 2019;27:59–63.
  • Melchert M, List A. The thalidomide saga. Int J Biochem Cell Biol. 2007;39:1489–1499.
  • Warchal SJ, Dawson JC, Shepherd E, et al. High content phenotypic screening identifies serotonin receptor modulators with selective activity upon breast cancer cell cycle and cytokine signaling pathways. Bioorg Med Chem. 2020;28:115209.
  • Dong Y, Jiang Z, Shen H et al., Evaluations of deep convolutional neural networks for automatic identification of malaria infected cells, in 2017 IEEE EMBS International Conference on Biomedical Health Informatics (BHI), Orlando, FL, 2017, pp. 101–104.
  • Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat Med. 2018;24:1559–1567.
  • Hofmarcher M, Rumetshofer E, Clevert D-A, et al. Accurate prediction of biological assays with high-throughput microscopy images and convolutional networks. J Chem Inf Model. 2019;59:1163–1171.
  • Bray M-A, Singh S, Han H, et al. Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. Nat Protoc. 2016;11:1757–1774.
  • Gaulton A, Bellis LJ, Bento AP, et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2011;40:D1100–D1107.
  • Bento AP, Gaulton A, Hersey A, et al. The ChEMBL bioactivity database: an update. Nucleic Acids Res. 2013;42:D1083–D1090.
  • Simm J, Klambauer G, Arany A, et al. Repurposing high-throughput image assays enables biological activity prediction for drug discovery. Cell Chem Biol. 2018;25:611–618.e3.
  • Corey EJ, Wipke WT, Cramer RD, et al. Computer-assisted synthetic analysis. Facile man-machine communication of chemical structure by interactive computer graphics. J Am Chem Soc. 1972;94:421–430.
  • Corey EJ, Long AK, Rubenstein SD. Computer-assisted analysis in organic synthesis. Science. 1985;228:408–418.
  • Todd MH. Computer-aided organic synthesis. Chem Soc Rev. 2005;34:247–266.
  • Coley CW, Green WH, Jensen KF. Machine learning in computer-aided synthesis planning. Acc Chem Res. 2018;51:1281–1289.
  • Segler MHS, Preuss M, Waller MP. Planning chemical syntheses with deep neural networks and symbolic AI. Nature. 2018;555:604–610.
  • Coley CW, Barzilay R, Jaakkola TS, et al. Prediction of organic reaction outcomes using machine learning. ACS Cent Sci. 2017;3:434–443.
  • Lin K, Xu Y, Pei J, et al. Automatic retrosynthetic route planning using template-free models. Chem Sci. 2020;11:3355–3364.
  • Liu B, Ramsundar B, Kawthekar P, et al. Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS Cent Sci. 2017;3:1103–1113.
  • Schwaller P, Gaudin T, Lányi D, et al. “Found in Translation”: predicting outcomes of complex organic chemistry reactions using neural sequence-to-sequence models. Chem Sci. 2018;9:6091–6098.
  • Wei JN, Duvenaud D, Aspuru-Guzik A. Neural networks for the prediction of organic chemistry reactions. ACS Cent Sci. 2016;2:725–732.
  • Segler MHS, Waller MP. Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry. 2017;23:5966–5971.
  • Coley CW, Thomas DA 3rd, Lummiss JAM, et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science. 2019;365(6453):eaax1566.
  • Jensen KF, Coley CW, Eyke NS. Autonomous discovery in the chemical sciences part I: progress. Angew Chem Int Ed Engl. 2019;59:22858–22893,.
  • Coley CW, Eyke NS, Jensen KF. Autonomous discovery in the chemical sciences part II: outlook. Angew Chem Int Ed Engl. 2019;59:23414–23436.
  • Jordan AM. Artificial Intelligence in drug design-the storm before the calm? ACS Med Chem Lett. 2018;9:1150–1152.
  • Rodrigues T. The good, the bad, and the ugly in chemical and biological data for machine learning. Drug Discov Today Technol. 2019;32–33:3–8.
  • Wang Y, Xiao J, Suzek TO, et al. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res. 2019;32-33(Web Server):W623–W633.
  • Li Q, Cheng T, Wang Y, et al. PubChem as a public resource for drug discovery. Drug Discov Today. 2010;15:1052–1057.
  • Kim S, Thiessen PA, Bolton EE, et al. PubChem substance and compound databases. Nucleic Acids Res. 2016;44:D1202–D1213.
  • Open access reaction database: MVP milestones. [cited 2021 Jan 21]. Available at https://docs.google.com/document/d/1Xh24AnDp1nKlN87Nsh2986VTnN5OeSEE9XS5TcV9DGE/edit

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.