348
Views
12
CrossRef citations to date
0
Altmetric
Review

1,2,3,4-Tetrahydroisoquinoline (THIQ) as privileged scaffold for anticancer de novo drug design

ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 1119-1147 | Received 26 Sep 2020, Accepted 09 Apr 2021, Published online: 28 Apr 2021

References

  • Jin MZ, Jin WL. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct Target Ther. 2020;5(1):1–16.
  • Intlekofer AM, Finley LWS. Metabolic signatures of cancer cells and stem cells. Nat Metab. Nature Research. 2019;1(2):177–188.
  • Poston GJ. Global cancer surgery: the lancet oncology review. Eur J Surg Oncol. 2015;41(12):1559–1561.
  • Kleihues P, Sobin LH. World Health Organization classification of tumors. Cancer. 2000;88(12):2887.
  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
  • Tiwari RK, Singh D, Singh J, et al. Synthesis, antibacterial activity and QSAR studies of 1,2-disubstituted-6, 7-dimethoxy-1,2,3,4-tetrahydroisoquinolines. Eur J Med Chem. 2006;41(1):40–49.
  • Liu XH, Zhu J, Zhou AN, et al. Synthesis, structure and antibacterial activity of new 2-(1-(2-(substituted-phenyl)-5-methyloxazol-4-yl)-3-(2-substitued-phenyl)-4,5-dihydro-1H-pyrazol-5-yl)-7-substitued-1,2,3,4-tetrahydroisoquinoline derivatives. Bioorg Med Chem. 2009;17(3):1207–1213.
  • Zhu J, Lu J, Zhou Y, et al. Design, synthesis, and antifungal activities in vitro of novel tetrahydroisoquinoline compounds based on the structure of lanosterol 14α-demethylase (CYP51) of fungi. Bioorganic Med Chem Lett. 2006;16(20):5285–5289.
  • Swidorski JJ, Liu Z, Yin Z, et al. Inhibitors of HIV-1 attachment: the discovery and structure-activity relationships of tetrahydroisoquinolines as replacements for the piperazine benzamide in the 3-glyoxylyl 6-azaindole pharmacophore. Bioorganic Med Chem Lett. 2016;26(1):160–167.
  • Chander S, Ashok P, Singh A, et al. De-novo design, synthesis and evaluation of novel 6,7-dimethoxy-1,2,3,4- tetrahydroisoquinoline derivatives as HIV-1 reverse transcriptase inhibitors. Chem Cent J. 2015;9(1):1–13.
  • Kumar A, Katiyar SB, Gupta S, et al. Syntheses of new substituted triazino tetrahydroisoquinolines and β-carbolines as novel antileishmanial agents. Eur J Med Chem. 2006;41(1):106–113.
  • Pacheco De Oliveira MT, De Oliveira Ramalho TR, Paiva FLKL, et al. Synthesis, toxicity study and anti-inflammatory effect of MHTP, a new tetrahydroisoquinoline alkaloid. Immunopharmacol Immunotoxicol. 2015;37(4):400–412.
  • Scott JD, Williams RM. Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. Chem Rev. 2002;102(5):1669–1730.
  • Wolf SS. The protein arginine methyltransferase family: an update about function, new perspectives and the physiological role in humans. Cell Mol Life Sci. 2009;16(13):2109–2121.
  • Fuhrmann J, Clancy KW, Thompson PR. Chemical biology of protein arginine modifications in epigenetic regulation. Chem Rev. American Chemical Society. 2015;11:5413–5461.
  • Richters A. Targeting protein arginine methyltransferase 5 in disease. Future Med Chem. 2017;9(17):2081–2098.
  • Chan-Penebre E, Kuplast KG, Majer CR, et al. A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat Chem Biol. 2015;11(6):432–437.
  • Gerhart SV, Kellner WA, Thompson C, et al. Activation of the p53-MDM4 regulatory axis defines the anti-tumour response to PRMT5 inhibition through its role in regulating cellular splicing. Sci Rep. 2018;8(1):1–15.
  • Zhu K, Song JL, Tao HR, et al. Discovery of new potent protein arginine methyltransferase 5 (PRMT5) inhibitors by assembly of key pharmacophores from known inhibitors. Bioorganic Med Chem Lett. 2018;28(23–24):3693–3699.
  • Zhu K, Shao J, Tao H, et al. Rational Design, synthesis and biological evaluation of novel triazole derivatives as potent and selective PRMT5 inhibitors with antitumor activity. J Comput Aided Mol Des. 2019;33(8):775–785.
  • Shao J, Zhu K, Du D, et al. Discovery of 2-substituted-N-(3-(3,4-dihydroisoquinolin-2(1H)-yl)-2-hydroxypropyl)-1,2,3,4-tetrahydroisoquinoline-6-carboxamide as potent and selective protein arginine methyltransferases 5 inhibitors: design, synthesis and biological evaluation. Eur J Med Chem. 2019;164:317–333.
  • Ariazi EA, Craig Jordan V. Estrogen receptors as therapeutic targets in breast cancer. Nucl Recept as Drug Targets. 2008;39:127–199.
  • Shagufta, Ahmad I, Mathew S, et al. Recent progress in selective estrogen receptor downregulators (SERDs) for the treatment of breast cancer. RSC Med Chem. 2020;11(4):438–454.
  • Maximov PY, Lee T M, Craig Jordan V. The discovery and development of Selective Estrogen Receptor Modulators (SERMs) for clinical practice. Curr Clin Pharmacol. 2013;8(2):135–155.
  • Jordan VC. Tamoxifen: a most unlikely pioneering medicine. Nat Rev Drug Discov. 2003;2(3):205–213.
  • Johnston S, Cheung K. Fulvestrant - A novel endocrine therapy for breast cancer. Curr Med Chem. 2010;17(10):902–914.
  • Renaud J, Bischoff SF, Buhl T, et al. Estrogen receptor modulators: identification and structure-activity relationships of potent ERα-selective tetrahydroisoquinoline ligands. J Med Chem. 2003;46(14):2945–2957.
  • Chesworth R, Zawistoski MP, Lefker BA, et al. Tetrahydroisoquinolines as subtype selective estrogen agonists/antagonists. Bioorganic Med Chem Lett. 2004;14(11):2729–2733.
  • Renaud J, Bischoff SF, Buhl T, et al. Selective estrogen receptor modulators with conformationally restricted side chains. Synthesis and structure-activity relationship of ERα-selective tetrahydroisoquinoline ligands. J Med Chem. 2005;48(2):364–379.
  • Scott JS, Bailey A, Davies RDM, et al. Tetrahydroisoquinoline phenols: selective estrogen receptor downregulator antagonists with oral bioavailability in rat. ACS Med Chem Lett. 2016;7(1):94–99.
  • Burks HE, Abrams T, Kirby CA, et al. Discovery of an acrylic acid based tetrahydroisoquinoline as an orally bioavailable selective estrogen receptor degrader for ERα+ breast cancer. J Med Chem. 2017;60(7):2790–2818.
  • Simpson E, Rubin G, Clyne C, et al. The role of local estrogen biosynthesis in males and females. Trends Endocrinol Metab. 2000;11(5):184–188.
  • Recanatini M, Cavalli A, Valenti P. Nonsteroidal aromatase inhibitors: recent advances. Med Res Rev. 2002;22(3):282–304.
  • Yue W, Wang JP, Hamilton CJ, et al. In situ aromatization enhances breast tumor estradiol levels and cellular proliferation. Cancer Res. 1998;58(5):927–932.
  • Ahmad I, Shagufta. Recent developments in steroidal and nonsteroidal aromatase inhibitors for the chemoprevention of estrogen-dependent breast cancer. Eur J Med Chem. 2015;102:375–386.
  • Pingaew R, Prachayasittikul V, Mandi P, et al. Synthesis and molecular docking of 1,2,3-triazole-based sulfonamides as aromatase inhibitors. Bioorg Med Chem. 2015;23(13):3472–3480.
  • Chamduang C, Pingaew R, Prachayasittikul V, et al. Novel triazole-tetrahydroisoquinoline hybrids as human aromatase inhibitors. Bioorg Chem. 2019;93:103327.
  • Ouellet É, Maltais R, Ouellet C, et al. Investigation of a tetrahydroisoquinoline scaffold as dual-action steroid sulfatase inhibitors generated by parallel solid-phase synthesis. Medchemcomm. 2013;4(4):681–692.
  • Chetrite GS, Cortes-Prieto J, Philippe JC, et al. Comparison of estrogen concentrations, estrone sulfatase and aromatase activities in normal, and in cancerous, human breast tissues. J Steroid Biochem Mol Biol. 2000;72(1–2):23–27.
  • Pasqualini JR, Chetrite G, Blacker C, et al. Concentrations of estrone, estradiol, and estrone sulfate and evaluation of sulfatase and aromatase activities in pre- and postmenopausal breast cancer patients. J Clin Endocrinol Metab. 1996;81(4):1460–1464.
  • Ouellet C, Ouellet É, Poirier D. In vitro evaluation of a tetrahydroisoquinoline derivative as a steroid sulfatase inhibitor and a selective estrogen receptor modulator. Invest New Drugs. 2015;33(1):95–103.
  • Ouellet C, Maltais R, Ouellet É, et al. Discovery of a sulfamate-based steroid sulfatase inhibitor with intrinsic selective estrogen receptor modulator properties. Eur J Med Chem. 2016;119:169–182.
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.
  • Valenca LB, Sweeney CJ, Pomerantz MM. Sequencing current therapies in the treatment of metastatic prostate cancer. Cancer Treat Rev. 2015;41(4):332–340.
  • Scher HI, Sawyers CL. Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol. 2005;23(32):8253–8261.
  • Wang Q, Li W, Zhang Y, et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell. 2009;138(2):245–256.
  • Ferroni C, Pepe A, Kim YS, et al. 1,4-substituted triazoles as nonsteroidal anti-androgens for prostate cancer treatment. J Med Chem. 2017;60(7):3082–3093.
  • Foster WR, Car BD, Shi H, et al. Drug safety is a barrier to the discovery and development of new androgen receptor antagonists. Prostate. 2011;71(5):480–488.
  • Xu X, Ge R, Li L, et al. Exploring the tetrahydroisoquinoline thiohydantoin scaffold blockade the androgen receptor as potent anti-prostate cancer agents. Eur J Med Chem. 2018;143:1325–1344.
  • Xu X, Du Q, Meng Y, et al. Discovery of pyridine tetrahydroisoquinoline thiohydantoin derivatives with low blood-brain barrier penetration as the androgen receptor antagonists. Eur J Med Chem. 2020;192:1–28.
  • Thiagalingam S, Cheng KH, Lee HJ, et al. Histone deacetylases: unique players in shaping the epigenetic histone code. Ann N Y Acad Sci. 2003;983(1):84–100.
  • McGee-Lawrence ME, Westendorf JJ. Histone deacetylases in skeletal development and bone mass maintenance. Gene. 2011;474(1–2):1–11.
  • Dokmanovic M, Clarke C, Marks PA. Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res. 2007;5(10):981–989.
  • West AC, Johnstone RW. New and emerging HDAC inhibitors for cancer treatment. J Clin Invest. 2014;124(1):30–39.
  • Witt O, Deubzer HE, Milde T, et al. HDAC family: what are the cancer relevant targets? Cancer Lett. 2009;277(1):8–21.
  • Zhang Y, Feng J, Liu C, et al. Design, synthesis and preliminary activity assay of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivatives as novel Histone deacetylases (HDACs) inhibitors. Bioorg Med Chem. 2010;18(5):1761–1772.
  • Zhang Y, Feng J, Jia Y, et al. Development of tetrahydroisoquinoline-based hydroxamic acid derivatives: potent histone deacetylase inhibitors with marked in vitro and in vivo antitumor activities. J Med Chem. 2011;54(8):2823–2838.
  • Zhang Y, Fang H, Feng J, et al. Discovery of a tetrahydroisoquinoline-based hydroxamic acid derivative (ZYJ-34c) as histone deacetylase inhibitor with potent oral antitumor activities. J Med Chem. 2011;54(15):5532–5539.
  • Zhang Y, Liu C, Chou CJ, et al. Design and synthesis of a tetrahydroisoquinoline-based hydroxamate derivative (ZYJ-34v), an oral active histone deacetylase inhibitor with potent antitumor activity. Chem Biol Drug Des. 2013;82(2):125–130.
  • Blackburn C, Barrett C, Chin J, et al. Potent histone deacetylase inhibitors derived from 4-(Aminomethyl)-N-hydroxybenzamide with high selectivity for the HDAC6 isoform. J Med Chem. 2013;56(18):7201–7211.
  • Chen D, Shen A, Fang G, et al. Tetrahydroisoquinolines as novel histone deacetylase inhibitors for treatment of cancer. Acta Pharm Sin B. 2016;6(1):93–99.
  • Taha TY, Aboukhatwa SM, Knopp RC, et al. Design, synthesis, and biological evaluation of tetrahydroisoquinoline-based histone deacetylase 8 selective inhibitors. ACS Med Chem Lett. 2017;8(8):824–829.
  • Chipuk JE, Moldoveanu T, Llambi F, et al. The BCL-2 family reunion. Mol Cell. 2010;37(3):299–310.
  • Czabotar PE, Lessene G, Strasser A, et al. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15(1):49–63.
  • Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 2020;17:395–417.
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674.
  • Ashkenazi A, Fairbrother WJ, Leverson JD, et al. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov. 2017;16(4):273–284.
  • Perez HL, Banfi P, Bertrand J, et al. Identification of a phenylacylsulfonamide series of dual Bcl-2/Bcl-xL antagonists. Bioorganic Med Chem Lett. 2012;22(12):3946–3950.
  • Schroeder GM, Wei D, Banfi P, et al. Pyrazole and pyrimidine phenylacylsulfonamides as dual Bcl-2/Bcl-xL antagonists. Bioorganic Med Chem Lett. 2012;22(12):3951–3956.
  • Lessene G, Czabotar PE, Sleebs BE, et al. Structure-guided design of a selective BCL-XL inhibitor. Nat Chem Biol. 2013;9(6):390–397.
  • Koehler MFT, Bergeron P, Choo EF, et al. Structure-guided rescaffolding of selective antagonists of BCL-XL. ACS Med Chem Lett. 2014;5(6):662–667.
  • Tao ZF, Hasvold L, Wang L, et al. Discovery of a potent and selective BCL-XL inhibitor with in vivo activity. ACS Med Chem Lett. 2014;5(10):1088–1093.
  • Wang L, Doherty GA, Judd AS, et al. Discovery of A-1331852, a first-in-class, potent, and orally-bioavailable BCL-XL inhibitor. ACS Med Chem Lett. 2020;11(10):1829–1836.
  • Leverson JD, Phillips DC, Mitten MJ, et al. Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy. Sci Transl Med. 2015;7(279):1–12.
  • Liu X, Zhang Y, Huang W, et al. Design, synthesis and pharmacological evaluation of new acyl sulfonamides as potent and selective Bcl-2 inhibitors. Bioorg Med Chem. 2018;26(2):443–454.
  • Liu R, Liu L, Yang X, et al. Discovery and development of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivatives as Bcl-2/Mcl-1 inhibitors. Bioorg Chem. 2019;88:102938.
  • Perez RP, Hamilton TC, Ozols RF, et al. Mechanisms and modulation of resistance to chemotherapy in ovarian cancer. Cancer. 1993;71(S4):1571–1580.
  • Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer: an overview. Cancers (Basel). 2014;6(3):1769–1792.
  • Szakács G, Paterson JK, Ludwig JA, et al. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5(3):219–234.
  • Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2(1):48–58.
  • Li W, Zhang H, Assaraf YG, et al. Overcoming ABC transporter-mediated multidrug resistance: molecular mechanisms and novel therapeutic drug strategies. Drug Resist Updat. 2016;27:14–29.
  • Dong J, Qin Z, Zhang WD, et al. Medicinal chemistry strategies to discover P-glycoprotein inhibitors: an update. Drug Resist Updat. 2020;49:100681.
  • Coley HM. Overcoming multidrug resistance in cancer: clinical studies of p-glycoprotein inhibitors. Methods Mol Biol. 2010;596:341–358.
  • Liu B, Qiu Q, Zhao T, et al. Discovery of novel P-glycoprotein-mediated multidrug resistance inhibitors bearing triazole core via click chemistry. Chem Biol Drug Des. 2014;84(2):182–191.
  • Zhao T, Song Y, Liu B, et al. Reversal of p-glycoprotein-medicated multidrug resistance by LBM-A5 in vitro and a study of its pharmacokinetics in vivo. Can J Physiol Pharmacol. 2014;93(1):33–38.
  • Jiao L, Qiu Q, Liu B, et al. Design, synthesis and evaluation of novel triazole core based P-glycoprotein-mediated multidrug resistance reversal agents. Bioorg Med Chem. 2014;22(24):6857–6866.
  • Zhang B, Zhao T, Zhou J, et al. Design, synthesis and biological evaluation of novel triazole-core reversal agents against P-glycoprotein-mediated multidrug resistance. RSC Adv. 2016;6(31):25819–25828.
  • Liu B, Qiu Q, Zhao T, et al. 6,7-dimethoxy-2-{2-[4-(1H-1,2,3-triazol-1-yl)phenyl]ethyl}-1,2,3,4-tetrahydroisoquinolines as superior reversal agents for P-glycoprotein-mediated multidrug resistance. ChemMedChem. 2015;10(2):336–344.
  • Wu Y, Pan M, Dai Y, et al. Design, synthesis and biological evaluation of LBM-A5 derivatives as potent P-glycoprotein-mediated multidrug resistance inhibitors. Bioorg Med Chem. 2016;24(10):2287–2297.
  • Qiu Q, Liu B, Cui J, et al. Design, synthesis, and pharmacological characterization of N-(4-(2 (6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)yl)ethyl)phenyl)quinazolin-4-amine derivatives: novel inhibitors reversing P-glycoprotein-mediated multidrug resistance. J Med Chem. 2017;60(8):3289–3302.
  • Gao Y, Shi W, Cui J, et al. Design, synthesis and biological evaluation of novel tetrahydroisoquinoline derivatives as P-glycoprotein-mediated multidrug resistance inhibitors. Bioorg Med Chem. 2018;26(9):2420–2427.
  • Kairuki M, Qiu Q, Pan M, et al. Designed P-glycoprotein inhibitors with triazol-tetrahydroisoquinoline-core increase doxorubicin-induced mortality in multidrug resistant K562/A02 cells. Bioorg Med Chem. 2019;27(15):3347–3357.
  • Qiu Q, Zhou J, Shi W, et al. Design, synthesis and biological evaluation of N-(4-(2-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)ethyl)phenyl)-4-oxo-3,4-dihydrophthalazine-1-carboxamide derivatives as novel P-glycoprotein inhibitors reversing multidrug resistance. Bioorg Chem. 2019;86:166–175.
  • Colabufo NA, Berardi F, Cantore M, et al. 4-Biphenyl and 2-naphthyl substituted 6,7-dimethoxytetrahydroisoquinoline derivatives as potent P-gp modulators. Bioorg Med Chem. 2008;16(7):3732–3743.
  • Azzariti A, Quatrale AE, Porcelli L, et al. MC70 potentiates doxorubicin efficacy in colon and breast cancer in vitro treatment. Eur J Pharmacol. 2011;670(1):74–84.
  • Contino M, Guglielmo S, Perrone MG, et al. New tetrahydroisoquinoline-based P-glycoprotein modulators: decoration of the biphenyl core gives selective ligands. Medchemcomm. 2018;9(5):862–869.
  • Riganti C, Contino M, Guglielmo S, et al. Design, biological evaluation, and molecular modeling of tetrahydroisoquinoline derivatives: discovery of A potent P-glycoprotein ligand overcoming multidrug resistance in cancer stem cells. J Med Chem. 2019;62(2):974–986.
  • Rullo M, Niso M, Pisani L, et al. 1,2,3,4-Tetrahydroisoquinoline/2H-chromen-2-one conjugates as nanomolar P-glycoprotein inhibitors: molecular determinants for affinity and selectivity over multidrug resistance associated protein 1. Eur J Med Chem. 2019;161:433–444.
  • Braconi L, Bartolucci G, Contino M, et al. 6,7-Dimethoxy-2-phenethyl-1,2,3,4-tetrahydroisoquinoline amides and corresponding ester isosteres as multidrug resistance reversers. J Enzyme Inhib Med Chem. 2020;35(1):974–992.
  • Ma Y, Yin D, Ye J, et al. Discovery of potent inhibitors against P-glycoprotein-mediated multidrug resistance aided by late-stage functionalization of a 2-(4-(Pyridin-2-yl)phenoxy)pyridine analogue. J Med Chem. 2020;63(10):5458–5476.
  • Wu CP, Murakami M, Hsiao SH, et al. SIS3, a specific inhibitor of Smad3 reverses ABCB1- and ABCG2-mediated multidrug resistance in cancer cell lines. Cancer Lett. 2018;433:259–272.
  • Balkwill F. The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol. 2004;14(3):171–179.
  • Sun X, Cheng G, Hao M, et al. CXCL12/CXCR4/CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev. 2010;29(4):709–722.
  • Teicher BA, Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res. 2010;16(11):2927–2931.
  • Oberlin E, Amara A, Bachelerie F, et al. The CXC chemokine, stromal cell derived factor 1 (SDF-1), is the ligand for LESTR/fusin and prevents infection by lymphocyte-tropic HIV-1 syncytium-inducing strains. Nature. 1996;382(6594):833–835.
  • Bleul CC, Farzan M, Choe H, et al. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature. 1996;382(6594):829–833.
  • Gassmann P, Haier J, Schlüter K, et al. CXCR4 regulates the early extravasation of metastatic tumor cells in vivo. Neoplasia. 2009;11(7):651–661.
  • Otsuka S, Bebb G. The CXCR4/SDF-1 chemokine receptor axis: a new target therapeutic for non-small cell lung cancer. J Thorac Oncol. 2008;3(12):1379–1383.
  • Balkwill F. Cancer and the chemokine network. Nat Rev Cancer. 2004;4(7):540–550.
  • Debnath B, Xu S, Grande F, et al. Small molecule inhibitors of CXCR4. Theranostics. 2013;3(1):47–75.
  • Truax VM, Zhao H, Katzman BM, et al. Discovery of tetrahydroisoquinoline-based CXCR4 antagonists. ACS Med Chem Lett. 2013;4(11):1025–1030.
  • Miller EJ, Jecs E, Truax VM, et al. Discovery of tetrahydroisoquinoline-containing CXCR4 antagonists with improved in vitro ADMET properties. J Med Chem. 2018;61(3):946–979.
  • Jecs E, Miller EJ, Wilson RJ, et al. Synthesis of novel tetrahydroisoquinoline CXCR4 antagonists with rigidified side-chains. ACS Med Chem Lett. 2018;9(2):89–93.
  • Wilson RJ, Jecs E, Miller EJ, et al. Synthesis and SAR of 1,2,3,4-tetrahydroisoquinoline-based CXCR4 antagonists. ACS Med Chem Lett. 2018;9(1):17–22.
  • Nguyen HH, Kim MB, Wilson RJ, et al. Design, synthesis, and pharmacological evaluation of second-generation tetrahydroisoquinoline-based CXCR4 antagonists with favorable ADME properties. J Med Chem. 2018;61(16):7168–7188.
  • Kim FJ, Pasternak GW. Cloning the sigma 2 receptor: wandering 40 years to find an identity. Proc Natl Acad Sci U S A. 2017;114(27):6888–6890.
  • Colabufo NA, Berardi F, Abate C, et al. Is the σ2 receptor a histone binding protein? J Med Chem. 2006;49(14):4153–4158.
  • Xu J, Zeng C, Chu W, et al. Identification of the PGRMC1 protein complex as the putative sigma-2 receptor binding site. Nat Commun. 2011;2.
  • Alon A, Schmidt HR, Wood MD, et al. Identification of the gene that codes for the σ2 receptor. Proc Natl Acad Sci U S A. 2017;114(27):7160–7165.
  • Bartz F, Kern L, Erz D, et al. Identification of cholesterol-regulating genes by targeted RNAi screening. Cell Metab. 2009;10(1):63–75.
  • Ebrahimi-Fakhari D, Wahlster L, Bartz F, et al. Reduction of TMEM97 increases NPC1 protein levels and restores cholesterol trafficking in Niemann-pick type C1 disease cells. Hum Mol Genet. 2016;25(16):3588–3599.
  • Riad A, Zeng C, Weng CC, et al. Sigma-2 receptor/TMEM97 and PGRMC-1 increase the rate of internalization of LDL by LDL receptor through the formation of a ternary complex. Sci Rep. 2018;8(1):1–12.
  • Abate C, Niso M, Berardi F. Sigma-2 receptor: past, present and perspectives on multiple therapeutic exploitations. Future Med Chem. 2018;10(16):1997–2018.
  • Huang YS, Lu HL, Zhang LJ, et al. Sigma-2 receptor ligands and their perspectives in cancer diagnosis and therapy. Med Res Rev. 2014;34(3):532–566.
  • Zeng C, Riad A, Mach RH. The biological function of sigma-2 receptor/tmem97 and its utility in pet imaging studies in cancer. Cancers (Basel). 2020;12(7):1–13.
  • Wheeler KT, Wang LM, Wallen CA, et al. Sigma-2 receptors as a biomarker of proliferation in solid tumours. Br J Cancer. 2000;82(6):1223–1232.
  • Hornick JR, Vangveravong S, Spitzer D, et al. Lysosomal membrane permeabilization is an early event in sigma-2 receptor ligand mediated cell death in pancreatic cancer. J Exp Clin Cancer Res. 2012;31(1):41–52.
  • Zeng C, Rothfuss J, Zhang J, et al. Sigma-2 ligands induce tumour cell death by multiple signalling pathways. Br J Cancer. 2012;106(4):693–701.
  • Mir SUR, Schwarze SR, Jin L, et al. Progesterone receptor membrane component 1/Sigma-2 receptor associates with MAP1LC3B and promotes autophagy. Autophagy. 2013;9(10):1566–1578.
  • Mach RH, Huang Y, Freeman RA, et al. Conformationally-flexible benzamide analogues as dopamine D3 and σ2 receptor ligands. Bioorganic Med Chem Lett. 2004;14(1):195–202.
  • Abate C, Ferorelli S, Contino M, et al. Arylamides hybrids of two high-affinity σ 2 receptor ligands as tools for the development of PET radiotracers. Eur J Med Chem. 2011;46:4733–4741.
  • Xu R, Lever JR, Lever SZ. Synthesis and in vitro evaluation of tetrahydroisoquinolinyl benzamides as ligands for σ receptors. Bioorganic Med Chem Lett. 2007;17(9):2594–2597.
  • Mésangeau C, Amata E, Alsharif W, et al. Synthesis and pharmacological evaluation of indole-based sigma receptor ligands. Eur J Med Chem. 2011;46(10):5154–5161.
  • Ashford ME, Nguyen VH, Greguric I, et al. Synthesis and in vitro evaluation of tetrahydroisoquinolines with pendent aromatics as sigma-2 (σ2) selective ligands. Org Biomol Chem. 2014;12(5):783–794.
  • Bai S, Li S, Xu J, et al. Synthesis and Structure–activity relationship studies of conformationally flexible tetrahydroisoquinolinyl triazole carboxamide and triazole substituted benzamide analogues as σ2 receptor ligands. J Med Chem. 2014;57(10):4239–4251.
  • Wu ZW, Song SY, Li L, et al. Synthesis and evaluation of tetrahydroindazole derivatives as sigma-2 receptor ligands. Bioorg Med Chem. 2015;23(7):1463–1471.
  • Lee I, Lieberman BP, Li S, et al. Comparative evaluation of 4 and 6-carbon spacer conformationally flexible tetrahydroisoquinolinyl benzamide analogues for imaging the sigma-2 receptor status of solid tumors. Nucl Med Biol. 2016;43(11):721–731.
  • Li D, Chen Y, Wang X, et al. 99m Tc-cyclopentadienyl tricarbonyl chelate-labeled compounds as selective Sigma-2 receptor ligands for tumor imaging. J Med Chem. 2016;59(3):934–946.
  • Wang L, Ye J, He Y, et al. 18F-Labeled indole-based analogs as highly selective radioligands for imaging sigma-2 receptors in the brain. Bioorg Med Chem. 2017;25(14):3792–3802.
  • Linkens K, Schmidt HR, Sahn JJ, et al. Investigating isoindoline, tetrahydroisoquinoline, and tetrahydrobenzazepine scaffolds for their sigma receptor binding properties. Eur J Med Chem. 2018;151:557–567.
  • Abate C, Perrone R, Berardi F. Classes of Sigma2 (σ2) receptor ligands: Structure Affinity Relationship (SAfiR) studies and antiproliferative activity. Curr Pharm Des. 2012;18(7):938–949.
  • Dehdashti F, Laforest R, Gao F, et al. Assessment of cellular proliferation in tumors by PET using 18F-ISO-1. J Nucl Med. 2013;54(3):350–357.
  • McDonald ES, Doot RK, Young AJ, et al. Breast cancer 18F-ISO-1 uptake as a marker of proliferation status. J Nucl Med. 2020;61(5):665–670.
  • Welsch ME, Snyder SA, Stockwell BR. Privileged scaffolds for library design and drug discovery. Curr Opin Chem Biol. 2010;14(3):347–361.
  • Evans BE, Rittle KE, Bock MG, et al. Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagoniststs. J Med Chem. 1988;31(12):2235–2246.
  • Zhao H, Dietrich J. Privileged scaffolds in lead generation. Expert Opin Drug Discov. 2015;10(7):781–790.
  • Zhang Y, Fang H, Xu W. Applications and modifications of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) in peptides and peptidomimetics design and discovery. Curr Protein Pept Sci. 2010;11(8):752–758.
  • Veis DJ, Sorenson CM, Shutter JR, et al. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell. 1993;75(2):229–240.
  • Zhang H, Nimmer PM, Tahir SK, et al. Bcl-2 family proteins are essential for platelet survival. Cell Death Differ. 2007;14(5):943–951.
  • Rinkenberger JL, Horning S, Klocke B, et al. Mcl-1 deficiency results in peri-implantation embryonic lethality. Genes Dev. 2000;14(1):23–27.
  • Wilson WH, O’Connor OA, Czuczman MS, et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol. 2010;11(12):1149–1159.
  • Roberts AW, Seymour JF, Brown JR, et al. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J Clin Oncol. 2012;30(5):488–496.
  • Puglisi M, Van Doorn L, Blanco-Codesido M, et al. A phase I safety and pharmacokinetic (PK) study of navitoclax (N) in combination with docetaxel (D) in patients (pts) with solid tumors. J Clin Oncol. 2011;29(15_suppl):2518.
  • Atmaca H, Bozkurt E, Uzunoglu S, et al. A diverse induction of apoptosis by trabectedin in MCF-7 (HER2-/ER+) and MDA-MB-453 (HER2+/ER-) breast cancer cells. Toxicol Lett. 2013;221(2):128–136.
  • Liu J, Ma J, Liu Y, et al. PROTACs: a novel strategy for cancer therapy. Semin Cancer Biol. Academic Press. 2020;67:171–179.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.