457
Views
9
CrossRef citations to date
0
Altmetric
Review

Machine learning techniques applied to the drug design and discovery of new antivirals: a brief look over the past decade

, ORCID Icon, , &
Pages 961-975 | Received 26 Feb 2021, Accepted 13 Apr 2021, Published online: 07 May 2021

References

  • Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18(6):463–477.
  • Elbadawi M, Gaisford S, Basit AW. Advanced machine-learning techniques in drug discovery. Drug Discov Today. March 2021;26(3):769-777.
  • Gertrudes JC, Maltarollo VG, Silva RA, et al. Machine learning techniques and drug design. Curr Med Chem. 2012;19(25):4289–4297.
  • Gramatica P. Principles of QSAR Modeling: comments and Suggestions From Personal Experience. IJQSPR. 2020;5(3): 61–97.
  • Boobier S, Hose DRJ, Blacker AJ, et al. Machine learning with physicochemical relationships: solubility prediction in organic solvents and water. Nat Commun. 2020;11(1):5753.
  • Göller AH, Kuhnke L, Montanari F, et al. Bayer’s in silico ADMET platform: a journey of machine learning over the past two decades. Drug Discov Today. 2020;25(9):1702–1709.
  • Stokes JM, Yang K, Swanson K, et al., A deep Learning Approach to Antibiotic Discovery. Cell. 180(4): 688–702.e13. 2020. .
  • Shen C, Weng G, Zhang X, et al. Accuracy or novelty: what can we gain from target-specific machine-learning-based scoring functions in virtual screening? Brief Bioinform. 2021. doi:https://doi.org/10.1093/bib/bbaa410.
  • Lo Y-C, Rensi SE, Torng W, et al. Machine learning in chemoinformatics and drug discovery. Drug Discov Today. 2018;23(8):1538–1546.
  • Reker D. Practical considerations for active machine learning in drug discovery. Drug Discov Today. 2019;32-33:73–79.
  • Lavecchia A. Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today. 2015;20(3):318–331.
  • Maltarollo VG, Gertrudes JC, Oliveira PR, et al. Applying machine learning techniques for ADME-Tox prediction: a review. Expert Opin Drug Metab Toxicol. 2015;11(2):259–271.
  • Maltarollo VG, Kronenberger T, Espinoza GZ, et al. Advances with support vector machines for novel drug discovery. Expert Opin Drug Discov. 2019;14(1):23–33.
  • Bajorath J, Kearnes S, Walters WP, et al. Artificial Intelligence in Drug Discovery: into the Great Wide Open. J Med Chem. 2020;63(16):8651–8652.
  • Griffen EJ, Dossetter AG, Leach AG. Chemists: AI Is Here; Unite To Get the Benefits. J Med Chem. 2020;63(16):8695–8704.
  • Struble TJ, Alvarez JC, Brown SP, et al. Current and Future Roles of Artificial Intelligence in Medicinal Chemistry Synthesis. J Med Chem. 2020;63(16):8667–8682.
  • Chen H, Engkvist O, Wang Y, et al. The rise of deep learning in drug discovery. Drug Discov Today. 2018;23(6):1241–1250.
  • Cai C, Wang S, Xu Y, et al. Transfer Learning for Drug Discovery. J Med Chem. 2020;63(16):8683–8694.
  • Maltarollo VG, Kronenberger T, Wrenger C, et al. Current trends in quantitative structure–activity relationship validation and applications on drug discovery. Future Sci OA. 2017;3(4):FSO214.
  • Chuang KV, Gunsalus LM, Keiser MJ. Learning Molecular Representations for Medicinal Chemistry. J Med Chem. 2020;63(16):8705–8722.
  • Shamsara J. Evaluation of the performance of various machine learning methods on the discrimination of the active compounds. Chem Biol Drug des. 2021;97(4):930-943.
  • Truebel H, Thurston T. Danger in the Valley of death: how the transition from preclinical research to clinical trials can impact valuations. Drug Discov Today. 2020;25(12):2089–2094.
  • Graham BS, Sullivan NJ. Emerging viral diseases from a vaccinology perspective: preparing for the next pandemic. Nat Immunol. 2018;19(1):20–28.
  • Ten health issues WHO will tackle this year. 2019. [cited 2021 Feb 16]. Available from: https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019.
  • McCloskey B, Dar O, Zumla A, et al. Emerging infectious diseases and pandemic potential: status quo and reducing risk of global spread. Lancet Infect Dis. 2014;14(10):1001–1010.
  • Morens DM, Fauci AS. Emerging Pandemic Diseases: how We Got to COVID-19. Cell. 2020;182(5):1077–1092.
  • Kalil AC. Treating COVID-19—Off-Label Drug Use, Compassionate Use, and Randomized Clinical Trials During Pandemics. JAMA. 2020;323(19):1897.
  • Amanat F, Krammer F. SARS-CoV-2 Vaccines: status Report. Immunity. 2020;52(4):583–589.
  • Wouters OJ, Shadlen KC, Salcher-Konrad M, et al. Challenges in ensuring global access to COVID-19 vaccines: production, affordability, allocation, and deployment. Lancet. 2020;323(10278):1023–1034.
  • Newman DJ, Cragg GM. Natural Products as Sources of New Drugs over the Nearly Four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770–803.
  • Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020;383(27):2603–2615.
  • Kowalewski J, Ray A. Predicting novel drugs for SARS-CoV-2 using machine learning from a >10 million chemical space. Heliyon. 2020;6(8):e04639.
  • Nayarisseri A, Khandelwal R, Madhavi M, et al. Shape-based Machine Learning Models for the Potential Novel COVID-19 Protease Inhibitors Assisted by Molecular Dynamics Simulation. Curr Top Med Chem. 2020;20(24):2146–2167.
  • Zhou Y, Wang F, Tang J, et al. Artificial intelligence in COVID-19 drug repurposing. Lancet Digital Health. 2020;2(12):e667–e676.
  • Loucera C, Esteban-Medina M, Rian K, et al. Drug repurposing for COVID-19 using machine learning and mechanistic models of signal transduction circuits related to SARS-CoV-2 infection. Signal Transduct Target Ther. 2020;5(1):1–3.
  • Njoroge FG, Chen KX, Shih N-Y, et al. Challenges in modern drug discovery: a case study of boceprevir, an HCV protease inhibitor for the treatment of hepatitis C virus infection. Acc Chem Res. 2008;41(1):50–59.
  • Talele TT, Khedkar SA, Rigby AC. Successful applications of computer aided drug discovery: moving drugs from concept to the clinic. Curr Top Med Chem. 2010;10(1):127–141.
  • Wlodawer A. Rational approach to AIDS drug design through structural biology. Annu Rev Med. 2002;53(1):595–614.
  • de Clercq E. Human viral diseases: what is next for antiviral drug discovery? Curr Opin Virol. 2012;2(5):572–579.
  • Hu Y, Musharrafieh R, Zheng M, et al. Enterovirus D68 Antivirals: past, Present, and Future. ACS Infect Dis. 2020;6(7):1572–1586.
  • Bule M, Khan F, Niaz K, et al. Antivirals: Past, present and future. Recent advances in animal virology. 2019 Jun 6: 425–446. DOI:https://doi.org/10.1007/978-981-13-9073-9_22
  • de Clercq E, Li G. Approved Antiviral Drugs over the Past 50 Years. Clin Microbiol Rev. 2016;29(3):695–747.
  • Strasfeld L, Chou S. Antiviral Drug Resistance: mechanisms and Clinical Implications. Infect Dis Clin North Am. 2010;24(2):413–437.
  • Sanjuán R, Nebot MR, Chirico N, et al. Viral Mutation Rates. J Virol. 2010;84(19):9733–9748.
  • Kumar M, Mazumder P, Mohapatra S, et al. A chronicle of SARS-CoV-2: seasonality, environmental fate, transport, inactivation, and antiviral drug resistance. J Hazard Mater. 2021;405:124043.
  • Kumar M, Kuroda K, Dhangar K, et al. Potential Emergence of Antiviral-Resistant Pandemic Viruses via Environmental Drug Exposure of Animal Reservoirs. Environ Sci Technol. 2020;54(14):8503–8505.
  • Bryan-Marrugo OL, Ramos-Jiménez J, Barrera-Saldaña H, et al. History and progress of antiviral drugs: from acyclovir to direct-acting antiviral agents (DAAs) for Hepatitis C. Med Universitaria. 2015;17(68):165–174.
  • Scudellari M. Researchers are betting that AI and automation can cut drug discovery from five years to six months: automating antivirals. IEEE Spectrum. 2020;57(10):44–49.
  • Serafim MSM, Kronenberger T, Oliveira PR, et al. The application of machine learning techniques to innovative antibacterial discovery and development. Expert Opin Drug Discov. 2020;15(10):1165–1180.
  • Adamson C S, Chibale K, Goss RJ M, et al., Antiviral drug discovery: preparing for the next pandemic. Chem Soc Rev. 50(6): 3647–3655. 2021.
  • Ma Y, Frutos-Beltrán E, Kang D, et al., Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses. Chem Soc Rev. 50(7): 4514–4540. 2021.
  • Qureshi A, Thakur N, Tandon H, et al. AVPdb: a database of experimentally validated antiviral peptides targeting medically important viruses. Nucleic Acids Res. 2014;42(D1):D1147–D1153.
  • Qureshi A, Tandon H, Kumar M. AVP-IC50 Pred: multiple machine learning techniques-based prediction of peptide antiviral activity in terms of half maximal inhibitory concentration (IC50). Biopolymers. 2015;104(6):753–763.
  • Qureshi A, Kaur G, Kumar M. AVCpred: an integrated web server for prediction and design of antiviral compounds. Chem Biol Drug des. 2017;89(1):74–83.
  • Zhang Y, Aevermann BD, Anderson TK, et al. Influenza Research Database: an integrated bioinformatics resource for influenza virus research. Nucleic Acids Res. 2017;45(D1):D466–D474.
  • Nikitina AA, Orlov AA, Kozlovskaya LI, et al. Enhanced taxonomy annotation of antiviral activity data from ChEMBL. Database. 2019;2019. bay139. DOI:https://doi.org/10.1093/database/bay139
  • Tzou PL, Tao K, Nouhin J, et al. Coronavirus Antiviral Research Database (CoV-RDB): an Online Database designed to Facilitate Comparisons between Candidate Anti-Coronavirus Compounds. Viruses. 2020;12(9):1006.
  • Keshavarzi Arshadi A, Webb J, Salem M, et al. Artificial Intelligence for COVID-19 Drug Discovery and Vaccine development. Front Artif Intell. 2020 Aug 18; 3:65. DOI:https://doi.org/10.3389/frai.2020.00065
  • Riva L, Yuan S, Yin X, et al. Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature. 2020;586(7827):113–119.
  • Nikolaev GI, Shuldov NA, Anischenko AI, et al. development of a Neural Network-Based Approach for Prediction of Potential HIV-1 Entry Inhibitors Using deep Learning and Molecular Modeling Methods. In: Cai Z, Mandoiu I, Narasimhan G, et al., editors. Bioinformatics Research and Applications. Cham: Springer International Publishing; 2020. 304–311.
  • Hoenen T, Groseth A, Feldmann H. Therapeutic strategies to target the Ebola virus life cycle. Nature Rev Microbiol. 2019;17(10):593–606.
  • Lane TR, Comer JE, Freiberg AN, et al. Repurposing Quinacrine against Ebola Virus Infection In Vivo. Antimicrob Agents Chemother. 2019 Aug 23;63(9):e01142-19. DOI:https://doi.org/10.1128/AAC.01142-19.
  • Lo MK, Albariño CG, Perry JK, et al. Remdesivir targets a structurally analogous region of the Ebola virus and SARS-CoV-2 polymerases. PNAS. 2020;117(43):26946–26954.
  • Sampath A, Padmanabhan R. Molecular targets for flavivirus drug discovery. Antiviral Res. 2009;81(1):6–15.
  • Shah PS, Link N, Jang GM, et al. Comparative Flavivirus-Host Protein Interaction Mapping Reveals Mechanisms of dengue and Zika Virus Pathogenesis. Cell. 2018;175(7):1931–1945.e18.
  • Neufeldt CJ, Cortese M, Acosta EG, et al. Rewiring cellular networks by members of the Flaviviridae family. Nat Rev Microbiol. 2018;16(3):125–142.
  • Lupberger J, Zeisel MB, Xiao F, et al. EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat Med. 2011;17(5):589–595.
  • Gao M, Nettles RE, Belema M, et al. Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature. 2010;465(7294):96–100.
  • Wei Y, Li W, Du T, et al. Targeting HIV/HCV Coinfection Using a Machine Learning-Based Multiple Quantitative Structure-Activity Relationships (Multiple QSAR) Method. IJMS. 2019;20(14):3572.
  • Moore JP, Stevenson M. New targets for inhibitors of HIV-1 replication. Nat Rev Mol Cell Biol. 2000;1(1):40–49.
  • Bean P. New drug targets for HIV. Clin Infect Dis. 2005;41(Suppl 1):S96–100.
  • Link JO, Rhee MS, Tse WC, et al. Clinical targeting of HIV capsid protein with a long-acting small molecule. Nature. 2020;584(7822):614–618.
  • Gordon DE, Jang GM, Bouhaddou M, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583(7816):459–468.
  • Null F, Kumar BK, Sekhar KVGC, et al. Druggable targets of SARS-CoV-2 and treatment opportunities for COVID-19. Bioorg Chem. 2020;104:104269.
  • Jin Z, Du X, Xu Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;582(7811):289–293.
  • Peng Q, Peng R, Yuan B, et al. Structural and Biochemical Characterization of the nsp12-nsp7-nsp8 Core Polymerase Complex from SARS-CoV-2. Cell Rep. 2020;31(11):107774.
  • Osipiuk J, Azizi S-A, Dvorkin S, et al. Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nat Commun. 2021;12(1):743.
  • Bung N, Krishnan SR, Bulusu G, et al. de novo design of new chemical entities for SARS-CoV-2 using artificial intelligence. Future Med Chem. 2021;13(6):575–585.
  • Lau SKP, Chan JFW. Coronaviruses: emerging and re-emerging pathogens in humans and animals. Virol J. 2015;12(1):209.
  • de Wit E, Van Doremalen N, Falzarano D, et al. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14(8):523–534.
  • Santos I de A, Vr G, Frg B, et al. Antivirals Against Coronaviruses: candidate Drugs for SARS-CoV-2 Treatment? Front Microbiol. 2020 Aug 13;11:1818. DOI:https://doi.org/10.3389/fmicb.2020.01818. eCollection 2020.
  • Serafim MSM, Gertrudes JC, Costa DMA, et al. Knowing and combating the enemy: a brief review on SARS-CoV-2 and computational approaches applied to the discovery of drug candidates. Biosci Rep. 2021;41(3): BSR20202616.
  • Bakovic A, Risner K, Bhalla N, et al. Brilacidin demonstrates Inhibition of SARS-CoV-2 in Cell Culture. Viruses. 2021;13(2):271.
  • Mall R, Elbasir A, Almeer H, et al. A Modelling Framework for Embedding-based Predictions for Compound-Viral Protein Activity. Bioinformatics. 2021. https://doi.org/10.1093/bioinformatics/btab130
  • Innovation Pharmaceuticals, Inc. A Phase 2, Randomized, Double-blind, Placebo-controlled, Multi-center Study to Evaluate the Efficacy and Safety of Brilacidin in Hospitalized Participants With COVID-19. clinicaltrials.gov; 2021 Report No.: NCT04784897. Available from: https://clinicaltrials.gov/ct2/show/NCT04784897.
  • Green CP, Engkvist O, Pairaudeau G. The convergence of artificial intelligence and chemistry for improved drug discovery. Future Med Chem. 2018;10(22):2573–2576.
  • Schneider P, Walters WP, Plowright AT, et al. Rethinking drug design in the artificial intelligence era. Nat Rev Drug Discov. 2020;19(5):353–364.
  • Jiménez-Luna J, Grisoni F, Schneider G. Drug discovery with explainable artificial intelligence. Nature Mach Intell. 2020;2(10):573–584.
  • Grygorenko OO, Volochnyuk DM, Ryabukhin SV, et al. The Symbiotic Relationship Between Drug Discovery and Organic Chemistry. Chem Eur J. 2020;26(6):1196–1237.
  • Maryasin B, Marquetand P, Maulide N. Machine Learning for Organic Synthesis: are Robots Replacing Chemists? Angew Chem. 2018;57(24):6978–6980.
  • Coley CW, Green WH, Jensen KF. Machine Learning in Computer-Aided Synthesis Planning. Acc Chem Res. 2018;51(5):1281–1289.
  • Blakemore DC, Castro L, Churcher I, et al. Organic synthesis provides opportunities to transform drug discovery. Nat Chem. 2018;10(4):383–394.
  • Ratti R. Industrial applications of green chemistry: status, Challenges and Prospects. SN Appl Sci. 2020;2(2):263.
  • Recanatini M, Cabrelle C. Drug Research Meets Network Science: where Are We? J Med Chem. 2020;63(16):8653–8666.
  • Grebner C, Matter H, Plowright AT, et al. Automated de Novo design in Medicinal Chemistry: which Types of Chemistry Does a Generative Neural Network Learn? J Med Chem. 2020;63(16):8809–8823.
  • Yang J, Wang D, Jia C, et al. Freely Accessible Chemical Database Resources of Compounds for In Silico Drug Discovery. Curr Med Chem. 2020;26(42):7581–7597.
  • Rigden DJ, Fernández XM. The 26th annual Nucleic Acids Research database issue and Molecular Biology Database Collection. Nucleic Acids Res. 2019;47(D1):D1–D7.
  • Pavlopoulos GA, Paez-Espino D, Kyrpides NC, et al. Empirical Comparison of Visualization Tools for Larger-Scale Network Analysis. Advances in Bioinformatics. 2017;2017:1278932.
  • Ishida S, Terayama K, Kojima R, et al. Prediction and Interpretable Visualization of Retrosynthetic Reactions Using Graph Convolutional Networks. J Chem Inf Model. 2019;59(12):5026–5033.
  • Kojima R, Ishida S, Ohta M, et al. kGCN: a graph-based deep learning framework for chemical structures. J Cheminform. 2020;12(1):32.
  • Stecula A, Hussain MS, Viola RE. Discovery of Novel Inhibitors of a Critical Brain Enzyme Using a Homology Model and a deep Convolutional Neural Network. J Med Chem. 2020;63(16):8867–8875.
  • Xiong Z, Wang D, Liu X, et al. Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism. J Med Chem. 2020;63(16):8749–8760.
  • Awale M, Sirockin F, Stiefl N, et al. Drug Analogs from Fragment-Based Long Short-Term Memory Generative Neural Networks. J Chem Inf Model. 2019;59(4):1347–1356.
  • Miljković F, Rodríguez-Pérez R, Bajorath J. Machine Learning Models for Accurate Prediction of Kinase Inhibitors with Different Binding Modes. J Med Chem. 2020;63(16):8738–8748.
  • Feinberg EN, Joshi E, Pande VS, et al. Improvement in ADMET Prediction with Multitask deep Featurization. J Med Chem. 2020;63(16):8835–8848.
  • Simões RS, Maltarollo VG, Oliveira PR, et al. Transfer and Multi-task Learning in QSAR Modeling: advances and Challenges. Front. Pharmacol., 06 February 2018. Available from: https://doi.org/10.3389/fphar.2018.00074
  • Camacho DM, Collins KM, Powers RK, et al. Next-Generation Machine Learning for Biological Networks. Cell. 2018;173(7):1581–1592.
  • Tan M. Prediction of anti-cancer drug response by kernelized multi-task learning. Artif Intell Med. 2016;73:70–77.
  • Ammad-Ud-Din M, Khan SA, Wennerberg K, et al. Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression. Bioinformatics. 2017;33(14):i359–i368.
  • Mayr A, Klambauer G, Unterthiner T, et al. deepTox: toxicity Prediction using deep Learning. Front. Environ. Sci. 02 February 2016. https://doi.org/10.3389/fenvs.2015.00080
  • Farimani AB, Feinberg E, Pande V. Binding Pathway of Opiates to μ-Opioid Receptors Revealed by Machine Learning. Biophys J. 2018;114(3):62a–63a.
  • McCloskey K, Sigel EA, Kearnes S, et al. Machine Learning on DNA-Encoded Libraries: a New Paradigm for Hit Finding. J Med Chem. 2020;63(16):8857–8866.
  • Li X, Li Z, Wu X, et al. deep Learning Enhancing Kinome-Wide Polypharmacology Profiling: model Construction and Experiment Validation. J Med Chem. 2020;63(16):8723–8737.
  • Simões RS, Oliveira PR, Honório KM, et al. Applying Transfer Learning to QSAR Regression Models. In: Information Technology - New Generations. 2018. p. 631–637. DOI: https://doi.org/10.1007/978-3-319-77028-4_81
  • Chen H, Cheng F, Li J. iDrug: integration of drug repositioning and drug-target prediction via cross-network embedding. PLoS Comput Biol. 2020;16(7):e1008040.
  • Rodríguez-Pérez R, Bajorath J. Interpretation of Compound Activity Predictions from Complex Machine Learning Models Using Local Approximations and Shapley Values. J Med Chem. 2020;63(16):8761–8777.
  • Rathi PC, Ludlow RF, Verdonk ML. Practical High-Quality Electrostatic Potential Surfaces for Drug Discovery Using a Graph-Convolutional deep Neural Network. J Med Chem. 2020;63(16):8778–8790.
  • Fare C, Turcani L, Pyzer-Knapp EO. Powerful, transferable representations for molecules through intelligent task selection in deep multitask networks. Phys Chem Chem Phys. 2020;22(23):13041–13048.
  • Lee K, In-Silico Molecular KD. Binding Prediction for Human Drug Targets Using deep Neural Multi-Task Learning. Genes (Basel). 2019 Nov 7;10(11):906. DOI:https://doi.org/10.3390/genes10110906.
  • Nasser M, Salim N, Hamza H, et al. Improved deep Learning Based Method for Molecular Similarity Searching Using Stack of deep Belief Networks. Molecules. 2021;26(1):128.
  • Winter R, Noé F, Clevert D-A Auto-Encoding Molecular Conformations. 2021.
  • Lipinski C, Hopkins A. Navigating chemical space for biology and medicine. Nature. 2004;432(7019):855–861.
  • Horvath D, Marcou G, Varnek A. Generative topographic mapping in drug design. Drug Discov Today. 2019;32–33:99–107.
  • Klimenko K, Marcou G, Horvath D, et al. Chemical Space Mapping and Structure-Activity Analysis of the ChEMBL Antiviral Compound Set. J Chem Inf Model. 2016;56(8):1438–1454.
  • Casciuc I, Zabolotna Y, Horvath D, et al. Virtual Screening with Generative Topographic Maps: how Many Maps Are Required? J Chem Inf Model. 2019;59(1):564–572.
  • Langeder J, Grienke U, Chen Y, et al. Natural products against acute respiratory infections: strategies and lessons learned. J Ethnopharmacol. 2020;248:112298.
  • Ando HY, dehaspe L, Luyten W, et al. Discovering H-bonding rules in crystals with inductive logic programming. Mol Pharm. 2006;3(6):665–674.
  • Kumar A, Loharch S, Kumar S, et al. Exploiting cheminformatic and machine learning to navigate the available chemical space of potential small molecule inhibitors of SARS-CoV-2. Comput Struct Biotechnol J. 2021;19:424–438.
  • Rohall SL, Auch L, Gable J, et al. An Artificial Intelligence Approach to Proactively Inspire Drug Discovery with Recommendations. J Med Chem. 2020;63(16):8824–8834.
  • Thakkar A, Selmi N, Reymond J-L, et al. “Ring Breaker”: neural Network Driven Synthesis Prediction of the Ring System Chemical Space. J Med Chem. 2020;63(16):8791–8808.
  • Segler MHS, Preuss M, Waller MP. Planning chemical syntheses with deep neural networks and symbolic AI. Nature. 2018;555:604–610.
  • Lee CY, Chen Y-P-P. Machine learning on adverse drug reactions for pharmacovigilance. Drug Discov Today. 2019;24(7):1332–1343.
  • Zhavoronkov A, Vanhaelen Q, Oprea TI. Will Artificial Intelligence for Drug Discovery Impact Clinical Pharmacology? Clin Pharmacol Ther. 2020;107(4):780–785.
  • Dimitri GM, DrugClust: LP. A machine learning approach for drugs side effects prediction. Comput Biol Chem. 2017;68:204–210.
  • Zhang L, Tan J, Han D, et al. From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discov Today. 2017;22(11):1680–1685.
  • Zame WR, Bica I, Shen C, et al. Machine learning for clinical trials in the era of COVID-19. Stat Biopharm Res. 2020;12(4):506–517.
  • Aliper, A., Plis, S., Artemov, A., et al. deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol Pharm. 2016 Jul 5;13(7):2524-30. DOI:https://doi.org/10.1021/acs.molpharmaceut.6b00248.
  • Doran D, Schulz S, Besold TR. What Does Explainable AI Really Mean? A New Conceptualization of Perspectives, Cornell University. 2017. arXiv:1710.00794. p. 1-8.
  • Mirza MU, Ikram N. Integrated Computational Approach for Virtual Hit Identification against Ebola Viral Proteins VP35 and VP40. Int J Mol Sci. 2016;17(11):17.
  • Ekins S, Freundlich JS, Clark AM, et al. 4. Machine learning models identify molecules active against the Ebola virus in vitro. F1000Res. 2015; 4: 1091; 2017. DOI: https://doi.org/10.12688/f1000research.7217.3
  • Capuzzi SJ, Sun W, Muratov EN, et al. Computer-Aided Discovery and Characterization of Novel Ebola Virus Inhibitors. J Med Chem. 2018;61(8):3582–3594.
  • Anantpadma M, Lane T, Zorn KM, et al. Ebola Virus Bayesian Machine Learning Models Enable New in Vitro Leads. ACS Omega. 2019;4(1):2353–2361.
  • Wang M, Wang K, Yan A, et al. Classification of HCV NS5B Polymerase Inhibitors Using Support Vector Machine. Int J Mol Sci. 2012;13(4):4033–4047.
  • Rafiei H, Khanzadeh M, Mozaffari S, et al. QSAR study of HCV NS5B polymerase inhibitors using the genetic algorithm-multiple linear regression (GA-MLR). Excli J. 2016;15:38–53.
  • Qin Z, Wang M, Yan A. QSAR studies of the bioactivity of hepatitis C virus (HCV) NS3/4A protease inhibitors by multiple linear regression (MLR) and support vector machine (SVM). Bioorg Med Chem Lett. 2017;27(13):2931–2938.
  • Pethe MA, Rubenstein AB, Khare SD. Data-driven supervised learning of a viral protease specificity landscape from deep sequencing and molecular simulations. Proc Natl Acad Sci U S A. 2019;116(1):168–176.
  • Liu Q, Zhou H, Liu L, et al. Multi-target QSAR modelling in the analysis and design of HIV-HCV co-inhibitors: an in-silico study. BMC Bioinformatics. 2011;12(1):294.
  • Li Y, Tian Y, Qin Z, et al. Classification of HIV-1 Protease Inhibitors by Machine Learning Methods. ACS Omega. 2018;3(11):15837–15849.
  • Alves VM, Bobrowski T, Melo‐Filho CC, et al. QSAR Modeling of SARS-CoV M pro Inhibitors Identifies Sufugolix, Cenicriviroc, Proglumetacin, and other Drugs as Candidates for Repurposing against SARS-CoV-2. Mol Inform. 2021;40(1):2000113.
  • Mottaqi MS, Mohammadipanah F, Sajedi H. Contribution of machine learning approaches in response to SARS-CoV-2 infection. Inf Med Unlocked. 2021;23:100526.
  • Schaduangrat N, Nantasenamat C, Prachayasittikul V, et al. Meta-iAVP: a Sequence-Based Meta-Predictor for Improving the Prediction of Antiviral Peptides Using Effective Feature Representation. IJMS. 2019;20(22):5743.
  • Ivanov J, Polshakov D, Kato-Weinstein J, et al. Quantitative Structure–Activity Relationship Machine Learning Models and their Applications for Identifying Viral 3CLpro- and RdRp-Targeting Compounds as Potential Therapeutics for COVID-19 and Related Viral Infections. ACS Omega. 2020;5(42):27344–27358.
  • Nirouei M, Ghasemi G, Abdolmaleki P, et al. Linear and non-linear quantitative structure-activity relationship models on indole substitution patterns as inhibitors of HIV-1 attachment. Indian J Biochem Biophys. 2012;49(3):202–210.
  • Thompson CG, Sedykh A, Nicol MR, et al. Short Communication: cheminformatics Analysis to Identify Predictors of Antiviral Drug Penetration into the Female Genital Tract. AIDS Res Hum Retroviruses. 2014;30(11):1058–1064.
  • Aha E-A, Hassanien AE. Two-class support vector machine with new kernel function based on paths of features for predicting chemical activity. Inf Sci. 2017;403–404:42–54.
  • Tian Y, Zhang S, Yin H, et al. Quantitative structure-activity relationship (QSAR) models and their applicability domain analysis on HIV-1 protease inhibitors by machine learning methods. Chemometr Intell Lab Syst. 2020;196:103888.
  • Weidlich IE, Filippov IV, Brown J, et al. Inhibitors for the hepatitis C virus RNA polymerase explored by SAR with advanced machine learning methods. Bioorg Med Chem. 2013;21(11):3127–3137.
  • Wei Y, Li J, Qing J, et al., Discovery of Novel Hepatitis C Virus NS5B Polymerase Inhibitors by Combining Random Forest, Multiple e-Pharmacophore Modeling and Docking. Maga G, editor. PLoS ONE. 11(2): e0148181. 2016.
  • Chown H. A comparison of machine learning algorithms for the prediction of Hepatitis C NS3 protease cleavage sites. The EuroBiotech Journal. 22 Oct 2019;3(4):167–174. DOI:https://doi.org/10.2478/ebtj-2019-0020
  • Drevinskas T, Mickienė R, Maruška A, et al. Confirmation of the antiviral properties of medicinal plants via chemical analysis, machine learning methods and antiviral tests: a methodological approach. Anal Methods. 2018;10(16):1875–1885.
  • Drevinskas T, Maruška A, Telksnys L, et al. Chromatographic Data Segmentation Method: a Hybrid Analytical Approach for the Investigation of Antiviral Substances in Medicinal Plant Extracts. Anal Chem. 2019;91(1):1080–1088.
  • Kwofie SK, Broni E, Teye J, et al. Pharmacoinformatics-based identification of potential bioactive compounds against Ebola virus protein VP24. Comput Biol Med. 2019;113:103414.
  • Lane TR, Dyall J, Mercer L, et al. Repurposing Pyramax®, quinacrine and tilorone as treatments for Ebola virus disease. Antiviral Res. 2020;182:104908.
  • Verma AK, Aggarwal R. Repurposing potential of FDA-approved and investigational drugs for COVID-19 targeting SARS-CoV-2 spike and main protease and validation by machine learning algorithm. Chem Biol Drug des. 2020;97(4):836–853.
  • Sabatino M, Fabiani M, Božović M, et al. Experimental Data Based Machine Learning Classification Models with Predictive Ability to Select in Vitro Active Antiviral and Non-Toxic Essential Oils. Molecules. 2020;25(10):2452.
  • Vinotha G, Sundar TV, Amuthalakshmi D, et al. Two new molecular preprocessing schemes for machine learning and their evaluation using some DT algorithms. AIP Conference Proceedings. American Institute of Physics (AIP). College Park, Maryland, United States of America; 2019;2117:020011.
  • Beltrán Lissabet JF, Belén LH, Farias JG. AntiVPP 1.0: a portable tool for prediction of antiviral peptides. Comput Biol Med. 2019;107:127–130.
  • Chowdhury AS, Reehl SM, Kehn-Hall K, et al. Better understanding and prediction of antiviral peptides through primary and secondary structure feature importance. Sci Rep. 2020;10(1):19260.
  • Pennington LD, Muegge I. Holistic Drug design for Multiparameter Optimization in Modern Small Molecule Drug Discovery. Bioorg Med Chem Lett. 2021 Mar 31;41:128003. DOI:https://doi.org/10.1016/j.bmcl.2021.128003. Online ahead of print. Elsevier.
  • V Kleandrova V, Speck-Planche A. The urgent need for pan-antiviral agents: from multitarget discovery to multiscale design. Future Med Chem. 2020;13(1):5–8.
  • Galvez J. Comments on the IJQSPR Perspectives, Hershey, Pennsylvania, USA: International Journal of Quantitative Structure-Property Relationships (IJQSPR). 2021. p. 3.
  • Barnes JC, Mirkin CA Profile of Jean-Pierre Sauvage, Sir J. Fraser Stoddart, and Bernard L. Feringa, 2016 Nobel Laureates in Chemistry. PNAS. 2017;114:620–625.
  • Fisher ME, Nagaosa N Profile of David J. Thouless, J. Michael Kosterlitz, and F. Duncan M. Haldane, 2016 Nobel Laureates in Physics. PNAS. 2017;114:626–628.
  • Fang S, Dong L, Liu L, et al. HERB: a high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Res. 2021;49(D1):D1197–D1206.
  • Nowogrodzki A. Eleven tips for working with large data sets. Nature. 2020;577(7790):439–440.
  • Hage-melim Li Da S, Lb F, de Oliveira NKS, et al. Virtual screening, ADME/Tox predictions and the drug repurposing concept for future use of old drugs against the COVID-19. Life Sci. 2020;256:117963.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.